Advertisement

Perinatal Nutrition and Programmed Risk for Neuropsychiatric Disorders: A Focus on Animal Models

  • Author Footnotes
    1 MD and JRT contributed equally to this work.
    Madison DeCapo
    Footnotes
    1 MD and JRT contributed equally to this work.
    Affiliations
    Division of Neuroscience, Oregon National Primate Research Center, Beaverton

    Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton
    Search for articles by this author
  • Author Footnotes
    1 MD and JRT contributed equally to this work.
    Jacqueline R. Thompson
    Footnotes
    1 MD and JRT contributed equally to this work.
    Affiliations
    Division of Neuroscience, Oregon National Primate Research Center, Beaverton

    Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton
    Search for articles by this author
  • Geoffrey Dunn
    Affiliations
    Department of Human Physiology, University of Oregon, Eugene, Oregon
    Search for articles by this author
  • Elinor L. Sullivan
    Correspondence
    Address correspondence to Elinor L. Sullivan, Ph.D., Department of Human Physiology, University of Oregon, 1240 University of Oregon, Eugene, OR 97403.
    Affiliations
    Division of Neuroscience, Oregon National Primate Research Center, Beaverton

    Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton

    Department of Human Physiology, University of Oregon, Eugene, Oregon
    Search for articles by this author
  • Author Footnotes
    1 MD and JRT contributed equally to this work.

      Abstract

      Maternal nutrition is critically important for fetal development. Recent human studies demonstrate a strong connection between diet during pregnancy and offspring risk for neuropsychiatric disorders including depression, anxiety, and attention-deficit/hyperactivity disorder. Animal models have emerged as a crucial tool for understanding maternal nutrition’s contribution to prenatal programming and the later development of neuropsychiatric disorders. This review highlights preclinical studies examining how maternal consumption of the three macronutrients (protein, fats, and carbohydrates) influence offspring negative-valence behaviors relevant to neuropsychiatric disorders. We highlight the translational aspects of animal models and so examine exposure periods that mirror the neurodevelopmental stages of human gestation. Because of our emphasis on programmed changes in neurobehavioral development, studies that continue diet exposure until assessment in adulthood are not discussed. The presented research provides a strong foundation of preclinical evidence of nutritional programming of neurobehavioral impairments. Alterations in risk assessment and response were observed alongside neurodevelopmental impairments related to neurogenesis, synaptogenesis, and synaptic plasticity. To date, the large majority of studies utilized rodent models, and the field could benefit from additional study of large-animal models. Additional future directions are discussed, including the need for further studies examining how sex as a biological variable affects the contribution of maternal nutrition to prenatal programming.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Duncan G.J.
        • Dowsett C.J.
        • Claessens A.
        • Magnuson K.
        • Huston A.C.
        • Klebanov P.
        • et al.
        School readiness and later achievement.
        Dev Psychol. 2007; 43: 1428-1446
        • Kessler R.C.
        • Berglund P.
        • Demler O.
        • Jin R.
        • Merikangas K.R.
        • Walters E.E.
        Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication.
        Arch Gen Psychiatry. 2005; 62: 593-602
        • Pelham W.E.
        • Foster E.M.
        • Robb J.A.
        The economic impact of attention-deficit/hyperactivity disorder in children and adolescents.
        Ambul Pediatr. 2007; 7: 121-131
        • Breslau J.
        • Miller E.
        • Breslau N.
        • Bohnert K.
        • Lucia V.
        • Schweitzer J.
        The impact of early behavior disturbances on academic achievement in high school.
        Pediatrics. 2009; 123: 1472-1476
        • Jester J.M.
        • Nigg J.T.
        • Buu A.
        • Puttler L.I.
        • Glass J.M.
        • Heitzeg M.M.
        • et al.
        Trajectories of childhood aggression and inattention/hyperactivity: Differential effects on substance abuse in adolescence.
        J Am Acad Child Adolesc Psychiatry. 2008; 47: 1158-1165
        • Kessler R.C.
        • Amminger G.P.
        • Aguilar-Gaxiola S.
        • Alonso J.
        • Lee S.
        • Ustun T.B.
        Age of onset of mental disorders: A review of recent literature.
        Curr Opin Psychiatry. 2007; 20: 359-364
        • Bale T.L.
        • Baram T.Z.
        • Brown A.S.
        • Goldstein J.M.
        • Insel T.R.
        • McCarthy M.M.
        • et al.
        Early life programming and neurodevelopmental disorders.
        Biol Psychiatry. 2010; 68: 314-319
        • Kwon E.J.
        • Kim Y.J.
        What is fetal programming?: A lifetime health is under the control of in utero health.
        Obstet Gynecol Sci. 2017; 60: 506-519
        • Georgieff M.K.
        Nutrition and the developing brain: Nutrient priorities and measurement.
        Am J Clin Nutr. 2007; 85: 614S-620S
        • Morrison J.L.
        • Regnault T.R.H.
        Nutrition in pregnancy: Optimising maternal diet and fetal adaptations to altered nutrient supply.
        Nutrients. 2016; 8: 342
        • Rao P.N.S.
        • Shashidhar A.
        • Ashok C.
        In utero fuel homeostasis: Lessons for a clinician.
        Indian J Endocrinol Metab. 2013; 17: 60-68
        • Higgins L.
        • Greenwood S.L.
        • Wareing M.
        • Sibley C.P.
        • Mills T.A.
        Obesity and the placenta: A consideration of nutrient exchange mechanisms in relation to aberrant fetal growth.
        Placenta. 2011; 32: 1-7
        • Krakowiak P.
        • Walker C.K.
        • Bremer A.A.
        • Baker A.S.
        • Ozonoff S.
        • Hansen R.L.
        • et al.
        Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders.
        Pediatrics. 2012; 129: e1121
        • Rivera H.M.
        • Christiansen K.J.
        • Sullivan E.L.
        The role of maternal obesity in the risk of neuropsychiatric disorders.
        Front Neurosci. 2015; 9: 194
        • Van Lieshout R.J.
        • Voruganti L.P.
        Diabetes mellitus during pregnancy and increased risk of schizophrenia in offspring: A review of the evidence and putative mechanisms.
        J Psychiatry Neurosci. 2008; 33: 395-404
        • Clancy B.
        • Finlay B.L.
        • Darlington R.B.
        • Anand K.J.S.
        Extrapolating brain development from experimental species to humans.
        Neurotoxicology. 2007; 28: 931-937
        • Rice D.
        • Barone S.
        Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models.
        Environ Health Perspect. 2000; 108: 511-533
        • Anderzhanova E.
        • Kirmeier T.
        • Wotjak C.T.
        Animal models in psychiatric research: The RDoC system as a new framework for endophenotype-oriented translational neuroscience.
        Neurobiol Stress. 2017; 7: 47-56
        • Kalueff A.V.
        • Ren-Patterson R.F.
        • LaPorte J.L.
        • Murphy D.L.
        Domain interplay concept in animal models of neuropsychiatric disorders: A new strategy for high-throughput neurophenotyping research.
        Behav Brain Res. 2008; 188: 243-249
        • Brotman M.A.
        • Schmajuk M.
        • Rich B.A.
        • Dickstein D.P.
        • Guyer A.E.
        • Costello E.J.
        • et al.
        Prevalence, clinical correlates, and longitudinal course of severe mood dysregulation in children.
        Biol Psychiatry. 2006; 60: 991-997
        • Shaw P.
        • Stringaris A.
        • Nigg J.
        • Leibenluft E.
        Emotion dysregulation in attention deficit hyperactivity disorder.
        Am J Psychiatry. 2014; 171: 276-293
        • Nestler E.J.
        • Hyman S.E.
        Animal models of neuropsychiatric disorders.
        Nat Neurosci. 2010; 13: 1161
        • Homberg J.R.
        • Kyzar E.J.
        • Nguyen M.
        • Norton W.H.
        • Pittman J.
        • Poudel M.K.
        • et al.
        Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models.
        Neurosci Biobehav Rev. 2016; 65: 292-312
        • LeDoux J.E.
        • Pine D.S.
        Using neuroscience to help understand fear and anxiety: A two-system framework.
        Am J Psychiatry. 2016; 173: 1083-1093
        • Simon P.
        • Dupuis R.
        • Costentin J.
        Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions.
        Behav Brain Res. 1994; 61: 59-64
        • Walf A.A.
        • Frye C.A.
        The use of the elevated plus maze as an assay of anxiety-related behavior in rodents.
        Nat Protoc. 2007; 2: 322-328
        • Filgueiras G.B.
        • Carvalho-Netto E.F.
        • Estanislau C.
        Aversion in the elevated plus-maze: Role of visual and tactile cues.
        Behav Processes. 2014; 107: 106-111
        • Sorregotti T.
        • Cipriano A.C.
        • Cruz F.C.
        • Mascarenhas D.C.
        • Rodgers R.J.
        • Nunes-de-Souza R.L.
        Amygdaloid involvement in the defensive behavior of mice exposed to the open elevated plus-maze.
        Behav Brain Res. 2018; 338: 159-165
        • Sorregotti T.
        • Mendes-Gomes J.
        • Rico J.L.
        • Rodgers R.J.
        • Nunes-de-Souza R.L.
        Ethopharmacological analysis of the open elevated plus-maze in mice.
        Behav Brain Res. 2013; 246: 76-85
        • Hofmann S.G.
        • Ellard K.K.
        • Siegle G.J.
        Neurobiological correlates of cognitions in fear and anxiety: A cognitive-neurobiological information processing model.
        Cogn Emot. 2012; 26: 282-299
      1. Lieberman HR (1999): Amino acid and protein requirements: Cognitive performance, stress, and brain function. In: Institute of Medicine Committee on Military Nutrition Research, editors. The Role of Protein and Amino Acids in Sustaining and Enhancing Performance. Washington, DC: National Academies Press, 289–307.

        • Vaughan O.R.
        • Rosario F.J.
        • Powell T.L.
        • Jansson T.
        Chapter eight: Regulation of placental amino acid transport and fetal growth.
        in: Huckle W.R. Progress in Molecular Biology and Translational Science. Academic Press, New York2017: 217-251
        • Gonzalez P.N.
        • Gasperowicz M.
        • Barbeito-Andrés J.
        • Klenin N.
        • Cross J.C.
        • Hallgrímsson B.
        Chronic protein restriction in mice impacts placental function and maternal body weight before fetal growth.
        PLoS One. 2016; 11: e0152227
        • Gao H.
        • Sathishkumar K.R.
        • Yallampalli U.
        • Balakrishnan M.
        • Li X.
        • Wu G.
        • et al.
        Maternal protein restriction regulates IGF2 system in placental labyrinth.
        Front Biosci (Elite Ed). 2012; 4: 1434-1450
        • Chiaratti M.R.
        • Malik S.
        • Diot A.
        • Rapa E.
        • Macleod L.
        • Morten K.
        • et al.
        Is placental mitochondrial function a regulator that matches fetal and placental growth to maternal nutrient intake in the mouse?.
        PLoS One. 2015; 10: e0130631
        • Wu G.
        • Pond W.G.
        • Ott T.
        • Bazer F.W.
        Maternal dietary protein deficiency decreases amino acid concentrations in fetal plasma and allantoic fluid of pigs.
        J Nutr. 1998; 128: 894-902
        • Rees W.D.
        • Hay S.M.
        • Buchan V.
        • Antipatis C.
        • Palmer R.M.
        The effects of maternal protein restriction on the growth of the rat fetus and its amino acid supply.
        Br J Nutr. 1999; 81: 243-250
        • Semba R.D.
        The rise and fall of protein malnutrition in global health.
        Ann Nutr Metab. 2016; 69: 79-88
        • Akyol A.
        • Cetin A.K.
        • Gulec A.
        • Dasgin H.
        • Ayaz A.
        • Onbasilar I.
        Maternal low-quality protein diet exerts sex-specific effects on plasma amino acid profile and alters hepatic expression of methyltransferases in adult rat offspring.
        J Dev Orig Health Dis. 2018; 9: 409-416
        • Belluscio L.M.
        • Berardino B.G.
        • Ferroni N.M.
        • Ceruti J.M.
        • Cánepa E.T.
        Early protein malnutrition negatively impacts physical growth and neurological reflexes and evokes anxiety and depressive-like behaviors.
        Physiol Behav. 2014; 129: 237-254
        • Crossland R.F.
        • Balasa A.
        • Ramakrishnan R.
        • Mahadevan S.K.
        • Fiorotto M.L.
        • Van den Veyver I.B.
        Chronic maternal low-protein diet in mice affects anxiety, night-time energy expenditure and sleep patterns, but not circadian rhythm in male offspring.
        PLoS One. 2017; 12: e0170127
        • Pillay N.
        • Rimbach R.
        • Rymer T.
        Pre- and postnatal dietary protein deficiency influences anxiety, memory and social behaviour in the African striped mouse Rhabdomys dilectus chakae.
        Physiol Behav. 2016; 161: 38-46
        • Reyes-Castro L.A.
        • Rodriguez J.S.
        • Charco R.
        • Bautista C.J.
        • Larrea F.
        • Nathanielsz P.W.
        • et al.
        Maternal protein restriction in the rat during pregnancy and/or lactation alters cognitive and anxiety behaviors of female offspring.
        Int J Dev Neurosci. 2012; 30: 39-45
        • Reyes-Castro L.A.
        • Rodriguez J.S.
        • Rodríguez-González G.L.
        • Chavira R.
        • Bautista C.J.
        • McDonald T.J.
        • et al.
        Pre- and/or postnatal protein restriction developmentally programs affect and risk assessment behaviors in adult male rats.
        Behav Brain Res. 2012; 227: 324-329
        • van Loo H.M.
        • Aggen S.H.
        • Gardner C.O.
        • Kendler K.S.
        Sex similarities and differences in risk factors for recurrence of major depression.
        Psychol Med. 2017; 48: 1685-1693
        • Vucetic Z.
        • Totoki K.
        • Schoch H.
        • Whitaker K.W.
        • Hill-Smith T.
        • Lucki I.
        • et al.
        Early life protein restriction alters dopamine circuitry.
        Neuroscience. 2010; 168: 359-370
        • Lopes de Souza S.
        • Orozco-Solis R.
        • Grit I.
        • Manhães de Castro R.
        • Bolaños-Jiménez F.
        Perinatal protein restriction reduces the inhibitory action of serotonin on food intake.
        Eur J Neurosci. 2008; 27: 1400-1408
        • Wang L.
        • Xu R.J.
        The effects of perinatal protein malnutrition on spatial learning and memory behaviour and brain-derived neurotrophic factor concentration in the brain tissue in young rats.
        Asia Pac J Clin Nutr. 2007; 16: 467-472
        • Lister James P.
        • Blatt Gene J.
        • DeBassio William A.
        • Kemper Thomas L.
        • Tonkiss J.
        • Galler Janina R.
        • et al.
        Effect of prenatal protein malnutrition on numbers of neurons in the principal cell layers of the adult rat hippocampal formation.
        Hippocampus. 2005; 15: 393-403
        • Tovote P.
        • Fadok J.P.
        • Lüthi A.
        Neuronal circuits for fear and anxiety.
        Nat Rev Neurosci. 2015; 16: 317
        • Sotres-Bayon F.
        • Sierra-Mercado D.
        • Pardilla-Delgado E.
        • Quirk G.J.
        Gating of fear in prelimbic cortex by hippocampal and amygdala inputs.
        Neuron. 2012; 76: 804-812
        • DeCarolis N.A.
        • Eisch A.J.
        Hippocampal neurogenesis as a target for the treatment of mental illness: A critical evaluation.
        Neuropharmacology. 2010; 58: 884-893
        • Anlar B.
        • Sullivan K.A.
        • Feldman E.L.
        Insulin-like growth factor-I and central nervous system development.
        Horm Metab Res. 1999; 31: 120-125
        • Castrén E.
        Neurotrophins and psychiatric disorders.
        in: Lewin G.R. Carter B.D. Neurotrophic Factors. Springer, Berlin, Heidelberg, Germany2014: 461-479
        • Guzmán C.
        • Cabrera R.
        • Cárdenas M.
        • Larrea F.
        • Nathanielsz P.W.
        • Zambrano E.
        Protein restriction during fetal and neonatal development in the rat alters reproductive function and accelerates reproductive ageing in female progeny.
        J Physiol. 2006; 572: 97-108
        • Langley-Evans S.C.
        • Phillips G.J.
        • Benediktsson R.
        • Gardner D.S.
        • Edwards C.R.W.
        • Jackson A.A.
        • et al.
        Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat.
        Placenta. 1996; 17: 169-172
        • Niknazar S.
        • Nahavandi A.
        • Peyvandi A.A.
        • Peyvandi H.
        • Zare Mehrjerdi F.
        • Karimi M.
        Effect of maternal stress prior to conception on hippocampal BDNF signaling in rat offspring.
        Mol Neurobiol. 2017; 54: 6436-6445
        • Boersma G.J.
        • Lee R.S.
        • Cordner Z.A.
        • Ewald E.R.
        • Purcell R.H.
        • Moghadam A.A.
        • et al.
        Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats.
        Epigenetics. 2014; 9: 437-447
        • Torres N.
        • Bautista C.J.
        • Tovar A.R.
        • Ordáz G.
        • Rodríguez-Cruz M.
        • Ortiz V.
        • et al.
        Protein restriction during pregnancy affects maternal liver lipid metabolism and fetal brain lipid composition in the rat.
        Am J Physiol Endocrinol Metab. 2010; 298: E270-E277
        • Montanha-Rojas E.A.
        • Ferreira A.A.
        • Tenório F.
        • Barradas P.C.
        Myelin basic protein accumulation is impaired in a model of protein deficiency during development.
        Nutr Neurosci. 2005; 8: 49-56
        • Fields R.D.
        White matter in learning, cognition and psychiatric disorders.
        Trends Neurosci. 2008; 31: 361-370
        • Baker K.D.
        • Loughman A.
        • Spencer S.J.
        • Reichelt A.C.
        The impact of obesity and hypercaloric diet consumption on anxiety and emotional behavior across the lifespan.
        Neurosci Biobehav Rev. 2017; 83: 173-182
        • Contu L.
        • Hawkes C.A.
        A review of the impact of maternal obesity on the cognitive function and mental health of the offspring.
        Int J Mol Sci. 2017; 18: 1093
        • Sullivan E.L.
        • Nousen E.K.
        • Chamlou K.A.
        Maternal high fat diet consumption during the perinatal period programs offspring behavior.
        Physiol Behav. 2014; 123: 236-242
        • Luzzo K.M.
        • Wang Q.
        • Purcell S.H.
        • Chi M.
        • Jimenez P.T.
        • Grindler N.
        • et al.
        High fat diet induced developmental defects in the mouse: Oocyte meiotic aneuploidy and fetal growth retardation/brain defects.
        PLoS One. 2012; 7: e49217
        • Jones H.N.
        • Woollett L.A.
        • Barbour N.
        • Prasad P.D.
        • Powell T.L.
        • Jansson T.
        High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice.
        FASEB J. 2008; 23: 271-278
        • Thompson J.R.
        • Gustafsson H.C.
        • DeCapo M.
        • Takahashi D.L.
        • Bagley J.L.
        • Dean T.A.
        • et al.
        Maternal diet, metabolic state, and inflammatory response exert unique and long-lasting influences on offspring behavior in non-human primates.
        Front Endocrinol (Lausanne). 2018; 9: 161
        • Speight A.
        • Davey W.G.
        • McKenna E.
        • Voigt J.-P.W.
        Exposure to a maternal cafeteria diet changes open-field behaviour in the developing offspring.
        Int J Dev Neurosci. 2017; 57: 34-40
        • Wright T.
        • Langley-Evans S.C.
        • Voigt J.-P.
        The impact of maternal cafeteria diet on anxiety-related behaviour and exploration in the offspring.
        Physiol Behav. 2011; 103: 164-172
        • Johnson S.A.
        • Javurek A.B.
        • Painter M.S.
        • Murphy C.R.
        • Conard C.M.
        • Gant K.L.
        • et al.
        Effects of a maternal high-fat diet on offspring behavioral and metabolic parameters in a rodent model.
        J Dev Orig Health Dis. 2017; 8: 75-88
        • Giriko C.Á.
        • Andreoli C.A.
        • Mennitti L.V.
        • Hosoume L.F.
        • Souto Tdos S.
        • Silva A.V.
        • Mendes-da-Silva C.
        Delayed physical and neurobehavioral development and increased aggressive and depression-like behaviors in the rat offspring of dams fed a high-fat diet.
        Int J Dev Neurosci. 2013; 31: 731-739
        • Ribeiro A.C.A.F.
        • Batista T.H.
        • Veronesi V.B.
        • Giusti-Paiva A.
        • Vilela F.C.
        Cafeteria diet during the gestation period programs developmental and behavioral courses in the offspring.
        Int J Dev Neurosci. 2018; 68: 45-52
        • Janthakhin Y.
        • Rincel M.
        • Costa A.-M.
        • Darnaudéry M.
        • Ferreira G.
        Maternal high-fat diet leads to hippocampal and amygdala dendritic remodeling in adult male offspring.
        Psychoneuroendocrinology. 2017; 83: 49-57
        • Uauy R.
        • Castillo C.
        Lipid requirements of infants: Implications for nutrient composition of fortified complementary foods.
        J Nutr. 2003; 133: 2962S-2972S
        • Semple B.D.
        • Blomgren K.
        • Gimlin K.
        • Ferriero D.M.
        • Noble-Haeusslein L.J.
        Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species.
        Prog Neurobiol. 2013; 106–107: 1-16
        • Rincel M.
        • Lépinay A.L.
        • Janthakhin Y.
        • Soudain G.
        • Yvon S.
        • Da Silva S.
        • et al.
        Maternal high-fat diet and early life stress differentially modulate spine density and dendritic morphology in the medial prefrontal cortex of juvenile and adult rats.
        Brain Struct Funct. 2018; 223: 883-895
        • Hatanaka Y.
        • Wada K.
        • Kabuta T.
        Maternal high-fat diet leads to persistent synaptic instability in mouse offspring via oxidative stress during lactation.
        Neurochem Int. 2016; 97: 99-108
        • Penzes P.
        • Cahill M.E.
        • Jones K.A.
        • VanLeeuwen J.-E.
        • Woolfrey K.M.
        Dendritic spine pathology in neuropsychiatric disorders.
        Nat Neurosci. 2011; 14: 285
        • Val-Laillet D.
        • Besson M.
        • Guérin S.
        • Coquery N.
        • Randuineau G.
        • Kanzari A.
        • et al.
        A maternal Western diet during gestation and lactation modifies offspring’s microbiota activity, blood lipid levels, cognitive responses, and hippocampal neurogenesis in Yucatan pigs.
        FASEB J. 2017; 31: 2037-2049
        • Clouard C.
        • Gerrits W.J.J.
        • Kemp B.
        • Val-Laillet D.
        • Bolhuis J.E.
        Perinatal exposure to a diet high in saturated fat, refined sugar and cholesterol affects behaviour, growth, and feed intake in weaned piglets.
        PLoS One. 2016; 11: e0154698
        • Romaní-Pérez M.
        • Lépinay A.L.
        • Alonso L.
        • Rincel M.
        • Xia L.
        • Fanet H.
        • et al.
        Impact of perinatal exposure to high-fat diet and stress on responses to nutritional challenges, food-motivated behaviour and mesolimbic dopamine function.
        Int J Obes (Lond). 2016; 41: 502-509
        • Naef L.
        • Srivastava L.
        • Gratton A.
        • Hendrickson H.
        • Owens S.M.
        • Walker C.-D.
        Maternal high fat diet during the perinatal period alters mesocorticolimbic dopamine in the adult rat offspring: Reduction in the behavioral responses to repeated amphetamine administration.
        Psychopharmacology (Berl). 2008; 197: 83-94
        • Naef L.
        • Moquin L.
        • Dal Bo G.
        • Giros B.
        • Gratton A.
        • Walker C.D.
        Maternal high-fat intake alters presynaptic regulation of dopamine in the nucleus accumbens and increases motivation for fat rewards in the offspring.
        Neuroscience. 2011; 176: 225-236
        • Nahum Sacks K.
        • Friger M.
        • Shoham-Vardi I.
        • Abokaf H.
        • Spiegel E.
        • Sergienko R.
        • et al.
        Prenatal exposure to gestational diabetes mellitus as an independent risk factor for long-term neuropsychiatric morbidity of the offspring.
        Am J Obstet Gynecol. 2016; 215: 380.e381-380.e387
        • Choi C.S.
        • Kim P.
        • Park J.H.
        • Gonzales E.L.T.
        • Kim K.C.
        • Cho K.S.
        • et al.
        High sucrose consumption during pregnancy induced ADHD-like behavioral phenotypes in mice offspring.
        J Nutr Biochem. 2015; 26: 1520-1526
        • Costa A.
        • la Fougère C.
        • Pogarell O.
        • Möller H.-J.
        • Riedel M.
        • Ettinger U.
        Impulsivity is related to striatal dopamine transporter availability in healthy males.
        Psychiatry Res. 2013; 211: 251-256
        • Fusar-Poli P.
        • Rubia K.
        • Rossi G.
        • Sartori G.
        • Balottin U.
        Striatal dopamine transporter alterations in ADHD: Pathophysiology or adaptation to psychostimulants? A meta-analysis.
        Am J Psychiatry. 2012; 169: 264-272
        • Kuang H.
        • Sun M.
        • Lv J.
        • Li J.
        • Wu C.
        • Chen N.
        • et al.
        Hippocampal apoptosis involved in learning deficits in the offspring exposed to maternal high sucrose diets.
        J Nutr Biochem. 2014; 25: 985-990
        • He A.
        • Zhang Y.
        • Yang Y.
        • Li L.
        • Feng X.
        • Wei B.
        • et al.
        Prenatal high sucrose intake affected learning and memory of aged rat offspring with abnormal oxidative stress and NMDARs/Wnt signaling in the hippocampus.
        Brain Res. 2017; 1669: 114-121
        • Oliver M.H.
        • Harding J.E.
        • Breier B.H.
        • Gluckman P.D.
        Fetal insulin-like growth factor (IGF)-I and IGF-II are regulated differently by glucose or insulin in the sheep fetus.
        Reprod Fertil Dev. 1996; 8: 167-172
        • Haghir H.
        • Rezaee A.-A.-R.
        • Sankian M.
        • Kheradmand H.
        • Hami J.
        The effects of induced type-I diabetes on developmental regulation of insulin & insulin like growth factor-1 (IGF-1) receptors in the cerebellum of rat neonates.
        Metab Brain Dis. 2013; 28: 397-410
        • Wu K.L.H.
        • Wu C.-W.
        • Tain Y.-L.
        • Huang L.-T.
        • Chao Y.-M.
        • Hung C.-Y.
        • et al.
        Environmental stimulation rescues maternal high fructose intake-impaired learning and memory in female offspring: Its correlation with redistribution of histone deacetylase 4.
        Neurobiol Learn Mem. 2016; 130: 105-117
        • Meng Q.
        • Ying Z.
        • Noble E.
        • Zhao Y.
        • Agrawal R.
        • Mikhail A.
        • et al.
        systems nutrigenomics reveals brain gene networks linking metabolic and brain disorders.
        EBioMedicine. 2016; 7: 157-166
        • Ohashi K.
        • Ando Y.
        • Munetsuna E.
        • Yamada H.
        • Yamazaki M.
        • Nagura A.
        • et al.
        Maternal fructose consumption alters messenger RNA expression of hippocampal StAR, PBR, P450(11β), 11β-HSD, and 17β-HSD in rat offspring.
        Nutr Res. 2015; 35: 259-264
        • Mizuno G.
        • Munetsuna E.
        • Yamada H.
        • Ando Y.
        • Yamazaki M.
        • Murase Y.
        • et al.
        Fructose intake during gestation and lactation differentially affects the expression of hippocampal neurosteroidogenic enzymes in rat offspring.
        Endocr Res. 2017; 42: 71-77
        • Sapolsky R.M.
        Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders.
        Arch Gen Psychiatry. 2000; 57: 925-935
        • Asghar Z.A.
        • Thompson A.
        • Chi M.
        • Cusumano A.
        • Scheaffer S.
        • Al-Hammadi N.
        • et al.
        Maternal fructose drives placental uric acid production leading to adverse fetal outcomes.
        Sci Rep. 2016; 6: 25091
        • Hwang J.J.
        • Jiang L.
        • Hamza M.
        • Dai F.
        • Belfort-DeAguiar R.
        • Cline G.
        • et al.
        The human brain produces fructose from glucose.
        JCI Insight. 2017; 2: e90508
        • Page K.A.
        • Chan O.
        • Arora J.
        • Belfort-DeAguiar R.
        • Dzuira J.
        • Roehmholdt B.
        • et al.
        Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways.
        JAMA. 2013; 309: 63-70
        • Sastry P.S.
        Lipids of nervous tissue: Composition and metabolism.
        Prog Lipid Res. 1985; 24: 69-176
        • Romano A.
        • Koczwara J.B.
        • Gallelli C.A.
        • Vergara D.
        • Micioni Di Bonaventura M.V.
        • Gaetani S.
        • et al.
        Fats for thoughts: An update on brain fatty acid metabolism.
        Int J Biochem Cell Biol. 2017; 84: 40-45
        • Genevieve Y.
        • Julie C.
        Omega-3 fatty acids and neuropsychiatric disorders.
        Reprod Nutr Dev. 2005; 45: 1-28
        • Brenna J.T.
        Animal studies of the functional consequences of suboptimal polyunsaturated fatty acid status during pregnancy, lactation and early post-natal life.
        Matern Child Nutr. 2011; 7: 59-79
        • Liu J.J.
        • Green P.
        • John Mann J.
        • Rapoport S.I.
        • Sublette M.E.
        Pathways of polyunsaturated fatty acid utilization: Implications for brain function in neuropsychiatric health and disease.
        Brain Res. 2015; 1597: 220-246
        • Rombaldi Bernardi J.
        • de Souza Escobar R.
        • Ferreira C.F.
        • Pelufo Silveira P.
        Fetal and neonatal levels of omega-3: Effects on neurodevelopment, nutrition, and growth.
        ScientificWorldJournal. 2012; 2012: 202473
        • Simopoulos A.P.
        The importance of the ratio of omega-6/omega-3 essential fatty acids.
        Biomed Pharmacother. 2002; 56: 365-379
        • Clandinin M.T.
        • Jumpsen J.
        Fatty acid metabolism in brain in relation to development, membrane structure, and signaling.
        in: Yehuda S. Mostofsky D.I. Handbook of Essential Fatty Acid Biology: Biochemistry, Physiology, and Behavioral Neurobiology. Humana Press, Totowa, NJ1997: 15-65
        • Raygada M.
        • Cho E.
        • Hilakivi-Clarke L.
        High maternal intake of polyunsaturated fatty acids during pregnancy in mice alters offsprings' aggressive behavior, immobility in the swim test, locomotor activity and brain protein kinase C activity.
        J Nutr. 1998; 128: 2505-2511
        • Sussman D.
        • Germann J.
        • Henkelman M.
        Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring.
        Brain Behav. 2014; 5: e00300
        • Rincel M.
        • Lépinay A.L.
        • Delage P.
        • Fioramonti J.
        • Théodorou V.S.
        • Layé S.
        • et al.
        Maternal high-fat diet prevents developmental programming by early-life stress.
        Transl Psychiatry. 2016; 6: e966
        • Simopoulos A.P.
        • Faergeman O.
        • Bourne P.G.
        Action plan for a healthy agriculture, healthy nutrition, healthy people.
        World Rev Nutr Diet. 2011; 102: 1-5
        • Jones K.L.
        • Will M.J.
        • Hecht P.M.
        • Parker C.L.
        • Beversdorf D.Q.
        Maternal diet rich in omega-6 polyunsaturated fatty acids during gestation and lactation produces autistic-like sociability deficits in adult offspring.
        Behav Brain Res. 2013; 238: 193-199
        • Sakayori N.
        • Kikkawa T.
        • Tokuda H.
        • Kiryu E.
        • Yoshizaki K.
        • Kawashima H.
        • et al.
        Maternal dietary imbalance between omega-6 and omega-3 polyunsaturated fatty acids impairs neocortical development via epoxy metabolites.
        Stem Cells. 2016; 34: 470-482
        • Sakayori N.
        • Tokuda H.
        • Yoshizaki K.
        • Kawashima H.
        • Innis S.M.
        • Shibata H.
        • et al.
        Maternal nutritional imbalance between linoleic acid and alpha-linolenic acid increases offspring's anxious behavior with a sex-dependent manner in mice.
        Tohoku J Exp Med. 2016; 240: 31-37
        • Chen H.F.
        • Su H.M.
        Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic-pituitary-adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life.
        J Nutr Biochem. 2013; 24: 70-80
        • Kodas E.
        • Vancassel S.
        • Lejeune B.
        • Guilloteau D.
        • Chalon S.
        Reversibility of n-3 fatty acid deficiency-induced changes in dopaminergic neurotransmission in rats: Critical role of developmental stage.
        J Lipid Res. 2002; 43: 1209-1219
        • Kodas E.
        • Galineau L.
        • Bodard S.
        • Vancassel S.
        • Guilloteau D.
        • Besnard J.C.
        • et al.
        Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat.
        J Neurochem. 2004; 89: 695-702
        • Berkow S.E.
        • Campagnoni A.T.
        Essential fatty acid deficiency: Effects of cross-fostering mice at birth on myelin levels and composition.
        J Nutr. 1983; 113: 582-591
        • Berkow S.E.
        • Campagnoni A.T.
        Essential fatty acid deficiency: Effects of cross-fostering mice at birth on brain growth and myelination.
        J Nutr. 1981; 111: 886-894
        • Coti Bertrand P.
        • O'Kusky J.R.
        • Innis S.M.
        Maternal dietary (n-3) fatty acid deficiency alters neurogenesis in the embryonic rat brain.
        J Nutr. 2006; 136: 1570-1575
        • McKenna M.C.
        • Campagnoni A.T.
        Effect of pre- and postnatal essential fatty acid deficiency on brain development and myelination.
        J Nutr. 1979; 109: 1195-1204
        • Innis S.M.
        • de la Presa Owens S.
        Dietary fatty acid composition in pregnancy alters neurite membrane fatty acids and dopamine in newborn rat brain.
        J Nutr. 2001; 131: 118-122
        • Kuperstein F.
        • Yakubov E.
        • Dinerman P.
        • Gil S.
        • Eylam R.
        • Salem N.
        • et al.
        Overexpression of dopamine receptor genes and their products in the postnatal rat brain following maternal n-3 fatty acid dietary deficiency.
        J Neurochem. 2005; 95: 1550-1562
        • Kuperstein F.
        • Eilam R.
        • Yavin E.
        Altered expression of key dopaminergic regulatory proteins in the postnatal brain following perinatal n-3 fatty acid dietary deficiency.
        J Neurochem. 2008; 106: 662-671
        • Fan C.
        • Sun W.
        • Fu H.
        • Dong H.
        • Xia L.
        • Lu Y.
        • et al.
        Dietary ratios of n-6/n-3 polyunsaturated fatty acids during maternal pregnancy affect hippocampal neurogenesis and apoptosis in mouse offspring.
        Nutr Hosp. 2015; 32: 1170-1179
        • Thomazeau A.
        • Bosch-Bouju C.
        • Manzoni O.
        • Layé S.
        Nutritional n-3 PUFA Deficiency Abolishes Endocannabinoid Gating of Hippocampal Long-Term Potentiation.
        Cereb Cortex. 2017; 27: 2571-2579
        • Dinel A.L.
        • Rey C.
        • Bonhomme C.
        • Le Ruyet P.
        • Joffre C.
        • Layé S.
        Dairy fat blend improves brain DHA and neuroplasticity and regulates corticosterone in mice.
        Prostaglandins Leukot Essent Fatty Acids. 2016; 109: 29-38
        • Moriguchi T.
        • Loewke J.
        • Garrison M.
        • Catalan J.N.
        • Salem N.
        Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum.
        J Lipid Res. 2001; 42: 419-427
        • Lozada L.E.
        • Desai A.
        • Kevala K.
        • Lee J.W.
        • Kim H.Y.
        Perinatal brain docosahexaenoic acid concentration has a lasting impact on cognition in mice.
        J Nutr. 2017; 147: 1624-1630
        • Ferraz A.C.
        • Kiss A.
        • Araújo R.L.
        • Salles H.M.
        • Naliwaiko K.
        • Pamplona J.
        • et al.
        The antidepressant role of dietary long-chain polyunsaturated n-3 fatty acids in two phases in the developing brain.
        Prostaglandins Leukot Essent Fatty Acids. 2008; 78: 183-188
        • McNamara R.K.
        • Hahn C.-G.
        • Jandacek R.
        • Rider T.
        • Tso P.
        • Stanford K.E.
        • et al.
        Selective deficits in the omega-3 fatty acid docosahexaenoic acid in the postmortem orbitofrontal cortex of patients with major depressive disorder.
        Biol Psychiatry. 2007; 62: 17-24
        • Wani A.L.
        • Bhat S.A.
        • Ara A.
        Omega-3 fatty acids and the treatment of depression: A review of scientific evidence.
        Integr Med Res. 2015; 4: 132-141
        • Pase C.S.
        • Roversi K.
        • Roversi K.
        • Vey L.T.
        • Dias V.T.
        • Veit J.C.
        • et al.
        Maternal trans fat intake during pregnancy or lactation impairs memory and alters BDNF and TrkB levels in the hippocampus of adult offspring exposed to chronic mild stress.
        Physiol Behav. 2017; 169: 114-123
        • Roversi K.
        • Pase C.S.
        • Roversi K.
        • Vey L.T.
        • Dias V.T.
        • Metz V.G.
        • et al.
        Trans fat intake across gestation and lactation increases morphine preference in females but not in male rats: Behavioral and biochemical parameters.
        Eur J Pharmacol. 2016; 788: 210-217
        • Wright T.M.
        • King M.V.
        • Davey W.G.
        • Langley-Evans S.C.
        • Voigt J.-P.W.
        Impact of cafeteria feeding during lactation in the rat on novel object discrimination in the offspring.
        Br J Nutr. 2014; 112: 1933-1937