Advertisement
Archival Report| Volume 85, ISSUE 4, P336-344, February 15, 2019

Structural Brain Connectivity in Childhood Disruptive Behavior Problems: A Multidimensional Approach

      Abstract

      Background

      Studies of white matter connectivity in children with disruptive behavior have yielded inconsistent results, possibly owing to the trait’s heterogeneity, which comprises diverse symptoms like physical aggression, irritability, and delinquency. This study examined associations of global and specific white matter connectivity with childhood disruptive behavior problems, while accounting for their complex multidimensionality.

      Methods

      In a large cross-sectional population-based study of 10-year-old preadolescents (n = 2567), we assessed four previously described empirically derived dimensions of disruptive behavior problems using the Child Behavior Checklist: physical aggression, irritability, disobedient behavior, and delinquent behavior. Global and specific white matter microstructure was assessed by diffusion tensor imaging.

      Results

      Global fractional anisotropy and mean diffusivity were not associated with broad measures of disruptive behavior, e.g., Child Behavior Checklist externalizing problems scale. Global fractional anisotropy was negatively associated with delinquent behavior (β = −.123, pfalse discovery rate adjusted = .028) and global mean diffusivity was positively associated with delinquent behavior (β = .205, pfalse discovery rate adjusted < 0.001), suggesting reduced white matter microstructure in preadolescents with higher levels of delinquent behavior. Lower white matter microstructure in the inferior longitudinal fasciculus, superior longitudinal fasciculus, cingulum, and uncinate underlie these associations. Global white matter microstructure was not associated with physical aggression, irritability, or disobedient behavior.

      Conclusions

      Delinquent behavior, a severe manifestation of childhood disruptive behavior, was associated with lower white matter microstructure in tracts connecting frontal and temporal lobes. These brain regions are involved in decision making, reward processing, and emotion regulation. This study demonstrated that incorporating the multidimensional nature of childhood disruptive behavior traits shows promise in advancing the search for elucidating neurobiological correlates of disruptive behavior.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Scott S.
        • Knapp M.
        • Henderson J.
        • Maughan B.
        Financial cost of social exclusion: Follow up study of antisocial children into adulthood.
        BMJ. 2001; 323: 191
        • Peterson B.S.
        • Zhang H.
        • Santa Lucia R.
        • King R.A.
        • Lewis M.
        Risk factors for presenting problems in child psychiatric emergencies.
        J Am Acad Child Adolesc Psychiatry. 1996; 35: 1162-1173
        • Rivenbark J.G.
        • Odgers C.L.
        • Caspi A.
        • Harrington H.
        • Hogan S.
        • Houts R.M.
        • et al.
        The high societal costs of childhood conduct problems: Evidence from administrative records up to age 38 in a longitudinal birth cohort.
        J Child Psychol Psychiatry. 2018; 59: 703-710
        • Blair R.J.
        • White S.F.
        • Meffert H.
        • Hwang S.
        Disruptive behavior disorders: Taking an RDoC(ish) approach.
        Curr Top Behav Neurosci. 2014; 16: 319-336
        • Waller R.
        • Dotterer H.L.
        • Murray L.
        • Maxwell A.M.
        • Hyde L.W.
        White-matter tract abnormalities and antisocial behavior: A systematic review of diffusion tensor imaging studies across development.
        Neuroimage Clin. 2017; 14: 201-215
        • Tremblay R.E.
        Developmental origins of disruptive behaviour problems: The ‘original sin’ hypothesis, epigenetics and their consequences for prevention.
        J Child Psychol Psychiatry. 2010; 51: 341-367
        • Moffitt T.E.
        • Arseneault L.
        • Jaffee S.R.
        • Kim-Cohen J.
        • Koenen K.C.
        • Odgers C.L.
        • et al.
        Research review: DSM-V conduct disorder: Research needs for an evidence base.
        J Child Psychol Psychiatry. 2008; 49: 3-33
        • Lahey B.B.
        • Waldman I.D.
        Annual research review: Phenotypic and causal structure of conduct disorder in the broader context of prevalent forms of psychopathology.
        J Child Psychol Psychiatry. 2012; 53: 536-557
        • Finger E.C.
        • Marsh A.
        • Blair K.S.
        • Majestic C.
        • Evangelou I.
        • Gupta K.
        • et al.
        Impaired functional but preserved structural connectivity in limbic white matter tracts in youth with conduct disorder or oppositional defiant disorder plus psychopathic traits.
        Psychiatry Res. 2012; 202: 239-244
        • Zhang J.
        • Gao J.
        • Shi H.
        • Huang B.
        • Wang X.
        • Situ W.
        • et al.
        Sex differences of uncinate fasciculus structural connectivity in individuals with conduct disorder.
        Biomed Res Int. 2014; 2014: 673165
        • Hummer T.A.
        • Wang Y.
        • Kronenberger W.G.
        • Dunn D.W.
        • Mathews V.P.
        The relationship of brain structure to age and executive functioning in adolescent disruptive behavior disorder.
        Psychiatry Res. 2015; 231: 210-217
        • Haney-Caron E.
        • Caprihan A.
        • Stevens M.C.
        DTI-measured white matter abnormalities in adolescents with Conduct Disorder.
        J Psychiatr Res. 2014; 48: 111-120
        • Breeden A.L.
        • Cardinale E.M.
        • Lozier L.M.
        • VanMeter J.W.
        • Marsh A.A.
        Callous-unemotional traits drive reduced white-matter integrity in youths with conduct problems.
        Psychol Med. 2015; 45: 3033-3046
        • Peper J.S.
        • de Reus M.A.
        • van den Heuvel M.P.
        • Schutter D.J.
        Short fused? associations between white matter connections, sex steroids, and aggression across adolescence.
        Hum Brain Mapp. 2015; 36: 1043-1052
        • Passamonti L.
        • Fairchild G.
        • Fornito A.
        • Goodyer I.M.
        • Nimmo-Smith I.
        • Hagan C.C.
        • et al.
        Abnormal anatomical connectivity between the amygdala and orbitofrontal cortex in conduct disorder.
        PLoS One. 2012; 7: e48789
        • Sarkar S.
        • Craig M.C.
        • Catani M.
        • Dell'acqua F.
        • Fahy T.
        • Deeley Q.
        • et al.
        Frontotemporal white-matter microstructural abnormalities in adolescents with conduct disorder: A diffusion tensor imaging study.
        Psychol Med. 2013; 43: 401-411
        • Zhang J.
        • Zhu X.
        • Wang X.
        • Gao J.
        • Shi H.
        • Huang B.
        • et al.
        Increased structural connectivity in corpus callosum in adolescent males with conduct disorder.
        J Am Acad Child Adolesc Psychiatry. 2014; 53: 466-475.e1
        • Decety J.
        • Yoder K.J.
        • Lahey B.B.
        Sex differences in abnormal white matter development associated with conduct disorder in children.
        Psychiatry Res. 2015; 233: 269-277
        • Puzzo I.
        • Seunarine K.
        • Sully K.
        • Darekar A.
        • Clark C.
        • Sonuga-Barke E.J.S.
        • Fairchild G.
        Altered white-matter microstructure in conduct disorder is specifically associated with elevated callous-unemotional traits.
        J Abnorm Child Psychol. 2018; 46: 1451-1466
        • Menks W.M.
        • Furger R.
        • Lenz C.
        • Fehlbaum L.V.
        • Stadler C.
        • Raschle N.M.
        Microstructural white matter alterations in the corpus callosum of girls with conduct disorder.
        J Am Acad Child Adolesc Psychiatry. 2017; 56: 258-265.e1
        • Sethi A.
        • Sarkar S.
        • Dell'Acqua F.
        • Viding E.
        • Catani M.
        • Murphy D.G.M.
        • et al.
        Anatomy of the dorsal default-mode network in conduct disorder: Association with callous-unemotional traits.
        Dev Cogn Neurosci. 2018; 30: 87-92
        • Bolhuis K.
        • Lubke G.H.
        • van der Ende J.
        • Bartels M.
        • van Beijsterveldt C.E.M.
        • Lichtenstein P.
        • et al.
        Disentangling heterogeneity of childhood disruptive behavior problems into dimensions and subgroups.
        J Am Acad Child Adolesc Psychiatry. 2017; 56: 678-686
        • Wakschlag L.S.
        • Perlman S.B.
        • Blair R.J.
        • Leibenluft E.
        • Briggs-Gowan M.J.
        • Pine D.S.
        The neurodevelopmental basis of early childhood disruptive behavior: Irritable and callous phenotypes as exemplars.
        Am J Psychiatry. 2017; 175: 114-130
        • Alegria A.A.
        • Radua J.
        • Rubia K.
        Meta-analysis of fMRI studies of disruptive behavior disorders.
        Am J Psychiatry. 2016; 173: 1119-1130
        • Rogers J.C.
        • De Brito S.A.
        Cortical and subcortical gray matter volume in youths with conduct problems: A meta-analysis.
        JAMA Psychiatry. 2016; 73: 64-72
        • Brotman M.A.
        • Kircanski K.
        • Stringaris A.
        • Pine D.S.
        • Leibenluft E.
        Irritability in youths: A translational model.
        Am J Psychiatry. 2017; 174: 520-532
        • Leibenluft E.
        Pediatric irritability: A systems neuroscience approach.
        Trends Cogn Sci. 2017; 21: 277-289
        • Kooijman M.N.
        • Kruithof C.J.
        • van Duijn C.M.
        • Duijts L.
        • Franco O.H.
        • van I.M.H.
        • et al.
        The Generation R Study: Design and cohort update 2017.
        Eur J Epidemiol. 2016; 31: 1243-1264
        • Achenbach T.M.
        • Rescorla L.A.
        Manual for the ASEBA School-Age Forms & Profiles.
        University of Vermont, Research Center for Children, Youth, & Families, Burlington, VT2001
        • Ivanova M.Y.
        • Dobrean A.
        • Dopfner M.
        • Erol N.
        • Fombonne E.
        • Fonseca A.C.
        • et al.
        Testing the 8-syndrome structure of the child behavior checklist in 30 societies.
        J Clin Child Adolesc Psychol. 2007; 36: 405-417
        • Hudziak J.J.
        • Copeland W.
        • Stanger C.
        • Wadsworth M.
        Screening for DSM-IV externalizing disorders with the Child Behavior Checklist: A receiver-operating characteristic analysis.
        J Child Psychol Psychiatry. 2004; 45: 1299-1307
        • Tellegen P.J.
        • Winkel M.
        • Wijnberg-Williams B.
        • Laros J.A.
        Snijders-Oomen Niet-Verbale Intelligentietest: SON-R 2½ - 7.
        Boom Testuitgevers, Amsterdam2005
        • Basten M.
        • van der Ende J.
        • Tiemeier H.
        • Althoff R.R.
        • Rijlaarsdam J.
        • Jaddoe V.W.
        • et al.
        Nonverbal intelligence in young children with dysregulation: The Generation R Study.
        Eur Child Adolesc Psychiatry. 2014; 23: 1061-1070
        • White T.
        • Muetzel R.L.
        • El Marroun H.
        • Blanken L.M.E.
        • Jansen P.
        • Bolhuis K.
        • et al.
        Paediatric population neuroimaging and the Generation R Study: The second wave.
        Eur J Epidemiol. 2017; 33: 99-125
        • Jenkinson M.
        • Beckmann C.F.
        • Behrens T.E.
        • Woolrich M.W.
        • Smith S.M.
        FSL.
        Neuroimage. 2012; 62: 782-790
        • Muetzel R.L.
        • Mous S.E.
        • van der Ende J.
        • Blanken L.M.
        • van der Lugt A.
        • Jaddoe V.W.
        • et al.
        White matter integrity and cognitive performance in school-age children: A population-based neuroimaging study.
        Neuroimage. 2015; 119: 119-128
      1. Cook PA, Bai Y, Nedjati-Gilani S, Seunarine KK, Hall MG, Parker GJ, et al. (2006): Camino: Open-source diffusion-MRI reconstruction and processing. Presented at the 14th Scientific Meeting of the International Society for Magnetic Resonance in Medicine, May 6–12, Seattle, Washington.

        • de Groot M.
        • Ikram M.A.
        • Akoudad S.
        • Krestin G.P.
        • Hofman A.
        • van der Lugt A.
        • et al.
        Tract-specific white matter degeneration in aging: The Rotterdam Study.
        Alzheimers Dement. 2015; 11: 321-330
      2. R Project for Statistical Computing (2015): R: A language and environment for statistical computing. Available at: http://www.r-project.org. Accessed January 5, 2017.

        • Rosseel Y.
        lavaan: An R package for structural equation modeling.
        J Stat Softw. 2012; 48: 1-36
        • Muthén B.O.
        • Muthén L.K.
        Mplus User's Guide.
        7th ed. Muthén and Muthén, Los Angeles1998-2002
        • Benjamini Y.
        • Hochberg Y.
        Controlling the false discovery rate - A practical and powerful approach to multiple testing.
        J Roy Stat Soc B Met. 1995; 57: 289-300
        • Bongers I.L.
        • Koot H.M.
        • van der Ende J.
        • Verhulst F.C.
        Developmental trajectories of externalizing behaviors in childhood and adolescence.
        Child Dev. 2004; 75: 1523-1537
        • Odgers C.L.
        • Moffitt T.E.
        • Broadbent J.M.
        • Dickson N.
        • Hancox R.J.
        • Harrington H.
        • et al.
        Female and male antisocial trajectories: From childhood origins to adult outcomes.
        Dev Psychopathol. 2008; 20: 673-716
        • Muetzel R.L.
        • Blanken L.M.E.
        • van der Ende J.
        • El Marroun H.
        • Shaw P.
        • Sudre G.
        • et al.
        Tracking brain development and dimensional psychiatric symptoms in children: A longitudinal population-based neuroimaging study.
        Am J Psychiatry. 2018; 175: 54-62
        • Moffitt T.E.
        Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy.
        Psychol Rev. 1993; 100: 674-701
        • Humphreys K.L.
        • Schouboe S.N.F.
        • Kircanski K.
        • Leibenluft E.
        • Stringaris A.
        • Gotlib I.H.
        Irritability, externalizing, and internalizing psychopathology in adolescence: Cross-sectional and longitudinal associations and moderation by sex.
        J Clin Child Adolesc Psychol. 2018; ([published online ahead of print Apr 18])
        • Pagliaccio D.
        • Pine D.S.
        • Barch D.M.
        • Luby J.L.
        • Leibenluft E.
        Irritability trajectories, cortical thickness, and clinical outcomes in a sample enriched for preschool depression.
        J Am Acad Child Adolesc Psychiatry. 2018; 57: 336-342.e6
        • Kircanski K.
        • White L.K.
        • Tseng W.L.
        • Wiggins J.L.
        • Frank H.R.
        • Sequeira S.
        • et al.
        A latent variable approach to differentiating neural mechanisms of irritability and anxiety in youth.
        JAMA Psychiatry. 2018; 75: 631-639
        • Wakschlag L.S.
        • Tolan P.H.
        • Leventhal B.L.
        Research Review: ‘Ain’t misbehavin': Towards a developmentally-specified nosology for preschool disruptive behavior.
        J Child Psychol Psychiatry. 2010; 51: 3-22
        • Riglin L.
        • Eyre O.
        • Cooper M.
        • Collishaw S.
        • Martin J.
        • Langley K.
        • et al.
        Investigating the genetic underpinnings of early-life irritability.
        Transl Psychiatry. 2017; 7: e1241
        • Stringaris A.
        • Zavos H.
        • Leibenluft E.
        • Maughan B.
        • Eley T.C.
        Adolescent irritability: Phenotypic associations and genetic links with depressed mood.
        Am J Psychiatry. 2012; 169: 47-54
        • Rowe R.
        • Costello E.J.
        • Angold A.
        • Copeland W.E.
        • Maughan B.
        Developmental pathways in oppositional defiant disorder and conduct disorder.
        J Abnorm Psychol. 2010; 119: 726-738
        • Murray E.A.
        The amygdala, reward and emotion.
        Trends Cogn Sci. 2007; 11: 489-497
        • Aghajani M.
        • Klapwijk E.T.
        • van der Wee N.J.
        • Veer I.M.
        • Rombouts S.
        • Boon A.E.
        • et al.
        Disorganized amygdala networks in conduct-disordered juvenile offenders with callous-unemotional traits.
        Biol Psychiatry. 2017; 82: 283-293
        • Cohn M.D.
        • Veltman D.J.
        • Pape L.E.
        • van Lith K.
        • Vermeiren R.R.
        • van den Brink W.
        • et al.
        Incentive processing in persistent disruptive behavior and psychopathic traits: A functional magnetic resonance imaging study in adolescents.
        Biol Psychiatry. 2015; 78: 615-624
        • Wolke D.
        • Waylen A.
        • Samara M.
        • Steer C.
        • Goodman R.
        • Ford T.
        • et al.
        Selective drop-out in longitudinal studies and non-biased prediction of behaviour disorders.
        Br J Psychiatry. 2009; 195: 249-256
        • Trzaskowski M.
        • Yang J.
        • Visscher P.M.
        • Plomin R.
        DNA evidence for strong genetic stability and increasing heritability of intelligence from age 7 to 12.
        Mol Psychiatry. 2014; 19: 380-384
        • Aebi M.
        • Plattner B.
        • Metzke C.W.
        • Bessler C.
        • Steinhausen H.C.
        Parent- and self-reported dimensions of oppositionality in youth: Construct validity, concurrent validity, and the prediction of criminal outcomes in adulthood.
        J Child Psychol Psychiatry. 2013; 54: 941-949
        • Althoff R.R.
        • Kuny-Slock A.V.
        • Verhulst F.C.
        • Hudziak J.J.
        • van der Ende J.
        Classes of oppositional-defiant behavior: Concurrent and predictive validity.
        J Child Psychol Psychiatry. 2014; 55: 1162-1171
        • Savage J.
        • Verhulst B.
        • Copeland W.
        • Althoff R.R.
        • Lichtenstein P.
        • Roberson-Nay R.
        A genetically informed study of the longitudinal relation between irritability and anxious/depressed symptoms.
        J Am Acad Child Adolesc Psychiatry. 2015; 54: 377-384
        • Leibenluft E.
        • Charney D.S.
        • Towbin K.E.
        • Bhangoo R.K.
        • Pine D.S.
        Defining clinical phenotypes of juvenile mania.
        Am J Psychiatry. 2003; 160: 430-437
        • Stringaris A.
        • Goodman R.
        • Ferdinando S.
        • Razdan V.
        • Muhrer E.
        • Leibenluft E.
        • et al.
        The Affective Reactivity Index: A concise irritability scale for clinical and research settings.
        J Child Psychol Psychiatry. 2012; 53: 1109-1117
        • Hernandez S.E.
        • Suero J.
        • Barros A.
        • Gonzalez-Mora J.L.
        • Rubia K.
        Increased grey matter associated with long-term sahaja yoga meditation: A voxel-based morphometry study.
        PLoS One. 2016; 11: e0150757
        • Hudziak J.J.
        • Albaugh M.D.
        • Ducharme S.
        • Karama S.
        • Spottswood M.
        • Crehan E.
        • et al.
        Cortical thickness maturation and duration of music training: Health-promoting activities shape brain development.
        J Am Acad Child Adolesc Psychiatry. 2014; 53 (1161.e1-2): 1153-1161
        • Johnson D.C.
        • Thom N.J.
        • Stanley E.A.
        • Haase L.
        • Simmons A.N.
        • Shih P.A.
        • et al.
        Modifying resilience mechanisms in at-risk individuals: A controlled study of mindfulness training in Marines preparing for deployment.
        Am J Psychiatry. 2014; 171: 844-853