Cortical Paired Associative Stimulation Influences Response Inhibition: Cortico-cortical and Cortico-subcortical Networks

  • Sina Kohl
    Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom

    Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
    Search for articles by this author
  • Ricci Hannah
    Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
    Search for articles by this author
  • Lorenzo Rocchi
    Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
    Search for articles by this author
  • Camilla L. Nord
    Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
    Search for articles by this author
  • John Rothwell
    Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, United Kingdom
    Search for articles by this author
  • Valerie Voon
    Address correspondence to Valerie Voon, M.D., Ph.D., Department of Psychiatry, University of Cambridge, Cambridge CB2 0QQ, United Kingdom.
    Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom

    Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, United Kingdom

    Cambridgeshire and Peterborough National Health Service Foundation Trust, Addenbrookes Hospital, Cambridge, United Kingdom
    Search for articles by this author



      The ability to stop a suboptimal response is integral to decision making and is commonly impaired across psychiatric disorders. Cortical paired associative stimulation (cPAS) is a form of transcranial magnetic stimulation in which paired pulses can induce plasticity at cortical synapses. Here we used cPAS protocols to target cortico-cortical and cortico-subcortical networks by using different intervals between the paired pulses in an attempt to modify response inhibition.


      A total of 25 healthy volunteers underwent four cPAS sessions in random order 1 week apart: right inferior frontal cortex (IFC) stimulation preceding right presupplementary motor area (pre-SMA) stimulation by 10 or 4 ms and pre-SMA stimulation preceding IFC stimulation by 10 or 4 ms. Subjects were tested on the stop signal task along with the delay discounting task as control at baseline (randomized across sessions and cPAS protocol) and after each cPAS session.


      The stop signal reaction time showed a main effect of cPAS condition when controlling for age (F3,57 = 4.05, p = .01). Younger subjects had greater impairments in response inhibition when the pre-SMA pulse preceded the IFC pulse by 10 ms. In older individuals, response inhibition improved when the IFC pulse preceded the pre-SMA pulse by 4 ms. There were no effects on delay discounting.


      cPAS modified response inhibition through age-dependent long-term potentiation and depression-like plasticity mechanisms via putative cortico-cortical and cortico-subcortical networks. We show for the first time the capacity for cPAS to modify a cognitive process highly relevant to psychiatric disorders.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Dalley J.W.
        • Everitt B.J.
        • Robbins T.W.
        Impulsivity, compulsivity, and top-down cognitive control.
        Neuron. 2011; 69: 680-694
        • Aron A.R.
        From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses.
        Biol Psychiatry. 2011; 69: e55-e68
        • Stefan K.
        • Kunesch E.
        • Cohen L.G.
        • Benecke R.
        • Classen J.
        Induction of plasticity in the human motor cortex by paired associative stimulation.
        Brain. 2000; 123: 572-584
        • Wolters A.
        • Sandbrink F.
        • Schlottmann A.
        • Kunesch E.
        • Stefan K.
        • Cohen L.G.
        • et al.
        A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex.
        J Neurophysiol. 2003; 89: 2339-2345
        • Katz L.C.
        • Shatz C.J.
        Synaptic activity and the construction of cortical circuits.
        Science. 1996; 274: 1133-1138
        • McKay D.R.
        • Ridding M.C.
        • Thompson P.D.
        • Miles T.S.
        Induction of persistent changes in the organisation of the human motor cortex.
        Exp Brain Res. 2002; 143: 342-349
        • Rizzo V.
        • Siebner H.S.
        • Morgante F.
        • Mastroeni C.
        • Girlanda P.
        • Quartarone A.
        Paired associative stimulation of left and right human motor cortex shapes interhemispheric motor inhibition based on a Hebbian mechanism.
        Cereb Cortex. 2009; 19: 907-915
        • Buch E.R.
        • Johnen V.M.
        • Nelissen N.
        • O’Shea J.
        • Rushworth M.F.
        Noninvasive associative plasticity induction in a corticocortical pathway of the human brain.
        J Neurosci. 2011; 31: 17669-17679
        • Arai N.
        • Muller-Dahlhaus F.
        • Murakami T.
        • Bliem B.
        • Lu M.K.
        • Ugawa Y.
        • et al.
        State-dependent and timing-dependent bidirectional associative plasticity in the human SMA-M1 network.
        J Neurosci. 2011; 31: 15376-15383
        • Veniero D.
        • Ponzo V.
        • Koch G.
        Paired associative stimulation enforces the communication between interconnected areas.
        J Neurosci. 2013; 33: 13773-13783
        • Udupa K.
        • Bahl N.
        • Ni Z.
        • Gunraj C.
        • Mazzella F.
        • Moro E.
        • et al.
        Cortical plasticity induction by pairing subthalamic nucleus deep-brain stimulation and primary motor cortical transcranial magnetic stimulation in Parkinson’s disease.
        J Neurosci. 2016; 36: 396-404
        • Casula E.P.
        • Pellicciari M.C.
        • Picazio S.
        • Caltagirone C.
        • Koch G.
        Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex.
        NeuroImage. 2016; 143: 204-213
        • Aron A.R.
        • Poldrack R.A.
        Cortical and subcortical contributions to Stop signal response inhibition: Role of the subthalamic nucleus.
        J Neurosci. 2006; 26: 2424-2433
        • Aron A.R.
        • Herz D.M.
        • Brown P.
        • Forstmann B.U.
        • Zaghloul K.
        Frontosubthalamic circuits for control of action and cognition.
        J Neurosci. 2016; 36: 11489-11495
        • Watanabe T.
        • Hanajima R.
        • Shirota Y.
        • Tsutsumi R.
        • Shimizu T.
        • Hayashi T.
        • et al.
        Effects of rTMS of pre-supplementary motor area on fronto basal ganglia network activity during stop-signal task.
        J Neurosci. 2015; 35: 4813-4823
        • Cai W.
        • Chen T.
        • Ide J.S.
        • Li C.R.
        • Menon V.
        Dissociable fronto-operculum-insula control signals for anticipation and detection of inhibitory sensory cue.
        Cereb Cortex. 2017; 27: 4073-4082
        • Obeso I.
        • Wilkinson L.
        • Teo J.T.
        • Talelli P.
        • Rothwell J.C.
        • Jahanshahi M.
        Theta burst magnetic stimulation over the pre-supplementary motor area improves motor inhibition.
        Brain Stimul. 2017; 10: 944-951
        • Duann J.R.
        • Ide J.S.
        • Luo X.
        • Li C.S.
        Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition.
        J Neurosci. 2009; 29: 10171-10179
        • Weise D.
        • Mann J.
        • Ridding M.
        • Eskandar K.
        • Huss M.
        • Rumpf J.J.
        • et al.
        Microcircuit mechanisms involved in paired associative stimulation-induced depression of corticospinal excitability.
        J Physiol. 2013; 591: 4903-4920
        • Haynes W.I.
        • Haber S.N.
        The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: Implications for basal ganglia models and deep brain stimulation.
        J Neurosci. 2013; 33: 4804-4814
        • Nambu A.
        • Tokuno H.
        • Takada M.
        Functional significance of the cortico-subthalamo-pallidal “hyperdirect” pathway.
        Neurosci Res. 2002; 43: 111-117
        • Bastin J.
        • Polosan M.
        • Benis D.
        • Goetz L.
        • Bhattacharjee M.
        • Piallat B.
        • et al.
        Inhibitory control and error monitoring by human subthalamic neurons.
        Transl Psychiatry. 2014; 4: e439
        • Benis D.
        • David O.
        • Piallat B.
        • Kibleur A.
        • Goetz L.
        • Bhattacharjee M.
        • et al.
        Response inhibition rapidly increases single-neuron responses in the subthalamic nucleus of patients with Parkinson’s disease.
        Cortex. 2016; 84: 111-123
        • Voon V.
        • Dalley J.W.
        Translatable and back-translatable measurement of impulsivity and compulsivity: Convergent and divergent processes.
        Curr Top Behav Neurosci. 2016; 28: 53-91
        • Kirby K.N.
        • Petry N.M.
        • Bickel W.K.
        Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls.
        J Exp Psychol Gen. 1999; 128: 78-87
        • Cyders M.A.
        • Smith G.T.
        Emotion-based dispositions to rash action: Positive and negative urgency.
        Psychol Bull. 2008; 134: 807-828
        • Cieslik E.C.
        • Mueller V.I.
        • Eickhoff C.R.
        • Langner R.
        • Eickhoff S.B.
        Three key regions for supervisory attentional control: Evidence from neuroimaging meta-analyses.
        Neurosci Biobehav Rev. 2015; 48: 22-34
        • Karabanov A.N.
        • Chao C.C.
        • Paine R.
        • Hallett M.
        Mapping different intra-hemispheric parietal-motor networks using twin coil TMS.
        Brain Stimul. 2013; 6: 384-389
        • Chao C.C.
        • Karabanov A.N.
        • Paine R.
        • Carolina de Campos A.
        • Kukke S.N.
        • Wu T.
        • et al.
        Induction of motor associative plasticity in the posterior parietal cortex-primary motor network.
        Cereb Cortex. 2015; 25: 365-373
        • Koch G.
        • Fernandez Del Olmo M.
        • Cheeran B.
        • Ruge D.
        • Schippling S.
        • Caltagirone C.
        • et al.
        Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex.
        J Neurosci. 2007; 27: 6815-6822
        • Lu M.K.
        • Tsai C.H.
        • Ziemann U.
        Cerebellum to motor cortex paired associative stimulation induces bidirectional STDP-like plasticity in human motor cortex.
        Front Hum Neurosci. 2012; 6: 260
        • Logan G.D.
        • Cowan W.B.
        • Davis K.A.
        On the ability to inhibit simple and choice reaction time responses: A model and a method.
        J Exp Psychol Hum Percept Perform. 1984; 10: 276-291
        • Fathi D.
        • Ueki Y.
        • Mima T.
        • Koganemaru S.
        • Nagamine T.
        • Tawfik A.
        • et al.
        Effects of aging on the human motor cortical plasticity studied by paired associative stimulation.
        Clin Neurophysiol. 2010; 121: 90-93
        • Muller-Dahlhaus J.F.
        • Orekhov Y.
        • Liu Y.
        • Ziemann U.
        Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation.
        Exp Brain Res. 2008; 187: 467-475
        • Velanova K.
        • Wheeler M.E.
        • Luna B.
        Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control.
        Cereb Cortex. 2008; 18: 2505-2522
        • Rubia K.
        • Smith A.B.
        • Taylor E.
        • Brammer M.
        Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes.
        Hum Brain Mapp. 2007; 28: 1163-1177
        • Bedard A.C.
        • Nichols S.
        • Barbosa J.A.
        • Schachar R.
        • Logan G.D.
        • Tannock R.
        The development of selective inhibitory control across the life span.
        Dev Neuropsychol. 2002; 21: 93-111
        • Smittenaar P.
        • Rutledge R.B.
        • Zeidman P.
        • Adams R.A.
        • Brown H.
        • Lewis G.
        • et al.
        Proactive and reactive response inhibition across the lifespan.
        PLoS One. 2015; 10: e0140383
        • Frost R.
        • McNaughton N.
        The neural basis of delay discounting: A review and preliminary model.
        Neurosci Biobehav Rev. 2017; 79: 48-65
        • Aron A.R.
        • Behrens T.E.
        • Smith S.
        • Frank M.J.
        • Poldrack R.A.
        Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI.
        J Neurosci. 2007; 27: 3743-3752
        • Lehman J.F.
        • Greenberg B.D.
        • McIntyre C.C.
        • Rasmussen S.A.
        • Haber S.N.
        Rules ventral prefrontal cortical axons use to reach their targets: Implications for diffusion tensor imaging tractography and deep brain stimulation for psychiatric illness.
        J Neurosci. 2011; 31: 10392-10402
        • Casey B.J.
        • Jones R.M.
        • Hare T.A.
        The adolescent brain.
        Ann N Y Acad Sci. 2008; 1124: 111-126
        • Sousa S.S.
        • Amaro Jr., E.
        • Crego A.
        • Goncalves Ó.F.
        • Sampaio A.
        Developmental trajectory of the prefrontal cortex: A systematic review of diffusion tensor imaging studies.
        Brain Imaging Behav. 2018; 12: 1197-1210
        • Hanajima R.
        • Tanaka N.
        • Tsutsumi R.
        • Enomoto H.
        • Abe M.
        • Nakamura K.
        • et al.
        The effect of age on the homotopic motor cortical long-term potentiation-like effect induced by quadripulse stimulation.
        Exp Brain Res. 2017; 235: 2103-2108
        • Sawaki L.
        • Yaseen Z.
        • Kopylev L.
        • Cohen L.G.
        Age-dependent changes in the ability to encode a novel elementary motor memory.
        Ann Neurol. 2003; 53: 521-524
        • Ward N.S.
        • Swayne O.B.
        • Newton J.M.
        Age-dependent changes in the neural correlates of force modulation: An fMRI study.
        Neurobiol Aging. 2008; 29: 1434-1446
        • Horn A.
        • Reich M.
        • Vorwerk J.
        • Li N.
        • Wenzel G.
        • Fang Q.
        • et al.
        Connectivity predicts deep brain stimulation outcome in Parkinson disease.
        Ann Neurol. 2017; 82: 67-78