Advertisement

Dopaminergic Disturbances in Tourette Syndrome: An Integrative Account

  • Tiago V. Maia
    Correspondence
    Address correspondence to Tiago V. Maia, Ph.D., Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
    Affiliations
    Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
    Search for articles by this author
  • Vasco A. Conceição
    Affiliations
    Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
    Search for articles by this author

      Abstract

      Tourette syndrome (TS) is thought to involve dopaminergic disturbances, but the nature of those disturbances remains controversial. Existing hypotheses suggest that TS involves 1) supersensitive dopamine receptors, 2) overactive dopamine transporters that cause low tonic but high phasic dopamine, 3) presynaptic dysfunction in dopamine neurons, or 4) dopaminergic hyperinnervation. We review evidence that contradicts the first two hypotheses; we also note that the last two hypotheses have traditionally been considered too narrowly, explaining only small subsets of findings. We review all studies that have used positron emission tomography and single-photon emission computerized tomography to investigate the dopaminergic system in TS. The seemingly diverse findings from those studies have typically been interpreted as pointing to distinct mechanisms, as evidenced by the various hypotheses concerning the nature of dopaminergic disturbances in TS. We show, however, that the hyperinnervation hypothesis provides a simple, parsimonious explanation for all such seemingly diverse findings. Dopaminergic hyperinnervation likely causes increased tonic and phasic dopamine. We have previously shown, using a computational model of the role of dopamine in basal ganglia, that increased tonic dopamine and increased phasic dopamine likely increase the propensities to express and learn tics, respectively. There is therefore a plausible mechanistic link between dopaminergic hyperinnervation and TS via increased tonic and phasic dopamine. To further bolster this argument, we review evidence showing that all medications that are effective for TS reduce signaling by tonic dopamine, phasic dopamine, or both.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Singer H.S.
        • Butler I.J.
        • Tune L.E.
        • Seifert W.E.
        • Coyle J.T.
        Dopaminergic dysfunction in Tourette syndrome.
        Ann Neurol. 1982; 12: 361-366
        • Sweet R.D.
        • Bruun R.
        • Shapiro E.
        • Shapiro A.K.
        Presynaptic catecholamine antagonists as treatment for Tourette syndrome: Effects of alpha methyl para tyrosine and tetrabenazine.
        Arch Gen Psychiatry. 1974; 31: 857-861
        • Buse J.
        • Schoenefeld K.
        • Münchau A.
        • Roessner V.
        Neuromodulation in Tourette syndrome: Dopamine and beyond.
        Neurosci Biobehav Rev. 2013; 37: 1069-1084
        • Singer H.S.
        The neurochemistry of Tourette syndrome.
        in: Martino D. Leckman J.F. Tourette Syndrome. Oxford University Press, New York2013: 276-300
        • Maia T.V.
        • Conceição V.A.
        The roles of phasic and tonic dopamine in tic learning and expression.
        Biol Psychiatry. 2017; 82: 401-412
        • Conceição V.A.
        • Dias Â.
        • Farinha A.C.
        • Maia T.V.
        Premonitory urges and tics in Tourette syndrome: Computational mechanisms and neural correlates.
        Curr Opin Neurobiol. 2017; 46: 187-199
        • Kuczenski R.
        • Segal D.
        Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis.
        J Neurosci. 1989; 9: 2051-2065
        • Zetterström T.
        • Sharp T.
        • Ungerstedt U.
        Further evaluation of the mechanism by which amphetamine reduces striatal dopamine metabolism: A brain dialysis study.
        Eur J Pharmacol. 1986; 132: 1-9
        • Castellanos F.X.
        • Giedd J.N.
        • Elia J.
        • Marsh W.L.
        • Ritchie G.F.
        • Hamburger S.D.
        • Rapoport J.L.
        Controlled stimulant treatment of ADHD and comorbid Tourette’s syndrome: Effects of stimulant and dose.
        J Am Acad Child Adolesc Psychiatry. 1997; 36: 589-596
        • Randrup A.
        • Munkvad I.
        Stereotyped activities produced by amphetamine in several animal species and man.
        Psychopharmacologia. 1967; 11: 300-310
        • Macrì S.
        • Proietti Onori M.
        • Laviola G.
        Theoretical and practical considerations behind the use of laboratory animals for the study of Tourette syndrome.
        Neurosci Biobehav Rev. 2013; 37: 1085-1100
        • Asper H.
        • Baggiolini M.
        • Burki H.R.
        • Lauener H.
        • Ruch W.
        • Stille G.
        Tolerance phenomena with neuroleptics catalepsy, apomorphine stereotypies and striatal dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol.
        Eur J Pharmacol. 1973; 22: 287-294
        • Cho S.
        • Duchemin A.-M.
        • Neff N.H.
        • Hadjiconstantinou M.
        Tyrosine hydroxylase, aromatic L-amino acid decarboxylase and dopamine metabolism after chronic treatment with dopaminergic drugs.
        Brain Res. 1999; 830: 237-245
        • Lane R.F.
        • Blaha C.D.
        Chronic haloperidol decreases dopamine release in striatum and nucleus accumbens in vivo: Depolarization block as a possible mechanism of action.
        Brain Res Bull. 1987; 18: 135-138
        • Singer H.S.
        • Hahn I.-H.
        • Moran T.H.
        Abnormal dopamine uptake sites in postmortem striatum from patients with Tourette’s syndrome.
        Ann Neurol. 1991; 30: 558-562
        • Yoon D.Y.
        • Gause C.D.
        • Leckman J.F.
        • Singer H.S.
        Frontal dopaminergic abnormality in Tourette syndrome: A postmortem analysis.
        J Neurol Sci. 2007; 255: 50-56
        • Minzer K.
        • Lee O.
        • Hong J.J.
        • Singer H.S.
        Increased prefrontal D2 protein in Tourette syndrome: A postmortem analysis of frontal cortex and striatum.
        J Neurol Sci. 2004; 219: 55-61
        • Grace A.A.
        Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia.
        Neuroscience. 1991; 41: 1-24
        • Singer H.S.
        • Szymanski S.
        • Giuliano J.
        • Yokoi F.
        • Dogan A.S.
        • Brasic J.R.
        • et al.
        Elevated intrasynaptic dopamine release in Tourette’s syndrome measured by PET.
        Am J Psychiatry. 2002; 159: 1329-1336
        • Cohen S.C.
        • Mulqueen J.M.
        • Ferracioli-Oda E.
        • Stuckelman Z.D.
        • Coughlin C.G.
        • Leckman J.F.
        • Bloch M.H.
        Meta-analysis: Risk of tics associated with psychostimulant use in randomized, placebo-controlled trials.
        J Am Acad Child Adolesc Psychiatry. 2015; 54: 728-736
        • Lowe T.L.
        • Cohen D.J.
        • Detlor J.
        • Kremenitzer M.W.
        • Shaywitz B.A.
        Stimulant medications precipitate Tourette’s syndrome.
        JAMA. 1982; 247: 1729-1731
        • Roessner V.
        • Plessen K.J.
        • Rothenberger A.
        • Ludolph A.G.
        • Rizzo R.
        • Skov L.
        • et al.
        European clinical guidelines for Tourette syndrome and other tic disorders. Part II: Pharmacological treatment.
        Eur Child Adolesc Psychiatry. 2011; 20: 173-196
        • Pringsheim T.
        • Doja A.
        • Gorman D.
        • McKinlay D.
        • Day L.
        • Billinghurst L.
        • et al.
        Canadian guidelines for the evidence-based treatment of tic disorders: Pharmacotherapy.
        Can J Psychiatry. 2012; 57: 133-143
        • Spencer T.
        • Biederman J.
        • Steingard R.
        • Wilens T.
        Bupropion exacerbates tics in children with attention-deficit hyperactivity disorder and Tourette’s syndrome.
        J Am Acad Child Adolesc Psychiatry. 1993; 32: 211-214
        • Weisman H.
        • Qureshi I.A.
        • Leckman J.F.
        • Scahill L.
        • Bloch M.H.
        Systematic review: Pharmacological treatment of tic disorders—Efficacy of antipsychotic and alpha-2 adrenergic agonist agents.
        Neurosci Biobehav Rev. 2013; 37: 1162-1171
        • Dreyer J.K.
        • Herrik K.F.
        • Berg R.W.
        • Hounsgaard J.D.
        Influence of phasic and tonic dopamine release on receptor activation.
        J Neurosci. 2010; 30: 14273-14283
        • Amato D.
        • Natesan S.
        • Yavich L.
        • Kapur S.
        • Müller C.P.
        Dynamic regulation of dopamine and serotonin responses to salient stimuli during chronic haloperidol treatment.
        Int J Neuropsychopharmacol. 2011; 14: 1327-1339
        • Salahpour A.
        • Ramsey A.J.
        • Medvedev I.O.
        • Kile B.
        • Sotnikova T.D.
        • Holmstrand E.
        • et al.
        Increased amphetamine-induced hyperactivity and reward in mice overexpressing the dopamine transporter.
        Proc Natl Acad Sci U S A. 2008; 105: 4405-4410
        • Floresco S.B.
        • West A.R.
        • Ash B.
        • Moore H.
        • Grace A.A.
        Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission.
        Nat Neurosci. 2003; 6: 968-973
        • Venton B.J.
        • Zhang H.
        • Garris P.A.
        • Phillips P.E.M.
        • Sulzer D.
        • Wightman R.M.
        Real-time decoding of dopamine concentration changes in the caudate–putamen during tonic and phasic firing.
        J Neurochem. 2003; 87: 1284-1295
        • Berridge K.C.
        • Aldridge J.W.
        • Houchard K.R.
        • Zhuang X.
        Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: A model of obsessive compulsive disorder and Tourette’s.
        BMC Biol. 2005; 3: 4
        • Lodge D.J.
        • Grace A.A.
        Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia.
        Trends Pharmacol Sci. 2011; 32: 507-513
        • Ernst M.
        • Zametkin A.J.
        • Jons P.H.
        • Matochik J.A.
        • Pascualvaca D.
        • Cohen R.M.
        High presynaptic dopaminergic activity in children with Tourette’s disorder.
        J Am Acad Child Adolesc Psychiatry. 1999; 38: 86-94
        • Liu H.
        • Dong F.
        • Meng Z.
        • Zhang B.
        • Tan J.
        • Wang Y.
        Evaluation of Tourette’s syndrome by 99mTc-TRODAT-1 SPECT/CT imaging.
        Ann Nucl Med. 2010; 24: 515-521
        • Malison R.T.
        • McDougle C.J.
        • van Dyck C.H.
        • Scahill L.
        • Baldwin R.M.
        • Seibyl J.P.
        • et al.
        [123I]β-CIT SPECT imaging of striatal dopamine transporter binding in Tourette’s disorder.
        Am J Psychiatry. 1995; 152: 1359-1361
        • Müller-Vahl K.R.
        • Berding G.
        • Brücke T.
        • Kolbe H.
        • Meyer G.J.
        • Hundeshagen H.
        • et al.
        Dopamine transporter binding in Gilles de la Tourette syndrome.
        J Neurol. 2000; 247: 514-520
        • Serra-Mestres J.
        • Ring H.A.
        • Costa D.C.
        • Gacinovic S.
        • Walker Z.
        • Lees A.J.
        • et al.
        Dopamine transporter binding in Gilles de la Tourette syndrome: A [123I]FP-CIT/SPECT study.
        Acta Psychiatr Scand. 2004; 109: 140-146
        • Cheon K.
        Dopamine transporter density of the basal ganglia assessed with [123I]IPT SPECT in drug-naive children with Tourette’s disorder.
        Psychiatry Res Neuroimaging. 2004; 130: 85-95
        • Albin R.L.
        • Koeppe R.A.
        • Wernette K.
        • Zhuang W.
        • Nichols T.
        • Kilbourn M.R.
        • Frey K.A.
        Striatal [11C]dihydrotetrabenazine and [11C]methylphenidate binding in Tourette syndrome.
        Neurology. 2009; 72: 1390-1396
        • Wong D.F.
        • Brasić J.R.
        • Singer H.S.
        • Schretlen D.J.
        • Kuwabara H.
        • Zhou Y.
        • et al.
        Mechanisms of dopaminergic and serotonergic neurotransmission in Tourette syndrome: Clues from an in vivo neurochemistry study with PET.
        Neuropsychopharmacology. 2008; 33: 1239-1251
        • Yeh C.-B.
        • Lee C.-H.
        • Chou Y.-H.
        • Chang C.-J.
        • Ma K.-H.
        • Huang W.-S.
        Evaluating dopamine transporter activity with 99mTc-TRODAT-1 SPECT in drug-naive Tourette’s adults.
        Nucl Med Commun. 2006; 27: 779-784
        • Yeh C.-B.
        • Lee C.-S.
        • Ma K.-H.
        • Lee M.-S.
        • Chang C.-J.
        • Huang W.-S.
        Phasic dysfunction of dopamine transmission in Tourette’s syndrome evaluated with 99mTc TRODAT-1 imaging.
        Psychiatry Res Neuroimaging. 2007; 156: 75-82
        • Heinz A.
        • Knable M.B.
        • Wolf S.S.
        • Jones D.W.
        • Gorey J.G.
        • Hyde T.M.
        • Weinberger D.R.
        Tourette’s syndrome: [I-123]β-CIT SPECT correlates of vocal tic severity.
        Neurology. 1998; 51: 1069-1074
        • Hwang W.-J.
        • Yao W.-J.
        • Fu Y.-K.
        • Yang A.-S.
        [99mTc]TRODAT-1/[123I]IBZM SPECT studies of the dopaminergic system in Tourette syndrome.
        Psychiatry Res Neuroimaging. 2008; 162: 159-166
        • Stamenkovic M.
        • Schindler S.D.
        • Asenbaum S.
        • Neumeister A.
        • Willeit M.
        • Willinger U.
        • et al.
        No change in striatal dopamine re-uptake site density in psychotropic drug naive and in currently treated Tourette’s disorder patients: A [123I]-β-CIT SPECT-study.
        Eur Neuropsychopharmacol. 2001; 11: 69-74
        • Mozley L.H.
        • Gur R.C.
        • Mozley P.D.
        • Gur R.E.
        Striatal dopamine transporters and cognitive functioning in healthy men and women.
        Am J Psychiatry. 2001; 158: 1492-1499
        • Wong K.K.
        • Müller M.L.T.M.
        • Kuwabara H.
        • Studenski S.A.
        • Bohnen N.I.
        Gender differences in nigrostriatal dopaminergic innervation are present at young-to-middle but not at older age in normal adults.
        J Clin Neurosci. 2012; 19: 183-184
        • Albin R.L.
        • Koeppe R.A.
        • Bohnen N.I.
        • Nichols T.E.
        • Meyer P.
        • Wernette K.
        • et al.
        Increased ventral striatal monoaminergic innervation in Tourette syndrome.
        Neurology. 2003; 61: 310-315
        • Meyer P.
        • Bohnen N.I.
        • Minoshima S.
        • Koeppe R.A.
        • Wernette K.
        • Kilbourn M.R.
        • et al.
        Striatal presynaptic monoaminergic vesicles are not increased in Tourette’s syndrome.
        Neurology. 1999; 53: 371-374
        • Gagnon D.
        • Gregoire L.
        • Di Paolo T.
        • Parent M.
        Serotonin hyperinnervation of the striatum with high synaptic incidence in Parkinsonian monkeys.
        Brain Struct Funct. 2016; 221: 3675-3691
        • Denys D.
        • de Vries F.
        • Cath D.
        • Figee M.
        • Vulink N.
        • Veltman D.J.
        • et al.
        Dopaminergic activity in Tourette syndrome and obsessive-compulsive disorder.
        Eur Neuropsychopharmacol. 2013; 23: 1423-1431
        • Steeves T.D.L.
        • Ko J.H.
        • Kideckel D.M.
        • Rusjan P.
        • Houle S.
        • Sandor P.
        • et al.
        Extrastriatal dopaminergic dysfunction in Tourette syndrome.
        Ann Neurol. 2010; 67: 170-181
        • Black K.J.
        • Piccirillo M.L.
        • Koller J.M.
        • Hseih T.
        • Wang L.
        • Mintun M.A.
        Levodopa effects on [11C]raclopride binding in the resting human brain.
        F1000Research. 2015; 4: 23
        • Turjanski N.
        • Sawle G.V.
        • Playford E.D.
        • Weeks R.
        • Lammerstma A.A.
        • Lees A.J.
        • Brooks D.J.
        PET studies of the presynaptic and postsynaptic dopaminergic system in Tourette’s syndrome.
        J Neurol Neurosurg Psychiatry. 1994; 57: 688-692
        • Abi-Jaoude E.
        • Segura B.
        • Obeso I.
        • Cho S.S.
        • Houle S.
        • Lang A.E.
        • et al.
        Similar striatal D2/D3 dopamine receptor availability in adults with Tourette syndrome compared with healthy controls: A [11C]-(+)-PHNO and [11C]raclopride positron emission tomography imaging study.
        Hum Brain Mapp. 2015; 36: 2592-2601
        • Müller-Vahl K.R.
        • Berding G.
        • Kolbe H.
        • Meyer G.J.
        • Hundeshagen H.
        • Dengler R.
        • et al.
        Dopamine D2 receptor imaging in Gilles de la Tourette syndrome.
        Acta Neurol Scand. 2000; 101: 165-171
        • George M.S.
        • Robertson M.M.
        • Costa D.C.
        • Eli P.J.
        • Trimble M.R.
        • Pilowsky L.
        • Varhoeff N.P.L.G.
        Dopamine receptor availability in Tourette’s syndrome.
        Psychiatry Res Neuroimaging. 1994; 55: 193-203
        • Gilbert D.L.
        • Christian B.T.
        • Gelfand M.J.
        • Shi B.
        • Mantil J.
        • Sallee F.R.
        Altered mesolimbocortical and thalamic dopamine in Tourette syndrome.
        Neurology. 2006; 67: 1695-1697
        • Kessler R.M.
        Dopamine receptors and dopamine release.
        in: Seeman P. Madras B. Imaging of the Human Brain in Health and Disease. Academic Press, Oxford, UK2014: 289-339
        • Goggi J.L.
        • Sardini A.
        • Egerton A.
        • Strange P.G.
        • Grasby P.M.
        Agonist-dependent internalization of D2 receptors: Imaging quantification by confocal microscopy.
        Synapse. 2007; 61: 231-241
        • Laruelle M.
        Imaging synaptic neurotransmission with in vivo binding competition techniques: A critical review.
        J Cereb Blood Flow Metab. 2000; 20: 423-451
        • Wong D.F.
        • Singer H.S.
        • Brandt J.
        • Shaya E.
        • Chen C.
        • Brown J.
        • et al.
        D2-like dopamine receptor density in Tourette syndrome measured by PET.
        J Nucl Med. 1997; 38: 1243-1247
        • Ginovart N.
        • Kapur S.
        Dopamine receptors and the treatment of schizophrenia.
        in: Neve K.A. The Dopamine Receptors, 2nd ed. Humana Press, Totowa, NJ2010: 431-477
        • Wolf S.S.
        • Jones D.W.
        • Knable M.B.
        • Gorey J.G.
        • Lee K.S.
        • Hyde T.M.
        • et al.
        Tourette syndrome: Prediction of phenotypic variation in monozygotic twins by caudate nucleus D2 receptor binding.
        Science. 1996; 273: 1225-1227
        • Mach R.H.
        • Luedtke R.R.
        Challenges in the development of dopamine D2- and D3-selective radiotracers for PET imaging studies.
        J Labelled Comp Radiopharm. 2018; 61: 291-298
        • Videbaek C.
        • Toska K.
        • Scheideler M.A.
        • Paulson O.B.
        • Moos Knudsen G.
        SPECT tracer [123I]IBZM has similar affinity to dopamine D2 and D3 receptors.
        Synapse. 2000; 38: 338-342
        • Tziortzi A.C.
        • Searle G.E.
        • Tzimopoulou S.
        • Salinas C.
        • Beaver J.D.
        • Jenkinson M.
        • et al.
        Imaging dopamine receptors in humans with [11C]-(+)-PHNO: Dissection of D3 signal and anatomy.
        NeuroImage. 2011; 54: 264-277
      1. Baker A (2016): Simplicity. The Stanford Encyclopedia of Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.). Available at: https://plato.stanford.edu/archives/win2016/entries/simplicity/. Accessed April 3, 2018.

        • Delfs J.M.
        • Kelley A.E.
        The role of D1 and D2 dopamine receptors in oral stereotypy induced by dopaminergic stimulation of the ventrolateral striatum.
        Neuroscience. 1990; 39: 59-67
        • Ernst A.M.
        • Smelik P.G.
        Site of action of dopamine and apomorphine on compulsive gnawing behaviour in rats.
        Experientia. 1966; 22: 837-838
        • Bordi F.
        • Meller E.
        Enhanced behavioral stereotypies elicited by intrastriatal injection of D1 and D2 dopamine agonists in intact rats.
        Brain Res. 1989; 504: 276-283
        • Walters J.R.
        • Bergstrom D.A.
        • Carlson J.H.
        • Chase T.N.
        • Braun A.R.
        D1 dopamine receptor activation required for postsynaptic expression of D2 agonist effects.
        Science. 1987; 236: 719-722
        • Price M.T.C.
        • Fibiger H.C.
        Apomorphine and amphetamine stereotypy after 6-hydroxydopamine lesions of the substantia nigra.
        Eur J Pharmacol. 1974; 29: 249-252
        • Kelly P.H.
        • Seviour P.W.
        • Iversen S.D.
        Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum.
        Brain Res. 1975; 94: 507-522
        • Ganos C.
        • Martino D.
        Tics and Tourette syndrome.
        Neurol Clin. 2015; 33: 115-136
        • Budman C.L.
        The role of atypical antipsychotics for treatment of Tourette’s syndrome: An overview.
        Drugs. 2014; 74: 1177-1193
        • Lako I.M.
        • van den Heuvel E.R.
        • Knegtering H.
        • Bruggeman R.
        • Taxis K.
        Estimating dopamine D₂ receptor occupancy for doses of 8 antipsychotics: A meta-analysis.
        J Clin Psychopharmacol. 2013; 33: 675-681
        • Feasey-Truger K.J.
        • Alzheimer C.
        • ten Bruggencate G.
        Chronic clozapine versus chronic haloperidol treatment: Differential effects on electrically evoked dopamine efflux in the rat caudate putamen, but not in the nucleus accumbens.
        Naunyn Schmiedebergs Arch Pharmacol. 1996; 354: 725-730
        • Gilbert D.L.
        • Dure L.
        • Sethuraman G.
        • Raab D.
        • Lane J.
        • Sallee F.R.
        Tic reduction with pergolide in a randomized controlled trial in children.
        Neurology. 2003; 60: 606-611
        • Gilbert D.L.
        • Sethuraman G.
        • Sine L.
        • Peters S.
        • Sallee F.R.
        Tourette’s syndrome improvement with pergolide in a randomized, double-blind, crossover trial.
        Neurology. 2000; 54: 1310-1315
        • Lipinski J.F.
        • Sallee F.R.
        • Jackson C.
        • Sethuraman G.
        Dopamine agonist treatment of Tourette disorder in children: Results of an open-label trial of pergolide.
        Mov Disord. 1997; 12: 402-407
        • Fuller R.W.
        • Clemens J.A.
        • Hynes M.D.
        Degree of selectivity of pergolide as an agonist at presynaptic versus postsynaptic dopamine receptors: Implications for prevention or treatment of tardive dyskinesia.
        J Clin Psychopharmacol. 1982; 2: 371-375
        • Carlson J.H.
        • Bergstrom D.A.
        • Walters J.R.
        Stimulation of both D1 and D2 dopamine receptors appears necessary for full expression of postsynaptic effects of dopamine agonists: A neurophysiological study.
        Brain Res. 1987; 400: 205-218
        • Brown F.
        • Campbell W.
        • Mitchell P.J.
        • Randall K.
        Dopamine autoreceptors and the effects of drugs on locomotion and dopamine synthesis.
        Br J Pharmacol. 1985; 84: 853-860
        • Dethy S.
        • Laute M.A.
        • Luxen A.
        • Hildebrand J.
        • Goldman S.
        Effect of pergolide on endogenous and exogenous L-DOPA metabolism in the rat striatum: A microdialysis study.
        J Neural Transm. 1995; 101: 1-11
        • Jiang D.-H.
        • Reches A.
        • Wagner H.R.
        • Fahn S.
        Biochemical and behavioral evaluation of pergolide as a dopamine agonist in the rat brain.
        Neuropharmacology. 1984; 23: 295-301
        • Kurlan R.
        • Crespi G.
        • Coffey B.
        • Mueller-Vahl K.
        • Koval S.
        • Wunderlich G.
        • on behalf of the Pramipexole for TS Trial Investigators
        A multicenter randomized placebo-controlled clinical trial of pramipexole for Tourette’s syndrome.
        Mov Disord. 2012; 27: 775-778
        • Chernoloz O.
        • El Mansari M.
        • Blier P.
        Sustained administration of pramipexole modifies the spontaneous firing of dopamine, norepinephrine, and serotonin neurons in the rat brain.
        Neuropsychopharmacology. 2009; 34: 651-661
        • Chernoloz O.
        • El Mansari M.
        • Blier P.
        Long-term administration of the dopamine D3/2 receptor agonist pramipexole increases dopamine and serotonin neurotransmission in the male rat forebrain.
        J Psychiatry Neurosci. 2012; 37: 113-121
        • Castro-Hernández J.
        • Afonso-Oramas D.
        • Cruz-Muros I.
        • Salas-Hernández J.
        • Barroso-Chinea P.
        • Moratalla R.
        • et al.
        Prolonged treatment with pramipexole promotes physical interaction of striatal dopamine D3 autoreceptors with dopamine transporters to reduce dopamine uptake.
        Neurobiol Dis. 2015; 74: 325-335
        • Joyce J.N.
        • Woolsey C.
        • Ryoo H.
        • Borwege S.
        • Hagner D.
        Low dose pramipexole is neuroprotective in the MPTP mouse model of Parkinson’s disease, and downregulates the dopamine transporter via the D3 receptor.
        BMC Biol. 2004; 2: 22
        • Kellett M.W.
        • Steiger M.J.
        Deterioration in parkinsonism with low-dose pergolide.
        J Neurol. 1999; 246: 309-311
        • Kieburtz K.
        • Parkinson Study Group PramiBID Investigators
        Twice-daily, low-dose pramipexole in early Parkinson’s disease: A randomized, placebo-controlled trial.
        Mov Disord. 2011; 26: 37-44
        • Anca M.H.
        • Giladi N.
        • Korczyn A.D.
        Ropinirole in Gilles de la Tourette syndrome.
        Neurology. 2004; 62: 1626-1627
        • Goetz C.G.
        • Stebbins G.T.
        • Thelen J.A.
        Talipexole and adult Gilles de la Tourette’s syndrome: Double-blind, placebo-controlled clinical trial.
        Mov Disord. 1994; 9: 315-317
        • Tadori Y.
        • Forbes R.A.
        • McQuade R.D.
        • Kikuchi T.
        Functional potencies of dopamine agonists and antagonists at human dopamine D2 and D3 receptors.
        Eur J Pharmacol. 2011; 666: 43-52
        • Newman-Tancredi A.
        • Cussac D.
        • Audinot V.
        • Nicolas J.-P.
        • Ceuninck F.D.
        • Boutin J.-A.
        • Millan M.J.
        Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. II. Agonist and antagonist properties at subtypes of dopamine D2-like receptor and α12-adrenoceptor.
        J Pharmacol Exp Ther. 2002; 303: 805-814
        • Millan M.J.
        • Maiofiss L.
        • Cussac D.
        • Audinot V.
        • Boutin J.-A.
        • Newman-Tancredi A.
        Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes.
        J Pharmacol Exp Ther. 2002; 303: 791-804
        • Casey A.B.
        • Canal C.E.
        Classics in chemical neuroscience: Aripiprazole.
        ACS Chem Neurosci. 2017; 8: 1135-1146
        • Kikuchi T.
        • Tottori K.
        • Uwahodo Y.
        • Hirose T.
        • Miwa T.
        • Oshiro Y.
        • Morita S.
        7-(4-[4-(2,3-Dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-2(1H)-quinolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity.
        J Pharmacol Exp Ther. 1995; 274: 329-336
        • Frankel J.S.
        • Schwartz T.L.
        Brexpiprazole and cariprazine: Distinguishing two new atypical antipsychotics from the original dopamine stabilizer aripiprazole.
        Ther Adv Psychopharmacol. 2017; 7: 29-41
        • Trendelenburg A.-U.
        • Starke K.
        • Limberger N.
        Presynaptic α2A-adrenoceptors inhibit the release of endogenous dopamine in rabbit caudate nucleus slices.
        Naunyn Schmiedebergs Arch Pharmacol. 1994; 350: 473-481
        • Yavich L.
        • Lappalainen R.
        • Sirviö J.
        • Haapalinna A.
        • MacDonald E.
        α2-Adrenergic control of dopamine overflow and metabolism in mouse striatum.
        Eur J Pharmacol. 1997; 339: 113-119
        • Gobert A.
        • Billiras R.
        • Cistarelli L.
        • Millan M.J.
        Quantification and pharmacological characterization of dialysate levels of noradrenaline in the striatum of freely-moving rats: Release from adrenergic terminals and modulation by α2-autoreceptors.
        J Neurosci Methods. 2004; 140: 141-152
        • Ihalainen J.A.
        • Tanila H.
        In vivo regulation of dopamine and noradrenaline release by alpha2A-adrenoceptors in the mouse nucleus accumbens.
        J Neurochem. 2004; 91: 49-56
        • Millan M.J.
        • Lejeune F.
        • Gobert A.
        Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex: Relevance to the actions of antidepressant agents.
        J Psychopharmacol. 2000; 14: 114-138
        • Thenganatt M.A.
        • Jankovic J.
        Recent advances in understanding and managing Tourette syndrome.
        F1000Research. 2016; 5 (F1000 Faculty Rev-152)
        • Gilbert D.L.
        • Budman C.L.
        • Singer H.S.
        • Kurlan R.
        • Chipkin R.E.
        A D1 receptor antagonist, ecopipam, for treatment of tics in Tourette syndrome.
        Clin Neuropharmacol. 2014; 37: 26-30
        • Chipkin R.E.
        • Iorio L.C.
        • Coffin V.L.
        • McQuade R.D.
        • Berger J.G.
        • Barnett A.
        Pharmacological profile of SCH39166: A dopamine D1 selective benzonaphthazepine with potential antipsychotic activity.
        J Pharmacol Exp Ther. 1988; 247: 1093-1102
        • Leckman J.F.
        • Zhang H.
        • Vitale A.
        • Lahnin F.
        • Lynch K.
        • Bondi C.
        • et al.
        Course of tic severity in Tourette syndrome: The first two decades.
        Pediatrics. 1998; 102: 14-19
        • Haycock J.W.
        • Becker L.
        • Ang L.
        • Furukawa Y.
        • Hornykiewicz O.
        • Kish S.J.
        Marked disparity between age-related changes in dopamine and other presynaptic dopaminergic markers in human striatum.
        J Neurochem. 2003; 87: 574-585
        • McGeer P.L.
        • McGeer E.G.
        Enzymes associated with the metabolism of catecholamines, acetylcholine and GABA in human controls and patients with Parkinson’s disease and Huntington’s chorea.
        J Neurochem. 1976; 26: 65-76
        • Montague D.M.
        • Lawler C.P.
        • Mailman R.B.
        • Gilmore J.H.
        Developmental regulation of the dopamine D1 receptor in human caudate and putamen.
        Neuropsychopharmacology. 1999; 21: 641-649
        • Seeman P.
        • Bzowej N.H.
        • Guan H.C.
        • Bergeron C.
        • Becker L.E.
        • Reynolds G.P.
        • et al.
        Human brain dopamine receptors in children and aging adults.
        Synapse. 1987; 1: 399-404
        • Meng S.Z.
        • Ozawa Y.
        • Itoh M.
        • Takashima S.
        Developmental and age-related changes of dopamine transporter, and dopamine D1 and D2 receptors in human basal ganglia.
        Brain Res. 1999; 843: 136-144
        • McCutcheon J.E.
        • Marinelli M.
        Age matters.
        Eur J Neurosci. 2009; 29: 997-1014
        • Wahlstrom D.
        • White T.
        • Luciana M.
        Neurobehavioral evidence for changes in dopamine system activity during adolescence.
        Neurosci Biobehav Rev. 2010; 34: 631-648
        • Rapanelli M.
        • Frick L.R.
        • Pittenger C.
        The role of interneurons in autism and Tourette syndrome.
        Trends Neurosci. 2017; 40: 397-407
        • Udvardi P.T.
        • Nespoli E.
        • Rizzo F.
        • Hengerer B.
        • Ludolph A.G.
        Nondopaminergic neurotransmission in the pathophysiology of Tourette syndrome.
        Int Rev Neurobiol. 2013; 112: 95-130
        • Cox J.H.
        • Seri S.
        • Cavanna A.E.
        Histaminergic modulation in Tourette syndrome.
        Expert Opin Orphan Drugs. 2016; 4: 205-213
        • Maia T.V.
        • Frank M.J.
        From reinforcement learning models to psychiatric and neurological disorders.
        Nat Neurosci. 2011; 14: 154-162
        • Maia T.V.
        • Frank M.J.
        An integrative perspective on the role of dopamine in schizophrenia.
        Biol Psychiatry. 2017; 81: 52-66
        • Abi-Dargham A.
        • Rodenhiser J.
        • Printz D.
        • Zea-Ponce Y.
        • Gil R.
        • Kegeles L.S.
        • et al.
        Increased baseline occupancy of D2 receptors by dopamine in schizophrenia.
        Proc Natl Acad Sci U S A. 2000; 97: 8104-8109
        • Gallagher C.L.
        • Christian B.T.
        • Holden J.E.
        • Dejesus O.T.
        • Nickles R.J.
        • Buyan-Dent L.
        • et al.
        A within-subject comparison of 6-[18F]fluoro-m-tyrosine and 6-[18F]fluoro-L-dopa in Parkinson’s disease.
        Mov Disord. 2011; 26: 2032-2038
        • Wang Z.
        • Maia T.V.
        • Marsh R.
        • Colibazzi T.
        • Gerber A.
        • Peterson B.S.
        The neural circuits that generate tics in Tourette’s syndrome.
        Am J Psychiatry. 2011; 168: 1326-1337
        • Roberts R.C.
        • Roche J.K.
        • Conley R.R.
        • Lahti A.C.
        Dopaminergic synapses in the caudate of subjects with schizophrenia: Relationship to treatment response.
        Synapse. 2009; 63: 520-530
        • Garraux G.
        • Goldfine A.
        • Bohlhalter S.
        • Lerner A.
        • Hanakawa T.
        • Hallett M.
        Increased midbrain gray matter in Tourette’s syndrome.
        Ann Neurol. 2006; 59: 381-385
        • Greene D.J.
        • Williams III, A.C.
        • Koller J.M.
        • Schlaggar B.L.
        • Black K.J.
        Brain structure in pediatric Tourette syndrome.
        Mol Psychiatry. 2017; 22: 972-980
        • Kraemmer J.
        • Kovacs G.G.
        • Perju-Dumbrava L.
        • Pirker S.
        • Traub-Weidinger T.
        • Pirker W.
        Correlation of striatal dopamine transporter imaging with post mortem substantia nigra cell counts.
        Mov Disord. 2014; 29: 1767-1773
        • Martinez D.
        • Slifstein M.
        • Broft A.
        • Mawlawi O.
        • Hwang D.-R.
        • Huang Y.
        • et al.
        Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: Amphetamine-induced dopamine release in the functional subdivisions of the striatum.
        J Cereb Blood Flow Metab. 2003; 23: 285-300
        • Sulzer D.
        How addictive drugs disrupt presynaptic dopamine neurotransmission.
        Neuron. 2011; 69: 628-649
        • Ford C.P.
        The role of D2-autoreceptors in regulating dopamine neuron activity and transmission.
        Neuroscience. 2014; 282: 13-22
        • Hadjiconstantinou M.
        • Neff N.H.
        Enhancing aromatic L-amino acid decarboxylase activity: Implications for L-DOPA treatment in Parkinson’s disease.
        CNS Neurosci Ther. 2008; 14: 340-351
        • Danielsen E.H.
        • Smith D.
        • Hermansen F.
        • Gjedde A.
        • Cumming P.
        Acute neuroleptic stimulates DOPA decarboxylase in porcine brain in vivo.
        Synapse. 2001; 41: 172-175
        • Sulzer D.
        • Cragg S.J.
        • Rice M.E.
        Striatal dopamine neurotransmission: Regulation of release and uptake.
        Basal Ganglia. 2016; 6: 123-148
        • Schmitt K.C.
        • Reith M.E.A.
        Regulation of the dopamine transporter.
        Ann N Y Acad Sci. 2010; 1187: 316-340
        • Fernagut P.-O.
        • Li Q.
        • Dovero S.
        • Chan P.
        • Wu T.
        • Ravenscroft P.
        • et al.
        Dopamine transporter binding is unaffected by L-DOPA administration in normal and MPTP-treated monkeys.
        PLoS One. 2010; 5e14053
        • Sossi V.
        • Dinelle K.
        • Schulzer M.
        • Mak E.
        • Doudet D.J.
        • de la Fuente-Fernández R.
        Levodopa and pramipexole effects on presynaptic dopamine PET markers and estimated dopamine release.
        Eur J Nucl Med Mol Imaging. 2010; 37: 2364-2370
        • Fusar-Poli P.
        • Meyer-Lindenberg A.
        Striatal presynaptic dopamine in schizophrenia, Part II: Meta-analysis of [18F/11C]-DOPA PET studies.
        Schizophr Bull. 2013; 39: 33-42
        • Fusar-Poli P.
        • Meyer-Lindenberg A.
        Striatal presynaptic dopamine in schizophrenia, Part I: Meta-analysis of dopamine active transporter (DAT) density.
        Schizophr Bull. 2013; 39: 22-32
        • de la Fuente-Fernández R.
        • Sossi V.
        • McCormick S.
        • Schulzer M.
        • Ruth T.J.
        • Stoessl A.J.
        Visualizing vesicular dopamine dynamics in Parkinson’s disease.
        Synapse. 2009; 63: 713-716
        • Castelli M.P.
        • Spiga S.
        • Perra A.
        • Madeddu C.
        • Mulas G.
        • Ennas M.G.
        • Gessa G.L.
        α2A Adrenergic receptors highly expressed in mesoprefrontal dopamine neurons.
        Neuroscience. 2016; 332: 130-139
        • Tepper J.M.
        • Sun B.-C.
        • Martin L.P.
        • Creese I.
        Functional roles of dopamine D2 and D3 autoreceptors on nigrostriatal neurons analyzed by antisense knockdown in vivo.
        J Neurosci. 1997; 17: 2519-2530
        • De Mei C.
        • Ramos M.
        • Iitaka C.
        • Borrelli E.
        Getting specialized: Presynaptic and postsynaptic dopamine D2 receptors.
        Curr Opin Pharmacol. 2009; 9: 53-58
        • Mailman R.B.
        • Murthy V.
        Third generation antipsychotic drugs: Partial agonism or receptor functional selectivity?.
        Curr Pharm Des. 2010; 16: 488-501
        • Collo G.
        • Zanetti S.
        • Missale C.
        • Spano P.
        Dopamine D3 receptor-preferring agonists increase dendrite arborization of mesencephalic dopaminergic neurons via extracellular signal-regulated kinase phosphorylation.
        Eur J Neurosci. 2008; 28: 1231-1240
        • Van Kampen J.M.
        • Eckman C.B.
        Dopamine D3 receptor agonist delivery to a model of Parkinson’s disease restores the nigrostriatal pathway and improves locomotor behavior.
        J Neurosci. 2006; 26: 7272-7280
        • Zapata A.
        • Kivell B.
        • Han Y.
        • Javitch J.A.
        • Bolan E.A.
        • Kuraguntla D.
        • et al.
        Regulation of dopamine transporter function and cell surface expression by D3 dopamine receptors.
        J Biol Chem. 2007; 282: 35842-35854
        • Elangbam C.S.
        Drug-induced valvulopathy: An update.
        Toxicol Pathol. 2010; 38: 837-848
        • Feinberg M.
        • Carroll B.J.
        Effects of dopamine agonists and antagonists in Tourette’s disease.
        Arch Gen Psychiatry. 1979; 36: 979-985