Advertisement

Translational Assessments of Reward and Anhedonia: A Tribute to Athina Markou

Published:February 23, 2018DOI:https://doi.org/10.1016/j.biopsych.2018.02.008

      Abstract

      Loss of pleasure (clinically referred to as anhedonia), impairments in other reward-related processes such as reward learning, motivation, and reward valuation, and blunted affect characterize several mood and other psychiatric disorders. Despite the availability of many therapeutic options for these disorders, reward-related impairments remain challenging to treat and often persist despite alleviation of other symptoms. Lack of animal models of reward-related impairments and affect that have high construct and predictive validity is a key obstacle to developing novel treatments. This review highlights 1) guidelines to consider when developing translatable animal models; and 2) recent efforts to develop new reward-related assessments in humans and nonhuman animals that have been translated or back-translated from one species to another. The procedures described in this review are used to assess aspects of reward learning, motivated behavior, reward valuation, and affect. In several cases, researchers have attempted to implement task parameters that are as identical as possible to the parallel parameters used in existing cross-species tasks, with the goal of improving the translation of preclinical drug discovery findings to the clinic. In this regard, Dr. Athina Markou, who worked tirelessly throughout her career to understand and treat reward-related impairments across several psychiatric disorders, had great influence on conceptualizing the development and use of translational animal models of reward-related processes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders, 5th ed.
        American Psychiatric Association Publishing, Arlington, VA2013
        • World Health Organization
        The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines.
        World Health Organization, Geneva, Switzerland1992
        • Klein D.F.
        Endogenomorphic depression—conceptual and terminological revision.
        Arch Gen Psychiatry. 1974; 31: 447-454
        • Leibenluft E.
        • Charney D.S.
        • Pine D.S.
        Researching the pathophysiology of pediatric bipolar disorder.
        Biol Psychiatry. 2003; 53: 1009-1020
        • Haslam J.
        Observations on Madness and Melancholy; Including Practical Remarks on Those Diseases, Together With Cases, and an Account of the Morbid Appearances on Dissection, 2nd ed.
        Callow, London, UK1809
        • Meehl P.E.
        Schizotaxia, schizotypy, schizophrenia.
        Am Psychologist. 1962; 17: 827-838
        • Nawijn L.
        • van Zuiden M.
        • Frijling J.L.
        • Koch S.B.
        • Veltman D.J.
        • Olff M.
        Reward functioning in PTSD: A systematic review exploring the mechanisms underlying anhedonia.
        Neurosci Biobehav Rev. 2015; 51: 189-204
        • Markou A.
        • Kosten T.R.
        • Koob G.F.
        Neurobiological similarities in depression and drug dependence: A self-medication hypothesis.
        Neuropsychopharmacology. 1998; 18: 135-174
        • Admon R.
        • Pizzagalli D.A.
        Dysfunctional reward processing in depression.
        Curr Opin Psychol. 2015; 4: 114-118
        • Calabrese J.R.
        • Fava M.
        • Garibaldi G.
        • Grunze H.
        • Krystal A.D.
        • Laughren T.
        • et al.
        Methodological approaches and magnitude of the clinical unmet need associated with amotivation in mood disorders.
        J Affect Disord. 2014; 168: 439-451
        • Admon R.
        • Pizzagalli D.A.
        Corticostriatal pathways contribute to the natural time course of positive mood.
        Nat Commun. 2015; 6: 10065
        • Vrieze E.
        • Pizzagalli D.A.
        • Demyttenaere K.
        • Hompes T.
        • Sienaert P.
        • de Boer P.
        • et al.
        Reduced reward learning predicts outcome in major depressive disorder.
        Biol Psychiatry. 2013; 73: 639-645
        • Whitton A.E.
        • Treadway M.T.
        • Pizzagalli D.A.
        Reward processing dysfunction in major depression, bipolar disorder and schizophrenia.
        Curr Opin Psychiatry. 2015; 28: 7-12
        • Amemori K.
        • Amemori S.
        • Graybiel A.M.
        Motivation and affective judgments differentially recruit neurons in the primate dorsolateral prefrontal and anterior cingulate cortex.
        J Neurosci. 2015; 35: 1939-1953
        • Insel T.
        • Cuthbert B.
        • Garvey M.
        • Heinssen R.
        • Pine D.S.
        • Quinn K.
        • et al.
        Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders.
        Am J Psychiatry. 2010; 167: 748-751
        • Snaith R.P.
        • Hamilton M.
        • Morley S.
        • Humayan A.
        • Hargreaves D.
        • Trigwell P.
        A scale for the assessment of hedonic tone the Snaith-Hamilton Pleasure Scale.
        Br J Psychiatry. 1995; 167: 99-103
        • Rizvi S.J.
        • Quilty L.C.
        • Sproule B.A.
        • Cyriac A.
        • Michael Bagby R.
        • Kennedy S.H.
        Development and validation of the Dimensional Anhedonia Rating Scale (DARS) in a community sample and individuals with major depression.
        Psychiatry Res. 2015; 229: 109-119
        • Sescousse G.
        • Caldu X.
        • Segura B.
        • Dreher J.C.
        Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies.
        Neurosci Biobehav Rev. 2013; 37: 681-696
        • Nestler E.J.
        • Hyman S.E.
        Animal models of neuropsychiatric disorders.
        Nat Neurosci. 2010; 13: 1161-1169
        • Markou A.
        • Weiss F.
        • Gold L.H.
        • Caine S.B.
        • Schulteis G.
        • Koob G.F.
        Animal models of drug craving.
        Psychopharmacology (Berl). 1993; 112: 163-182
        • Der-Avakian A.
        • Barnes S.A.
        • Markou A.
        • Pizzagalli D.A.
        Translational assessment of reward and motivational deficits in psychiatric disorders.
        Curr Top Behav Neurosci. 2016; 28: 231-262
        • Geyer M.A.
        • Markou A.
        Animal models of psychiatric disorders.
        in: Bloom F.E. Kupfer D.J. Psychopharmacology: The Fourth Generation of Progress. Raven Press, New York, NY1995: 787-798
        • Paulus M.P.
        • Hozack N.
        • Frank L.
        • Brown G.G.
        Error rate and outcome predictability affect neural activation in prefrontal cortex and anterior cingulate during decision-making.
        Neuroimage. 2002; 15: 836-846
        • Frank M.J.
        • Seeberger L.C.
        • O'Reilly R.C.
        By carrot or by stick: Cognitive reinforcement learning in parkinsonism.
        Science. 2004; 306: 1940-1943
        • Schultz W.
        • Dayan P.
        • Montague P.R.
        A neural substrate of prediction and reward.
        Science. 1997; 275: 1593-1599
        • Cools R.
        • Clark L.
        • Owen A.M.
        • Robbins T.W.
        Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging.
        J Neurosci. 2002; 22: 4563-4567
        • Bari A.
        • Theobald D.E.
        • Caprioli D.
        • Mar A.C.
        • Aidoo-Micah A.
        • Dalley J.W.
        • et al.
        Serotonin modulates sensitivity to reward and negative feedback in a probabilistic reversal learning task in rats.
        Neuropsychopharmacology. 2010; 35: 1290-1301
        • Bussey T.J.
        • Holmes A.
        • Lyon L.
        • Mar A.C.
        • McAllister K.A.
        • Nithianantharajah J.
        • et al.
        New translational assays for preclinical modelling of cognition in schizophrenia: The touchscreen testing method for mice and rats.
        Neuropharmacology. 2012; 62: 1191-1203
        • Parker J.G.
        • Wanat M.J.
        • Soden M.E.
        • Ahmad K.
        • Zweifel L.S.
        • Bamford N.S.
        • et al.
        Attenuating GABA(A) receptor signaling in dopamine neurons selectively enhances reward learning and alters risk preference in mice.
        J Neurosci. 2011; 31: 17103-17112
        • Waltz J.A.
        • Frank M.J.
        • Robinson B.M.
        • Gold J.M.
        Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction.
        Biol Psychiatry. 2007; 62: 756-764
        • Chase H.W.
        • Frank M.J.
        • Michael A.
        • Bullmore E.T.
        • Sahakian B.J.
        • Robbins T.W.
        Approach and avoidance learning in patients with major depression and healthy controls: Relation to anhedonia.
        Psychol Med. 2010; 40: 433-440
        • Chamberlain S.R.
        • Muller U.
        • Blackwell A.D.
        • Clark L.
        • Robbins T.W.
        • Sahakian B.J.
        Neurochemical modulation of response inhibition and probabilistic learning in humans.
        Science. 2006; 311: 861-863
        • den Ouden H.E.
        • Daw N.D.
        • Fernandez G.
        • Elshout J.A.
        • Rijpkema M.
        • Hoogman M.
        • et al.
        Dissociable effects of dopamine and serotonin on reversal learning.
        Neuron. 2013; 80: 1090-1100
        • Mehta M.A.
        • Swainson R.
        • Ogilvie A.D.
        • Sahakian J.
        • Robbins T.W.
        Improved short-term spatial memory but impaired reversal learning following the dopamine D(2) agonist bromocriptine in human volunteers.
        Psychopharmacology (Berl). 2001; 159: 10-20
        • Groman S.M.
        • Smith N.J.
        • Petrullli J.R.
        • Massi B.
        • Chen L.
        • Ropchan J.
        • et al.
        Dopamine D3 receptor availability is associated with inflexible decision making.
        J Neurosci. 2016; 36: 6732-6741
        • Clarke H.F.
        • Walker S.C.
        • Dalley J.W.
        • Robbins T.W.
        • Roberts A.C.
        Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific.
        Cereb Cortex. 2007; 17: 18-27
        • Cools R.
        • Barker R.A.
        • Sahakian B.J.
        • Robbins T.W.
        Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands.
        Cereb Cortex. 2001; 11: 1136-1143
        • Milienne-Petiot M.
        • Kesby J.P.
        • Graves M.
        • van Enkhuizen J.
        • Semenova S.
        • Minassian A.
        • et al.
        The effects of reduced dopamine transporter function and chronic lithium on motivation, probabilistic learning, and neurochemistry in mice: Modeling bipolar mania.
        Neuropharmacology. 2017; 113: 260-270
        • Pizzagalli D.A.
        • Jahn A.L.
        • O'Shea J.P.
        Toward an objective characterization of an anhedonic phenotype: A signal-detection approach.
        Biol Psychiatry. 2005; 57: 319-327
        • Tripp G.
        • Alsop B.
        Sensitivity to reward frequency in boys with attention deficit hyperactivity disorder.
        J Clin Child Psychol. 1999; 28: 366-375
        • Der-Avakian A.
        • D'Souza M.S.
        • Pizzagalli D.A.
        • Markou A.
        Assessment of reward responsiveness in the response bias probabilistic reward task in rats: Implications for cross-species translational research.
        Transl Psychiatry. 2013; 3: e297
      1. Lamontagne SJ, Olmstead MC (2017): Chronic stress impairs reward responsiveness in a rat test of anhedonia. Presented at the Society for Neuroscience annual meeting, November 10–15, 2017, Washington, DC. Poster 329.09.

        • Wang A.Y.
        • Miura K.
        • Uchida N.
        The dorsomedial striatum encodes net expected return, critical for energizing performance vigor.
        Nat Neurosci. 2013; 16: 639-647
        • Rorie A.E.
        • Gao J.
        • McClelland J.L.
        • Newsome W.T.
        Integration of sensory and reward information during perceptual decision-making in lateral intraparietal cortex (LIP) of the macaque monkey.
        PLoS One. 2010; 5: e9308
        • Samejima K.
        • Ueda Y.
        • Doya K.
        • Kimura M.
        Representation of action-specific reward values in the striatum.
        Science. 2005; 310: 1337-1340
        • Pizzagalli D.A.
        • Iosifescu D.
        • Hallett L.A.
        • Ratner K.G.
        • Fava M.
        Reduced hedonic capacity in major depressive disorder: Evidence from a probabilistic reward task.
        J Psychiatr Res. 2008; 43: 76-87
        • Pizzagalli D.A.
        • Goetz E.
        • Ostacher M.
        • Iosifescu D.V.
        • Perlis R.H.
        Euthymic patients with bipolar disorder show decreased reward learning in a probabilistic reward task.
        Biol Psychiatry. 2008; 64: 162-168
        • Pechtel P.
        • Dutra S.J.
        • Goetz E.L.
        • Pizzagalli D.A.
        Blunted reward responsiveness in remitted depression.
        J Psychiatr Res. 2013; 47: 1864-1869
        • Liu W.H.
        • Roiser J.P.
        • Wang L.Z.
        • Zhu Y.H.
        • Huang J.
        • Neumann D.L.
        • et al.
        Anhedonia is associated with blunted reward sensitivity in first-degree relatives of patients with major depression.
        J Affect Disord. 2016; 190: 640-648
        • Fletcher K.
        • Parker G.
        • Paterson A.
        • Fava M.
        • Iosifescu D.
        • Pizzagalli D.A.
        Anhedonia in melancholic and non-melancholic depressive disorders.
        J Affect Disord. 2015; 184: 81-88
        • Bogdan R.
        • Pizzagalli D.A.
        Acute stress reduces reward responsiveness: Implications for depression.
        Biol Psychiatry. 2006; 60: 1147-1154
        • Der-Avakian A.
        • D'Souza M.S.
        • Potter D.N.
        • Chartoff E.H.
        • Carlezon Jr., W.A.
        • Pizzagalli D.A.
        • et al.
        Social defeat disrupts reward learning and potentiates striatal nociceptin/orphanin FQ mRNA in rats.
        Psychopharmacology (Berl). 2017; 234: 1603-1614
        • Bogdan R.
        • Santesso D.L.
        • Fagerness J.
        • Perlis R.H.
        • Pizzagalli D.A.
        Corticotropin-releasing hormone receptor type 1 (CRHR1) genetic variation and stress interact to influence reward learning.
        J Neurosci. 2011; 31: 13246-13254
        • Nikolova Y.
        • Bogdan R.
        • Pizzagalli D.A.
        Perception of a naturalistic stressor interacts with 5-HTTLPR/rs25531 genotype and gender to impact reward responsiveness.
        Neuropsychobiology. 2012; 65: 45-54
        • Pergadia M.L.
        • Der-Avakian A.
        • D'Souza M.S.
        • Madden P.A.F.
        • Heath A.C.
        • Shiffman S.
        • et al.
        Association between nicotine withdrawal and reward responsiveness in humans and rats.
        JAMA Psychiatry. 2014; 71: 1238-1245
        • Pizzagalli D.A.
        • Evins A.E.
        • Schetter E.C.
        • Frank M.J.
        • Pajtas P.E.
        • Santesso D.L.
        • et al.
        Single dose of a dopamine agonist impairs reinforcement learning in humans: Behavioral evidence from a laboratory-based measure of reward responsiveness.
        Psychopharmacology (Berl). 2008; 196: 221-232
        • Barr R.S.
        • Pizzagalli D.A.
        • Culhane M.A.
        • Goff D.C.
        • Evins A.E.
        A single dose of nicotine enhances reward responsiveness in nonsmokers: Implications for development of dependence.
        Biol Psychiatry. 2008; 63: 1061-1065
        • Barch D.M.
        • Carter C.S.
        • Gold J.M.
        • Johnson S.L.
        • Kring A.M.
        • MacDonald A.W.
        • et al.
        Explicit and implicit reinforcement learning across the psychosis spectrum.
        J Abnorm Psychol. 2017; 126: 694-711
        • Heerey E.A.
        • Bell-Warren K.R.
        • Gold J.M.
        Decision-making impairments in the context of intact reward sensitivity in schizophrenia.
        Biol Psychiatry. 2008; 64: 62-69
        • Brebion G.
        • Bressan R.A.
        • Pilowsky L.S.
        • David A.S.
        Depression, avolition, and attention disorders in patients with schizophrenia: Associations with verbal memory efficiency.
        J Neuropsychiatry Clin Neurosci. 2009; 21: 206-215
        • Barch D.M.
        • Dowd E.C.
        Goal representations and motivational drive in schizophrenia: The role of prefrontal-striatal interactions.
        Schizophr Bull. 2010; 36: 919-934
        • Simpson E.H.
        • Waltz J.A.
        • Kellendonk C.
        • Balsam P.D.
        Schizophrenia in translation: Dissecting motivation in schizophrenia and rodents.
        Schizophr Bull. 2012; 38: 1111-1117
        • Hodos W.
        Progressive ratio as a measure of reward strength.
        Science. 1961; 134: 943-944
        • Bismark A.W.
        • Thomas M.L.
        • Tarasenko M.
        • Shiluk A.L.
        • Rackelmann S.Y.
        • Young J.W.
        • Light G.A.
        Relationship between effortful motivation and neurocognition in schizophrenia.
        Schizophr Res. 2018; 193: 69-76
        • Strauss G.P.
        • Whearty K.M.
        • Morra L.F.
        • Sullivan S.K.
        • Ossenfort K.L.
        • Frost K.H.
        Avolition in schizophrenia is associated with reduced willingness to expend effort for reward on a Progressive Ratio task.
        Schizophr Res. 2016; 170: 198-204
        • Wolf D.H.
        • Satterthwaite T.D.
        • Kantrowitz J.J.
        • Katchmar N.
        • Vandekar L.
        • Elliott M.A.
        • et al.
        Amotivation in schizophrenia: Integrated assessment with behavioral, clinical, and imaging measures.
        Schizophr Bull. 2014; 40: 1328-1337
        • Hershenberg R.
        • Satterthwaite T.D.
        • Daldal A.
        • Katchmar N.
        • Moore T.M.
        • Kable J.W.
        • et al.
        Diminished effort on a progressive ratio task in both unipolar and bipolar depression.
        J Affect Disord. 2016; 196: 97-100
        • Vollmayr B.
        • Bachteler D.
        • Vengeliene V.
        • Gass P.
        • Spanagel R.
        • Henn F.
        Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning.
        Behav Brain Res. 2004; 150: 217-221
        • Wanat M.J.
        • Bonci A.
        • Phillips P.E.
        CRF acts in the midbrain to attenuate accumbens dopamine release to rewards but not their predictors.
        Nat Neurosci. 2013; 16: 383-385
        • Olausson P.
        • Kiraly D.D.
        • Gourley S.L.
        • Taylor J.R.
        Persistent effects of prior chronic exposure to corticosterone on reward-related learning and motivation in rodents.
        Psychopharmacology (Berl). 2013; 225: 569-577
        • Shafiei N.
        • Gray M.
        • Viau V.
        • Floresco S.B.
        Acute stress induces selective alterations in cost/benefit decision-making.
        Neuropsychopharmacology. 2012; 37: 2194-2209
        • Barr A.M.
        • Phillips A.G.
        Chronic mild stress has no effect on responding by rats for sucrose under a progressive ratio schedule.
        Physiol Behav. 1998; 64: 591-597
        • Shalev U.
        • Kafkafi N.
        Repeated maternal separation does not alter sucrose-reinforced and open-field behaviors.
        Pharmacol Biochem Behav. 2002; 73: 115-122
        • Reddy L.F.
        • Horan W.P.
        • Barch D.M.
        • Buchanan R.W.
        • Dunayevich E.
        • Gold J.M.
        • et al.
        Effort-based decision-making paradigms for clinical trials in schizophrenia: Part 1-Psychometric characteristics of 5 paradigms.
        Schizophr Bull. 2015; 41: 1045-1054
        • Salamone J.D.
        • Cousins M.S.
        • Bucher S.
        Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure.
        Behav Brain Res. 1994; 65: 221-229
        • Salamone J.D.
        • Steinpreis R.E.
        • McCullough L.D.
        • Smith P.
        • Grebel D.
        • Mahan K.
        Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure.
        Psychopharmacology (Berl). 1991; 104: 515-521
        • Treadway M.T.
        • Bossaller N.A.
        • Shelton R.C.
        • Zald D.H.
        Effort-based decision-making in major depressive disorder: A translational model of motivational anhedonia.
        J Abnorm Psychol. 2012; 121: 553-558
        • Barch D.M.
        • Treadway M.T.
        • Schoen N.
        Effort, anhedonia, and function in schizophrenia: Reduced effort allocation predicts amotivation and functional impairment.
        J Abnorm Psychol. 2014; 123: 387-397
        • Fervaha G.
        • Graff-Guerrero A.
        • Zakzanis K.K.
        • Foussias G.
        • Agid O.
        • Remington G.
        Incentive motivation deficits in schizophrenia reflect effort computation impairments during cost-benefit decision-making.
        J Psychiatr Res. 2013; 47: 1590-1596
        • Gold J.M.
        • Strauss G.P.
        • Waltz J.A.
        • Robinson B.M.
        • Brown J.K.
        • Frank M.J.
        Negative symptoms of schizophrenia are associated with abnormal effort-cost computations.
        Biol Psychiatry. 2013; 74: 130-136
        • Treadway M.T.
        • Peterman J.S.
        • Zald D.H.
        • Park S.
        Impaired effort allocation in patients with schizophrenia.
        Schizophr Res. 2015; 161: 382-385
        • Chevallier C.
        • Grezes J.
        • Molesworth C.
        • Berthoz S.
        • Happe F.
        Brief report: Selective social anhedonia in high functioning autism.
        J Autism Dev Disord. 2012; 42: 1504-1509
        • Treadway M.T.
        • Buckholtz J.W.
        • Schwartzman A.N.
        • Lambert W.E.
        • Zald D.H.
        Worth the 'EEfRT'? The effort expenditure for rewards task as an objective measure of motivation and anhedonia.
        PLoS One. 2009; 4: e6598
        • Bryce C.A.
        • Floresco S.B.
        Perturbations in effort-related decision-making driven by acute stress and corticotropin-releasing factor.
        Neuropsychopharmacology. 2016; 41: 2147-2159
        • Kuczenski R.
        • Segal D.S.
        • Aizenstein M.L.
        Amphetamine, cocaine, and fencamfamine: Relationship between locomotor and stereotypy response profiles and caudate and accumbens dopamine dynamics.
        J Neurosci. 1991; 11: 2703-2712
        • Wardle M.C.
        • Treadway M.T.
        • Mayo L.M.
        • Zald D.H.
        • de Wit H.
        Amping up effort: Effects of d-amphetamine on human effort-based decision-making.
        J Neurosci. 2011; 31: 16597-16602
        • Bardgett M.E.
        • Depenbrock M.
        • Downs N.
        • Points M.
        • Green L.
        Dopamine modulates effort-based decision making in rats.
        Behav Neurosci. 2009; 123: 242-251
        • Hogarth L.
        • Attwood A.S.
        • Bate H.A.
        • Munafo M.R.
        Acute alcohol impairs human goal-directed action.
        Biol Psychol. 2012; 90: 154-160
        • de Wit S.
        • Watson P.
        • Harsay H.A.
        • Cohen M.X.
        • van de Vijver I.
        • Ridderinkhof K.R.
        Corticostriatal connectivity underlies individual differences in the balance between habitual and goal-directed action control.
        J Neurosci. 2012; 32: 12066-12075
        • de Wit S.
        • Corlett P.R.
        • Aitken M.R.
        • Dickinson A.
        • Fletcher P.C.
        Differential engagement of the ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans.
        J Neurosci. 2009; 29: 11330-11338
        • Schwabe L.
        • Wolf O.T.
        Socially evaluated cold pressor stress after instrumental learning favors habits over goal-directed action.
        Psychoneuroendocrinology. 2010; 35: 977-986
        • Dias-Ferreira E.
        • Sousa J.C.
        • Melo I.
        • Morgado P.
        • Mesquita A.R.
        • Cerqueira J.J.
        • et al.
        Chronic stress causes frontostriatal reorganization and affects decision-making.
        Science. 2009; 325: 621-625
        • Balleine B.W.
        • O'Doherty J.P.
        Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action.
        Neuropsychopharmacology. 2010; 35: 48-69
        • Hales C.A.
        • Stuart S.A.
        • Anderson M.H.
        • Robinson E.S.
        Modelling cognitive affective biases in major depressive disorder using rodents.
        Br J Pharmacol. 2014; 171: 4524-4538
        • Rygula R.
        • Golebiowska J.
        • Kregiel J.
        • Holuj M.
        • Popik P.
        Acute administration of lithium, but not valproate, modulates cognitive judgment bias in rats.
        Psychopharmacology (Berl). 2015; 232: 2149-2156
        • Enkel T.
        • Gholizadeh D.
        • von Bohlen Und Halbach O.
        • Sanchis-Segura C.
        • Hurlemann R.
        • Spanagel R.
        • et al.
        Ambiguous-cue interpretation is biased under stress- and depression-like states in rats.
        Neuropsychopharmacology. 2010; 35: 1008-1015
        • Anderson M.H.
        • Munafo M.R.
        • Robinson E.S.
        Investigating the psychopharmacology of cognitive affective bias in rats using an affective tone discrimination task.
        Psychopharmacology (Berl). 2013; 226: 601-613
        • Anderson M.H.
        • Hardcastle C.
        • Munafo M.R.
        • Robinson E.S.
        Evaluation of a novel translational task for assessing emotional biases in different species.
        Cogn Affect Behav Neurosci. 2012; 12: 373-381
        • Strous R.D.
        • Cowan N.
        • Ritter W.
        • Javitt D.C.
        Auditory sensory ("echoic") memory dysfunction in schizophrenia.
        Am J Psychiatry. 1995; 152: 1517-1519
        • Van Rheenen T.E.
        • Rossell S.L.
        Auditory-prosodic processing in bipolar disorder; from sensory perception to emotion.
        J Affect Disord. 2013; 151: 1102-1107
        • Troche J.
        • Troche M.S.
        • Berkowitz R.
        • Grossman M.
        • Reilly J.
        Tone discrimination as a window into acoustic perceptual deficits in Parkinson's disease.
        Am J Speech Lang Pathol. 2012; 21: 258-263
        • Huys Q.J.
        • Pizzagalli D.A.
        • Bogdan R.
        • Dayan P.
        Mapping anhedonia onto reinforcement learning: A behavioural meta-analysis.
        Biol Mood Anxiety Disord. 2013; 3: 12
        • Treadway M.T.
        • Admon R.
        • Arulpragasam A.R.
        • Mehta M.
        • Douglas S.
        • Vitaliano G.
        • et al.
        Association between interleukin-6 and striatal prediction-error signals following acute stress in healthy female participants.
        Biol Psychiatry. 2017; 82: 570-577