Advertisement

Effective Use of Animal Models for Therapeutic Development in Psychiatric and Substance Use Disorders

Published:February 03, 2018DOI:https://doi.org/10.1016/j.biopsych.2018.01.014

      Abstract

      Athina Markou and others argue forcefully for the adoption of a “translational-back translational strategy” for central nervous system drug discovery involving novel application of drugs with established safety profiles in proof-of-principle studies in humans, which in turn encourage parallel studies using experimental animals to provide vital data on the neural systems and neuropharmacological mechanisms related to the actions of the candidate drugs. Encouraged by the increasing adoption of drug-development strategies involving reciprocal information exchange between preclinical animal studies and related clinical research programs, this review presents additional compelling examples related to the following: 1) the treatment of cognitive deficits that define attention-deficit/hyperactivity disorder; 2) the development of fast-acting antidepressants based on promising clinical effects with low doses of the anesthetic ketamine; and 3) new and effective medications for the treatment of substance misuse. In the context of addressing the unmet medical need for new and effective drugs for treatment of mental ill health, now may be the time to launch major new academic-industry consortia committed to open access of all preclinical and clinical data generated by this research.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kleinman A.
        • Estrin G.L.
        • Usman S.
        • Chisholm C.
        • Marquez P.V.
        • Saxena S.
        Time for mental health to come out of the shadows.
        Lancet. 2016; 387: 2274-2275
        • Marquez P.V.
        • Saxena S.
        Making mental health a global priority.
        Cerebrum. 2016; 2016 (pii:cer-10-16)
        • Vigo D.
        • Thornicroft G.
        • Atun R.
        Estimating the true global burden of mental illness.
        Lancet Psychiatry. 2016; 2: 171-178
        • Andersen P.H.
        • Moscicki R.
        • Sahakian B.
        • Quirion R.
        • Krishnan R.
        • Race T.
        • Phillips A.
        Securing the future of drug discovery for central nervous system disorders.
        Nat Rev Drug Discov. 2014; 13: 871-872
        • Phillips A.G.
        • Andersen P.H.
        • Moscicki R.
        • Sahakian B.
        • Quirion R.
        • Krishnan K.R.
        • Race T.
        Proceedings of the 2013 CINP Summit: Innovative partnerships to accelerate CNS drug discovery for improved patient care.
        Int J Neuropsychopharmacol. 2015; 18
        • Riordan H.
        • Cutler N.
        The death of CNS drug development: Overstatement or omen?.
        J Clin Studies. 2011; 3: 12-15
        • Skripka-Serry J.
        The great neuro-pipeline ‘brain drain’ (and why big pharma hasn’t given up on CNS disorders).
        Drug Discovery World. 2013; (Fall 2013: pp 9-16)
        • Insel T.R.
        Faulty circuits.
        Sci Am. 2010; 302: 44-51
        • Cronbach L.J.
        • Meehl P.E.
        Construct validity in psychological tests.
        Psychol Bull. 1955; 52: 281-302
        • Geyer M.A.
        • Markou A.
        Animal models of psychiatric disorders.
        in: Bloom F.E. Kupfer D.J. Psychopharmacology: The Fourth Generation of Progress. Raven Press, San Diego, CA1995: 787-798
        • Keeler J.F.
        • Robbins T.W.
        Translating cognition from animals to humans.
        Biochem Pharmacol. 2011; 81: 1356-1366
        • Insel T.R.
        • Voon V.
        • Nye J.S.
        • Brown V.J.
        • Altevogt B.M.
        • Bullmore E.T.
        • et al.
        Innovative solutions to novel drug development in mental health.
        Neurosci Biobehav Rev. 2013; 37 (2468-2444)
        • Robbins T.W.
        Cross-species studies of cognition relevant to drug discovery: A translational approach.
        Br J Pharmacol. 2017; 174: 3191-3199
        • Markou A.
        • Chiamulera C.
        • Geyer M.A.
        • Tricklebank M.
        • Steckler T.
        Removing obstacles in neuroscience drug discovery: The future path for animal models.
        Neuropsychopharmacol Rev. 2009; 34: 74-89
      1. Pizzagalli D (2016): Translational assessments of reward and anhedonia. Video presentation at the Athina Markou Memorial Symposium, November 10, San Diego, California. Available at: https://www.youtube.com/watch?v=xE34C05Vm40&index=8&list=PLbbCsk7MUIGerbAPxOgCKsrZGdNksFo82. Accessed November 10, 2016.

        • Barnett J.H.
        • Robbins T.W.
        • Leeson V.C.
        • Sahakian B.J.
        • Joyce E.M.
        • Blackwell A.D.
        Assessing cognitive function in clinical trials of schizophrenia.
        Neurosci Biobehav Rev. 2010; 34: 1161-1177
        • Barnett J.
        • Sahakian B.J.
        • Robbins T.W.
        The Paired Associates Learning (PAL) Test: 30 years of CANTAB Translational Neuroscience From Laboratory to Bedside in Dementia Research.
        in: Robbins T.W. Sahakian B.J. Translational Neuropsychopharmacol. Springer-Verlag, Berlin2016: 450-474
        • Robbins T.W.
        • James M.
        • Owen A.M.
        • Sahakian B.J.
        • McInnes L.
        • Rabbitt P.
        Cambridge Neuropsychological Test Automated Battery (CANTAB): A factor analytic study of a large sample of normal elderly volunteers.
        Dementia. 1994; 5: 266-281
        • Segal D.S.
        • Geyer M.A.
        Animal models of psychopathology.
        in: Judd L.L. Groves P.M. Psychobiological Foundations of Clinical Psychiatry. Lippincott, Baltimore, MD1986: 1-14
        • Hyman S.E.
        • Fenton W.S.
        Medicine: What are the right targets for psychopharmacology?.
        Science. 2003; 299: 350-351
        • Insel T.R.
        • Cuthbert B.
        • Garvey M.
        • Heinssen R.
        • Pine D.S.
        • Quinn K.
        • et al.
        Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders.
        Am J Psychiatry. 2010; 167: 748-751
        • Markou A.
        • Kenny P.J.
        Neuroadaptations to chronic exposure to drugs of abuse: Relevance to depressive symptomatology seen across psychiatric diagnostic categories.
        Neurotox Res. 2002; 4: 297-313
        • Casey B.J.
        • Oliveri M.K.
        • Insel T.
        A neurodevelopmental perspective on the research domain criteria (RDoC) framework.
        Biol Psychiatry. 2014; 76: 350-353
        • Mittal V.A.
        • Wakschlag L.S.
        Research domain criteria (RDoC) grows up: Strengthening neurodevelopmental investigation within the RDoC framework.
        J Affect Disord. 2017; 216: 30-35
        • Biederman J.
        • Spencer T.
        • Wilens T.
        Evidence-based pharmacotherapy for attention-deficit hyperactivity disorder.
        Int J Neuropsychopharmacol. 2004; 7: 77-97
        • Kratochvilm C.J.
        • Heiligenstein J.H.
        • Dittmann R.
        • Spencer T.J.
        • Biederman J.
        • Wernicke J.
        • et al.
        Atomoxetine and methylphenidate treatment in children with ADHD: A prospective, randomized, open-label trial.
        J Am Acad Child Adol Psychiatry. 2002; 41: 776-784
        • Clemow D.B.
        • Bushe C.J.
        Atomoxetine in patients with ADHD: a clinical and pharmacological review of the onset, trajectory, duration of response and implications for patients.
        J Psychopharmacol. 2015; 29: 1221-1230
        • Dalley J.W.
        • Robbins T.W.
        Fractionating impulsivity: Neuropsychiatric implications.
        Nat Rev Neurosci. 2016; 18: 158-171
        • Del Campo N.
        • Chamberlain S.R.
        • Sahakian B.J.
        • Robbins T.W.
        The roles of dopamine and noradrenaline in the pathophysiology and treatment of attention-deficit hyperactivity disorder.
        Biol Psychiatry. 2011; 69: e145-e157
        • Bymaster F.P.
        • Katner J.S.
        • Nelson D.L.
        • Hemrick-Luecke S.K.
        • Threlkeld P.G.
        • Heiligenstein J.H.
        • et al.
        Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder.
        Neuropsychopharmacology. 2002; 27: 699-711
        • Robbins T.W.
        The 5-choice serial reaction time task: Behavioral pharmacology and functional neurochemistry.
        Psychopharmacology (Berl). 2002; 163: 362-380
        • Dalley J.W.
        • Fryer T.D.
        • Brichard L.
        • Robinson E.S.J.
        • Theobald D.E.H.
        • Lääne K.
        • et al.
        Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement.
        Science. 2007; 315: 1267-1270
        • Caprioli D.
        • Hong Y.T.
        • Sawiak S.J.
        • Ferrari V.
        • Williamson D.J.
        • Jupp B.
        • et al.
        Baseline-dependent effects of cocaine pre-exposure on impulsivity and D(2/3) receptor availability in the rat striatum: Possible relevance to the attention-deficit hyperactivity syndrome.
        Neuropsychopharmacology. 2013; 38: 1460-1471
        • Caprioli D.
        • Jupp B.
        • Hong Y.T.
        • Sawiak S.J.
        • Ferrari V.
        • Wharton L.
        • et al.
        Dissociable rate-dependent effects of oral methylphenidate on impulsivity and d2/3 receptor availability in the striatum.
        J Neurosci. 2015; 35: 3747-3755
        • Robinson E.S.J.
        • Eagle D.M.
        • Mar A.C.
        • Bari A.
        • Banerjee G.
        • Jiang X.
        • et al.
        Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat.
        Neuropsychopharmacology. 2008; 33: 1028-1037
        • Economidou D.
        • Theobald D.E.
        • Robbins T.W.
        • Everitt B.J.
        • Dalley J.W.
        Norepinephrine and dopamine modulate impulsivity on the five-choice serial reaction time task through opponent actions in the shell and core sub-regions of the nucleus accumbens.
        Neuropsychopharmacology. 2012; 37: 2057-2066
        • Logan G.D.
        • Van Zandt T.
        • Verbruggen F.
        • Wagenmakers E.J.
        On the ability to inhibit thought and action: general and special theories of an act of control.
        Psychol Rev. 2014; 121: 66-95
        • Solanto M.V.
        • Abikoff H.
        • Sonuga-Barke E.
        • Schachar R.
        • Logan G.D.
        • Wigal T.
        • et al.
        The ecological validity of delay aversion and response inhibition as measures of impulsivity in AD/HD: A supplement to the NIMH multimodal treatment study of AD/HD.
        J Abnorm Child Psychol. 2001; 29: 215-228
        • Chamberlain S.R.
        • Müller U.
        • Blackwell A.D.
        • Clark L.
        • Robbins T.W.
        • Sahakian B.J.
        Neurochemical modulation of response inhibition and probabilistic learning in humans.
        Science. 2006; 311: 861-863
        • Chamberlain S.R.
        • Del Campo N.
        • Dowson J.
        • Müller U.
        • Clark L.
        • Robbins T.W.
        • Sahakian B.J.
        Atomoxetine improved response inhibition in adults with attention-deficit/hyperactivity disorder.
        Biol Psychiatry. 2007; 62: 977-984
        • Chamberlain S.R.
        • Hampshire A.
        • Müller U.
        • Rubia K.
        • Del Campo N.
        • Craig K.
        • et al.
        Atomoxetine modulates right inferior frontal activation during inhibitory control: A pharmacological functional magnetic resonance imaging study.
        Biol Psychiatry. 2009; 65: 550-555
        • Whelan R.
        • Conrod P.J.
        • Poline J.B.
        • Lourdusamy A.
        • Banaschewski T.
        • Barker G.J.
        • et al.
        • the IMAGEN Consortium
        Adolescent impulsivity phenotypes characterized by distinct brain networks.
        Nat Neurosci. 2012; 15: 920-925
        • Bari A.
        • Mar A.C.
        • Theobald D.E.
        • Elands S.A.
        • Oganya K.C.
        • Eagle D.M.
        • Robbins T.W.
        Prefrontal and monoaminergic contributions to stop-signal performance in rats.
        J Neurosci. 2011; 31: 9254-9263
        • Passamonti L.
        • Luijten M.
        • Ziauddeen H.
        • Coyle-Gilchrist I.T.S.
        • Rittman T.
        • Brain S.A.E.
        • et al.
        Atomoxetine effects on attentional bias to drug-related cues in cocaine dependent individuals.
        Psychopharmacol (Berl). 2017; 234: 2289-2297
        • Ersche K.D.
        • Jones P.S.
        • Williams G.B.
        • Turton A.J.
        • Robbins T.W.
        • Bullmore E.T.
        Abnormal brain structure implicated in stimulant drug addiction.
        Science. 2012; 335: 601-604
        • Kehagia A.A.
        • Housden C.R.
        • Regenthal R.
        • Barker R.A.
        • Müller U.
        • Rowe J.
        • et al.
        Targeting impulsivity in Parkinson's disease using atomoxetine.
        Brain. 2014; 137: 1986-1997
        • Ye Z.
        • Altena E.
        • Nombela C.
        • Housden C.R.
        • Maxwell H.
        • Rittman T.
        • et al.
        Improving response inhibition in Parkinson’s disease with atomoxetine.
        Biol Psychiatry. 2015; 77: 740-748
        • Borchert R.J.
        • Rittman T.
        • Passamonti L.
        • Ye Z.
        • Sami S.
        • Jones S.P.
        • et al.
        Atomoxetine enhances connectivity of prefrontal networks in Parkinson’s disease.
        Neuropsychopharmacology. 2016; 41: 2171-2177
        • Schwartz J.
        • Murrough J.W.
        • Iosifescu D.V.
        Ketamine for treatment resistant depression: Recent developments and clinical applications.
        Evid Based Ment Health. 2016; 19: 35-38
        • Abdallah C.G.
        • Adams T.G.
        • Kelmendi B.
        • Esterlis I.
        • Sanacora G.
        • Krystal J.H.
        Ketamine’s mechanism of action: A path to rapid-acting antidepressants.
        Depress Anxiety. 2016; 33: 689-697
        • Muller J.
        • Pentyala S.
        • Dilger J.
        • Pentyala S.
        Ketamine enantiomers in the rapid and sustained antidepressant effects.
        Ther Adv Psychopharmacol. 2016; 6: 185-192
        • Abdallah C.G.
        • Sanacora G.
        • Duman R.S.
        • Krystal J.H.
        Ketamine and rapid-acting antidepressants: A window into a new neurobiology for mood disorder therapeutics.
        Annu Rev Med. 2015; 66: 509-523
        • Gerhard D.M.
        • Wohleb E.S.
        • Duman R.S.
        Emerging treatment mechanisms for depression: Focus on glutamate and synaptic plasticity.
        Drug Discov Today. 2016; 21: 454-464
        • Réus G.Z.
        • Abelaira H.M.
        • Tuon T.
        • Titus S.E.
        • Ignácio Z.M.
        • Rodrigues A.L.
        • Quevedo J.
        Glutamatergic NMDA receptor as therapeutic target for depression.
        Adv Protein Chem Struct Biol. 2016; 103: 169-202
        • Newport D.J.
        • Carpenter L.L.
        • McDonald W.M.
        • Potash J.B.
        • Tohen M.
        • Nemeroff C.B.
        Ketamine and other NMDA antagonists: Early clinical trials and possible mechanisms in depression.
        Am J Psychiatry. 2015; 172: 950-966
        • Zanos P.
        • Moaddel R.
        • Morris P.J.
        • Georgiou P.
        • Fischell J.
        • Elmer G.I.
        • et al.
        NMDAR inhibition-independent antidepressant actions of ketamine metabolites.
        Nature. 2016; 533: 481-486
        • Yang C.
        • Shirayama Y.
        • Zhang J.C.
        • Ren Q.
        • Yao W.
        • Ma M.
        • et al.
        R-ketamine: A rapid-onset and sustained antidepressant without psychotomimetic side effects.
        Transl Psychiatry. 2015; 5: e632
        • Moaddel R.
        • Abdrakhmanova G.
        • Kozak J.
        • Jozwiak K.
        • Toll L.
        • Jimenez L.
        • et al.
        Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in alpha7 nicotinic acetylcholine receptors.
        Eur J Pharmacol. 2013; 698: 228-234
        • Maeng S.
        • Zarate Jr., C.A.
        • Du J.
        • Schloesser R.J.
        • McCammon J.
        • Chen G.
        • Manji H.K.
        Cellular mechanisms underlying the antidepressant effects of ketamine: Role of alpha-amino3-hydroxy-5-methylisoxazole-4-propionic acid receptors.
        Biol Psychiatry. 2008; 63: 349-352
        • Li N.
        • Liu R.J.
        • Dwyer J.M.
        • Banasr M.
        • Lee G.
        • Son H.
        • et al.
        Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure.
        Biol Psychiatry. 2011; 69: 754-761
        • Jiménez-Sanchez L.
        • Campa L.
        • Auberson Y.P.
        • Adell A.
        The role of GluN2A and GluN2B subunits on the effects of NMDA receptor antagonists in modeling schizophrenia and treating refractory depression.
        Neuropsychopharmacology. 2014; 39: 2673-2680
        • Park M.
        • Niciu M.J.
        • Zarate Jr., C.A.
        Novel glutamatergic treatments for severe mood disorders.
        Curr Behav Neurosci Rep. 2015; 2: 198-208
        • Koike H.
        • Chaki S.
        Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats.
        Behav Brain Res. 2014; 271: 111-115
        • Alexandrova L.R.
        • Phillips A.G.
        • Wang Y.T.
        Antidepressant effects of ketamine and of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism.
        J Psychiatry Neurosci. 2017; 42: 222-229
        • Chowdhury G.M.
        • Zhang J.
        • Thomas M.
        • Banasr M.
        • Ma X.
        • Pittman B.
        • et al.
        Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects.
        Mol Psychiatry. 2016; 22: 120-126
        • Moghaddam B.
        • Adams B.
        • Verma A.
        • Daly D.
        Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex.
        J Neurosci. 1997; 17: 2921-2927
        • Björkholm C.
        • Jardemark K.
        • Schilstrom B.
        • Svensson T.H.
        Ketamine-like effects of a combination of olanzapine and fluoxetine on AMPA and NMDA receptor-mediated transmission in the medial prefrontal cortex of the rat.
        Eur Neuropsychopharmacol. 2015; 25: 1842-1847
        • El Iskandrani K.S.
        • Oosterhof C.A.
        • El Mansari M.
        • Blier P.
        Impact of subanesthetic doses of ketamine on AMPA-mediated responses in rats: An in vivo electrophysiological study on monoaminergic and glutamatergic neurons.
        J Psychopharmacol. 2015; 29: 792-801
        • Nosyreva E.
        • Szabla K.
        • Autry A.E.
        • Ryazanov A.G.
        • Monteggia L.M.
        • Kavalali E.T.
        Acute suppression of spontaneous neurotransmission drives synaptic potentiation.
        J Neurosci. 2013; 33: 6990-7002
        • Yang B.
        • Zhang J.C.
        • Han M.
        • Yao W.
        • Yang C.
        • Ren Q.
        • et al.
        Comparison of R-ketamine and rapastinel antidepressant effects in the social defeat stress model of depression.
        Psychopharmacology (Berl). 2016; 233: 3647-3657
        • Li N.
        • Lee B.
        • Liu R.J.
        • Banasr J.
        • Dwyer J.M.
        • Iwata M.
        • et al.
        mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.
        Science. 2010; 329: 959-964
        • Tizabi Y.
        • Bhatti B.H.
        • Manaye K.F.
        • Das J.R.
        • Akinforesoye L.
        Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female Wistar-Kyoto rats.
        Neuroscience. 2012; 213: 72-80
        • Koike H.
        • Iijima M.
        • Chaki S.
        Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression.
        Behav Brain Res. 2011; 224: 107-111
        • Beneyto M.
        • Kristiansen L.V.
        • Oni-Orisan A.
        • McCullumsmith R.E.
        • Meador-Woodruff J.H.
        Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders.
        Neuropsychopharmacology. 2007; 32: 1888-1902
        • Duric V.
        • Banasr M.
        • Stockmeier C.A.
        • Simen A.A.
        • Newton S.S.
        • Overholser J.C.
        • et al.
        Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects.
        Int J Neuropsychopharmacol. 2013; 16: 69-82
        • Freudenberg F.
        • Celikel T.
        • Reif A.
        The role of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: Central mediators of pathophysiology and antidepressant activity?.
        Neurosci Biobehav Rev. 2015; 52: 193-206
        • Toth E.
        • Gersner R.
        • Wilf-Yarkoni A.
        • Raizel H.
        • Dar D.E.
        • Richter-Lvein G.
        • et al.
        Age-dependent effects of chronic stress on brain plasticity and depressive behavior.
        J Neurochem. 2008; 107: 522-532
        • Du J.
        • Suzuki K.
        • Wei Y.
        • Wang Y.
        • Blumentha R.
        • Chen Z.
        • et al.
        The anticonvulsants lamotrigine, riluzole, and valproate differentially regulate AMPA receptor membrane localization: Relationship to clinical effects in mood disorders.
        Neuropsychopharmacology. 2007; 32: 793-802
        • Duman R.S.
        • Aghajanian G.K.
        • Sanacora G.
        • Krystal J.H.
        Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants.
        Nat Med. 2016; 22: 238-249
        • Björkholm C.
        • Monteggia L.M.
        BDNF—a key transducer of antidepressant effects.
        Neuropharmacology. 2016; 102: 72-79
        • Murakami S.
        • Imbe H.
        • Morikawa Y.
        • Kubo C.
        • Senba E.
        Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly.
        Neurosci Res. 2005; 53: 129-139
        • Ignácio Z.M.
        • Reus G.Z.
        • Arent C.O.
        • Abelaira H.M.
        • Pitcher M.R.
        • Quevedo J.
        New perspectives on the involvement of mTOR in depression as well as in the action of antidepressant drugs.
        Br J Clin Pharmacol. 2016; 92: 1280-1290
        • Zhou W.
        • Wang N.
        • Yang C.
        • Li X.M.
        • Zhou Z.Q.
        • Yang J.J.
        Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex.
        Eur Psychiatry. 2014; 29: 419-423
        • Abelaira H.M.
        • Reus G.Z.
        • Quevedo J.
        Animal models as tools to study the pathophysiology of depression.
        Rev Bras Psiquiatr. 2013; 35: S112-S120
        • Autry A.E.
        • Adachi M.
        • Nosyreva E.
        • Na E.S.
        • Los M.F.
        • Cheng P.F.
        • et al.
        NMDA receptor blockade at rest triggers rapid behavioral antidepressant responses.
        Nature. 2011; 475: 91-95
        • Carrier N.
        • Kabbaj M.
        Sex differences in the antidepressant-like effects of ketamine.
        Neuropharmacology. 2013; 70: 27-34
        • Thelen C.
        • Sens J.
        • Mauch J.
        • Pandit R.
        • Pitychoutis P.M.
        Repeated ketamine treatment induces sex-specific behavioral and neurochemical effects in mice.
        Behav Brain Res. 2016; 312: 305-312
        • Niesters M.
        • Martini C.
        • Dahan A.
        Ketamine for chronic pain: risks and benefits.
        Br J Clin Pharmacol. 2014; 77: 357-367
        • Rollema H.
        • Chambers L.K.
        • Coe J.W.
        • Glowa J.
        • Hurst R.S.
        • Lebel L.A.
        • et al.
        Pharmacological profile of the α4β2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid.
        Neuropharmacology. 2007; 52: 985-994
        • Rollema H.
        • Coe J.W.
        • Chambers L.K.
        • Hurst R.S.
        • Stahl S.M.
        • Williams K.E.
        Rationale, pharmacology and clinical efficacy of partial agonists of α4β2 nAch receptors for smoking cessation.
        Trends Pharmacol Sci. 2007; 28: 316-325
        • Picciotto M.R.
        • Corrigall W.A.
        Neuronal systems underlying behaviors related to nicotine addiction: Neural circuits and molecular genetics.
        J Neurosci. 2002; 22: 3338-3341
        • Paterson N.E.
        • Balfour D.J.
        • Markou A.
        Chronic bupropion attenuated the anhedonic component of nicotine withdrawal in rats via inhibition of dopamine reuptake in the nucleus accumbens shell.
        Eur J Neurosci. 2007; 25: 3099-3108
        • Bruijnzeel A.W.
        • Markou A.
        Characterization of the effects of bupropion on the reinforcing properties of nicotine and food in rats.
        Synapse. 2003; 50: 20-28
        • Gonzales D.
        • Rennard S.I.
        • Nides M.
        • Oncken C.
        • Azoulay S.
        • Billing C.B.
        • et al.
        Varenicline, an α4β2 nicotinic acetylcholine receptor partial agonist, vs sustained-release bupropion and placebo for smoking cessation: a randomized controlled trial.
        JAMA. 2006; 296: 47-55
        • Jorenby D.E.
        • Hays J.T.
        • Rigotti N.A.
        • Azoulay S.
        • Watsky E.J.
        • Williams K.E.
        • et al.
        Efficacy of varenicline, an α4β2 nicotinic acetylcholine receptor partial agonist, vs place or sustained-release bupropion for smoking cessation: a randomized controlled trial.
        JAMA. 2006; 296: 56-63
        • Arneric S.P.
        • Holladay M.
        • Williams M.
        Neuronal nicotinic receptors: a perspective on two decades of drug discovery research.
        Biochem Pharmacol. 2007; 74: 1092-1101
      2. Koob G (2016): Negative reinforcement mechanisms in drug addiction. Video presentation at the Athina Markou Memorial Symposium, November 10, San Diego, California. Available at: https://www.youtube.com/watch?v=Lt8U6eQRAuU&index=2&list=PLbbCsk7MUIGerbAPxOgCKsrZGdNksFo82. Accessed November 10, 2016.

        • Der-Avakian A.
        • Markou A.
        The neurobiology of anhedonia and other reward-related deficits.
        Trends Neurosci. 2012; 351: 68-77
        • Markou A.
        Metabotropic glutamate receptor antagonists: Novel therapeutics for nicotine dependence and depression?.
        Biol Psychiatry. 2007; 61: 17-22
        • Pergadia M.L.
        • Der-Avakian A.
        • D’Souza M.S.
        • Madden P.A.F.
        • Heath A.C.
        • Shiffman S.
        • et al.
        Withdrawal of nicotine blunts reward responsiveness in humans and rats.
        JAMA Psychiatry. 2014; 71: 1238-1245
        • Li X.
        • Semenova S.
        • D’Souza M.S.
        • Stoker A.K.
        • Markou A.
        Involvement of glutamatergic and GABAergic systems in nicotine dependence: Implications for novel pharmacotherapies for smoking cessation.
        Neuropharmacology. 2014; 76B: 554-565
        • Li X.
        • D'Souza M.S.
        • Niño A.M.
        • Doherty J.
        • Cross A.
        • Markou A.
        Attenuation of nicotine-taking and nicotine-seeking behavior by the mGlu2 receptor positive allosteric modulators AZD8418 and AZD8529 in rats.
        Psychopharmacology. 2016; 233: 1801-1814
        • Jacobson L.H.
        • Vlachou S.
        • Slattery D.A.
        • Li X.
        • Cryan J.F.
        The gamma-aminobutyric acid B receptor in depression and reward.
        Biol Psychiatry. 2018; 83: 963-976
        • Vlachou S.
        • Guery S.
        • Froestl W.
        • Banerjee D.
        • Finn M.G.
        • Markou A.
        Repeated administration of the GABAB receptor positive modulator BHF177 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine seeking in rats.
        Psychopharmacology. 2011; 215: 117-128
      3. Cryan JF (2016): GABAB receptors as targets for treating psychiatric disorders. Video presentation at the Athina Markou Memorial Symposium, November 10, San Diego. Available at https://www.youtube.com/watch?v=WJT5fTqhrAI&index=16&list=PLbbCsk7MUIGerbAPxOgCKsrZGdNksFo82. Accessed November 10, 2016.

        • D’Souza M.S.
        • Liechti M.E.
        • Ramirez-Nino A.M.
        • Kuczenski R.
        • Markou A.
        The metabotropic glutamate 2/3 receptor agonist LY379268 blocked nicotine-induced increases in nucleus accumbens shell dopamine only in the presence of a nicotine-associated context in rats.
        Neuropsychopharmacology. 2011; 36: 2111-2124
        • Liechti M.E.
        • Markou A.
        Role of the glutamatergic system in nicotine dependence: Implications for the discovery and development of new pharmacological smoking cessation therapies.
        CNS Drugs. 2008; 22: 705-724
        • Sidique S.
        • Dhanya R.P.
        • Sheffler D.J.
        • Nickols H.H.
        • Yang L.
        • Dahl R.
        • et al.
        Orally active metabotropic glutamate subtype 2 receptor positive allosteric modulators structure-activity relationships and assessment in a rat model of nicotine dependence.
        J Med Chem. 2012; 55: 9434-9445
      4. Cross A (2016): Metabotropic glutamate receptors as targets for treating nicotine addiction. Video presentation at the Athina Markou Memorial Symposium, November 10, San Diego, California. Available at https://www.youtube.com/watch?v=YFwvQFP_nxI&index=15&list=PLbbCsk7MUIGerbAPxOgCKsrZGdNksFo82. Accessed November 10, 2016.

      5. National Institute on Drug Abuse (2013): NIDA and AstraZeneca partner to develop potential addiction medication. May 10. Available at http://www.drugabuse.gov/news-events/news-releases/2013/05/nida-astrazeneca-partner-to-develop-potential-addiction-medication. Accessed November 10, 2016.

        • Kane J.
        • Honigfeld G.
        • Singer J.
        • Meltzer H.
        Clozapine for the treatment-resistant Schizophrenic: A double-blind comparison with chlorpromazine.
        Arch Gen Psychiatry. 1988; 45: 789-796
        • Norman T.
        • Edwards A.
        • Bountra C.
        • Friend S.
        The precompetitive space: Time to move the yardsticks.
        Sci Transl Med. 2011; 3 (76cm10)
        • Grundy R.
        • James L.
        • Bountra C.
        • Harrison T.
        Reconfiguring drug discovery through innovative partnerships.
        Drug Discovery World. 2014; (Fall 2014, pp 70–74.)