Glutamatergic Ventral Pallidal Neurons Modulate Activity of the Habenula–Tegmental Circuitry and Constrain Reward Seeking



      The ability to appropriately integrate and respond to rewarding and aversive stimuli is essential for survival. The ventral pallidum (VP) plays a critical role in processing both rewarding and aversive stimuli. However, the VP is a heterogeneous structure, and how VP subpopulations integrate into larger reward networks to ultimately modulate these behaviors is not known. We identify a noncanonical population of glutamatergic VP neurons that play a unique role in responding to aversive stimuli and constraining inappropriate reward seeking.


      Using neurochemical, genetic, and electrophysiological approaches, we characterized glutamatergic VP neurons (n = 4–8 mice/group). We performed patch clamp and in vivo electrophysiology recordings in the lateral habenula, rostromedial tegmental nucleus, and ventral tegmental area to determine the effect of glutamatergic VP neuron activation in these target regions (n = 6–10 mice/group). Finally, we selectively optogenetically stimulated glutamatergic VP neurons in a real-time place preference task and ablated these neurons using a virally expressed caspase to determine their necessity for reward seeking.


      Glutamatergic VP neurons exhibit little overlap with cholinergic or gamma-aminobutyric acidergic markers, the canonical VP subtypes, and exhibit distinct membrane properties. Glutamatergic VP neurons innervate and increase firing activity of the lateral habenula, rostromedial tegmental nucleus, and gamma-aminobutyric acidergic ventral tegmental area neurons. While nonselective optogenetic stimulation of the VP induced a robust place preference, selective activation of glutamatergic VP neurons induced a place avoidance. Viral ablation of glutamatergic VP neurons increased reward responding and abolished taste aversion to sucrose.


      Glutamatergic VP neurons constitute a noncanonical subpopulation of VP neurons. These glutamatergic VP neurons increase activity of the lateral habenula, rostromedial tegmental nucleus, and gamma-aminobutyric acidergic ventral tegmental area neurons and adaptively constrain reward seeking.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Haber S.N.
        • Groenewegen H.J.
        • Grove E.A.
        • Nauta W.J.
        Efferent connections of the ventral pallidum: Evidence of a dual striato pallidofugal pathway.
        J Comp Neurol. 1985; 235: 322-335
        • Dichter G.S.
        • Damiano C.A.
        • Allen J.A.
        Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: Animal models and clinical findings.
        J Neurodev Disord. 2012; 4: 19
        • Nusslock R.
        • Alloy L.B.
        Reward processing and mood-related symptoms: An RDoC and translational neuroscience perspective.
        J Affect Disord. 2017; 216: 3-16
        • Feil J.
        • Sheppard D.
        • Fitzgerald P.B.
        • Yucel M.
        • Lubman D.I.
        • Bradshaw J.L.
        Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control.
        Neurosci Biobehav Rev. 2010; 35: 248-275
        • O’Donnell P.
        • Lavin A.
        • Enquist L.W.
        • Grace A.A.
        • Card J.P.
        Interconnected parallel circuits between rat nucleus accumbens and thalamus revealed by retrograde transynaptic transport of pseudorabies virus.
        J Neurosci. 1997; 17: 2143-2167
        • Root D.H.
        • Melendez R.I.
        • Zaborszky L.
        • Napier T.C.
        The ventral pallidum: Subregion-specific functional anatomy and roles in motivated behaviors.
        Prog Neurobiol. 2015; 130: 29-70
        • Young 3rd, W.S.
        • Alheid G.F.
        • Heimer L.
        The ventral pallidal projection to the mediodorsal thalamus: A study with fluorescent retrograde tracers and immunohistofluorescence.
        J Neurosci. 1984; 4: 1626-1638
        • Yim C.Y.
        • Mogenson G.J.
        Response of ventral pallidal neurons to amygdala stimulation and its modulation by dopamine projections to nucleus accumbens.
        J Neurophysiol. 1983; 50: 148-161
        • Mogenson G.J.
        • Jones D.L.
        • Yim C.Y.
        From motivation to action: Functional interface between the limbic system and the motor system.
        Prog Neurobiol. 1980; 14: 69-97
        • Kalivas P.W.
        • Volkow N.D.
        The neural basis of addiction: A pathology of motivation and choice.
        Am J Psychiatry. 2005; 162: 1403-1413
        • Young K.A.
        • Franklin T.R.
        • Roberts D.C.
        • Jagannathan K.
        • Suh J.J.
        • Wetherill R.R.
        • et al.
        Nipping cue reactivity in the bud: Baclofen prevents limbic activation elicited by subliminal drug cues.
        J Neurosci. 2014; 34: 5038-5043
        • Root D.H.
        • Ma S.
        • Barker D.J.
        • Megehee L.
        • Striano B.M.
        • Ralston C.M.
        • et al.
        Differential roles of ventral pallidum subregions during cocaine self-administration behaviors.
        J Comp Neurol. 2013; 521: 558-588
        • Tindell A.J.
        • Smith K.S.
        • Pecina S.
        • Berridge K.C.
        • Aldridge J.W.
        Ventral pallidum firing codes hedonic reward: When a bad taste turns good.
        J Neurophysiol. 2006; 96: 2399-2409
        • Cromwell H.C.
        • Berridge K.C.
        Where does damage lead to enhanced food aversion: The ventral pallidum/substantia innominata or lateral hypothalamus?.
        Brain Res. 1993; 624: 1-10
        • Shimura T.
        • Imaoka H.
        • Yamamoto T.
        Neurochemical modulation of ingestive behavior in the ventral pallidum.
        Eur J Neurosci. 2006; 23: 1596-1604
        • Miller J.M.
        • Vorel S.R.
        • Tranguch A.J.
        • Kenny E.T.
        • Mazzoni P.
        • van Gorp W.G.
        • et al.
        Anhedonia after a selective bilateral lesion of the globus pallidus.
        Am J Psychiatry. 2006; 163: 786-788
        • Farrar A.M.
        • Font L.
        • Pereira M.
        • Mingote S.
        • Bunce J.G.
        • Chrobak J.J.
        • et al.
        Forebrain circuitry involved in effort-related choice: Injections of the GABAA agonist muscimol into ventral pallidum alter response allocation in food-seeking behavior.
        Neuroscience. 2008; 152: 321-330
        • Itoga C.A.
        • Berridge K.C.
        • Aldridge J.W.
        Ventral pallidal coding of a learned taste aversion.
        Behav Brain Res. 2016; 300: 175-183
        • Creed M.
        • Ntamati N.R.
        • Chandra R.
        • Lobo M.K.
        • Luscher C.
        Convergence of reinforcing and anhedonic cocaine effects in the ventral pallidum.
        Neuron. 2016; 92: 214-226
        • Saga Y.
        • Richard A.
        • Sgambato-Faure V.
        • Hoshi E.
        • Tobler P.N.
        • Tremblay L.
        Ventral pallidum encodes contextual information and controls aversive behaviors.
        Cereb Cortex. 2017; 27: 2528-2543
        • Napier T.C.
        • Mickiewicz A.L.
        The role of the ventral pallidum in psychiatric disorders.
        Neuropsychopharmacology. 2010; 35: 337
        • Fallon J.H.
        • Loughlin S.E.
        • Ribak C.E.
        The islands of Calleja complex of rat basal forebrain: III. Histochemical evidence for a striatopallidal system.
        J Comp Neurol. 1983; 218: 91-120
        • Bengtson C.P.
        • Lee D.J.
        • Osborne P.B.
        Opposing electrophysiological actions of 5-HT on noncholinergic and cholinergic neurons in the rat ventral pallidum in vitro.
        J Neurophysiol. 2004; 92: 433-443
        • Kupchik Y.M.
        • Kalivas P.W.
        The rostral subcommissural ventral pallidum is a mix of ventral pallidal neurons and neurons from adjacent areas: An electrophysiological study.
        Brain Struct Funct. 2013; 218: 1487-1500
        • Geisler S.
        • Derst C.
        • Veh R.W.
        • Zahm D.S.
        Glutamatergic afferents of the ventral tegmental area in the rat.
        J Neurosci. 2007; 27: 5730-5743
        • Hur E.E.
        • Zaborszky L.
        Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: A combined retrograde tracing in situ hybridization study.
        J Comp Neurol. 2005; 483 ([corrected]): 351-373
        • Knowland D.
        • Lilascharoen V.
        • Pacia C.P.
        • Shin S.
        • Wang E.H.
        • Lim B.K.
        Distinct ventral pallidal neural populations mediate separate symptoms of depression.
        Cell. 2017; 170: 284-297
        • Vong L.
        • Ye C.
        • Yang Z.
        • Choi B.
        • Chua Jr., S.
        • Lowell B.B.
        Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons.
        Neuron. 2011; 71: 142-154
        • Rossi J.
        • Balthasar N.
        • Olson D.
        • Scott M.
        • Berglund E.
        • Lee C.E.
        • et al.
        Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis.
        Cell Metab. 2011; 13: 195-204
        • Tanahira C.
        • Higo S.
        • Watanabe K.
        • Tomioka R.
        • Ebihara S.
        • Kaneko T.
        • et al.
        Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice.
        Neurosci Res. 2009; 63: 213-223
        • Sparta D.R.
        • Stamatakis A.M.
        • Phillips J.L.
        • Hovelso N.
        • van Zessen R.
        • Stuber G.D.
        Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits.
        Nat Protoc. 2011; 7: 12-23
        • Bengtson C.P.
        • Osborne P.B.
        Electrophysiological properties of cholinergic and noncholinergic neurons in the ventral pallidal region of the nucleus basalis in rat brain slices.
        J Neurophysiol. 2000; 83: 2649-2660
        • Gielow M.R.
        • Zaborszky L.
        The input–output relationship of the cholinergic basal forebrain.
        Cell Rep. 2017; 18: 1817-1830
        • Yetnikoff L.
        • Cheng A.Y.
        • Lavezzi H.N.
        • Parsley K.P.
        • Zahm D.S.
        Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: A study in rat.
        J Comp Neurol. 2015; 523: 2426-2456
        • Paxinos G.
        • Franklin K.
        Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates.
        Academic Press, New York2012
        • Gaykema R.P.
        • Zaborszky L.
        Parvalbumin-containing neurons in the basal forebrain receive direct input from the substantia nigra-ventral tegmental area.
        Brain Res. 1997; 747: 173-179
        • Sesack S.R.
        • Deutch A.Y.
        • Roth R.H.
        • Bunney B.S.
        Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin.
        J Comp Neurol. 1989; 290: 213-242
        • Napier T.C.
        • Mitrovic I.
        Opioid modulation of ventral pallidal inputs.
        Ann N Y Acad Sci. 1999; 877: 176-201
        • Maroteaux M.
        • Mameli M.
        Cocaine evokes projection-specific synaptic plasticity of lateral habenula neurons.
        J Neurosci. 2012; 32: 12641-12646
        • Maslowski-Cobuzzi R.J.
        • Napier T.C.
        Activation of dopaminergic neurons modulates ventral pallidal responses evoked by amygdala stimulation.
        Neuroscience. 1994; 62: 1103-1119
        • Mercuri N.B.
        • Bonci A.
        • Calabresi P.
        • Stefani A.
        • Bernardi G.
        Properties of the hyperpolarization-activated cation current Ih in rat midbrain dopaminergic neurons.
        Eur J Neurosci. 1995; 7: 462-469
        • Steffensen S.C.
        • Svingos A.L.
        • Pickel V.M.
        • Henriksen S.J.
        Electrophysiological characterization of GABAergic neurons in the ventral tegmental area.
        J Neurosci. 1998; 18: 8003-8015
        • Ungless M.A.
        • Grace A.A.
        Are you or aren't you? Challenges associated with physiologically identifying dopamine neurons.
        Trends Neurosci. 2012; 35: 422-430
        • Chieng B.
        • Azriel Y.
        • Mohammadi S.
        • Christie M.J.
        Distinct cellular properties of identified dopaminergic and GABAergic neurons in the mouse ventral tegmental area.
        J Physiol. 2011; 589: 3775-3787
        • Lammel S.
        • Lim B.K.
        • Ran C.
        • Huang K.W.
        • Betley M.J.
        • Tye K.M.
        • et al.
        Input-specific control of reward and aversion in the ventral tegmental area.
        Nature. 2012; 491: 212-217
        • Margolis E.B.
        • Lock H.
        • Hjelmstad G.O.
        • Fields H.L.
        The ventral tegmental area revisited: Is there an electrophysiological marker for dopaminergic neurons?.
        J Physiol. 2006; 577: 907-924
        • Lisman J.E.
        • Grace A.A.
        The hippocampal-VTA loop: Controlling the entry of information into long-term memory.
        Neuron. 2005; 46: 703-713
        • Floresco S.B.
        • West A.R.
        • Ash B.
        • Moore H.
        • Grace A.A.
        Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission.
        Nat Neurosci. 2003; 6: 968-973
        • Ikemoto S.
        Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex.
        Brain Res Rev. 2007; 56: 27-78
        • Burgdorf J.
        • Wood P.L.
        • Kroes R.A.
        • Moskal J.R.
        • Panksepp J.
        Neurobiology of 50-kHz ultrasonic vocalizations in rats: Electrode mapping, lesion, and pharmacology studies.
        Behav Brain Res. 2007; 182: 274-283
        • Panagis G.
        • Spyraki C.
        Neuropharmacological evidence for the role of dopamine in ventral pallidum self-stimulation.
        Psychopharmacology (Berl). 1996; 123: 280-288
        • Sharma A.
        • Wolf D.H.
        • Ciric R.
        • Kable J.W.
        • Moore T.M.
        • Vandekar S.N.
        • et al.
        Common dimensional reward deficits across mood and psychotic disorders: A connectome-wide association study.
        Am J Psychiatry. 2017; 174: 657-666
        • Li Q.
        • Li W.
        • Wang H.
        • Wang Y.
        • Zhang Y.
        • Zhu J.
        • et al.
        Predicting subsequent relapse by drug-related cue-induced brain activation in heroin addiction: An event-related functional magnetic resonance imaging study.
        Addict Biol. 2015; 20: 968-978
        • Mason L.
        • O’Sullivan N.
        • Montaldi D.
        • Bentall R.P.
        • El-Deredy W.
        Decision-making and trait impulsivity in bipolar disorder are associated with reduced prefrontal regulation of striatal reward valuation.
        Brain. 2014; 137: 2346-2355
        • Prasad A.A.
        • McNally G.P.
        Ventral pallidum output pathways in context-induced reinstatement of alcohol seeking.
        J Neurosci. 2016; 36: 11716-11726
        • Mahler S.V.
        • Vazey E.M.
        • Beckley J.T.
        • Keistler C.R.
        • McGlinchey E.M.
        • Kaufling J.
        • et al.
        Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking.
        Nat Neurosci. 2014; 17: 577-585
        • Jhou T.C.
        • Fields H.L.
        • Baxter M.G.
        • Saper C.B.
        • Holland P.C.
        The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses.
        Neuron. 2009; 61: 786-800
        • Stamatakis A.M.
        • Stuber G.D.
        Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance.
        Nat Neurosci. 2012; 15: 1105-1107
        • Welter M.L.
        • Grabli D.
        • Vidailhet M.
        Deep brain stimulation for hyperkinetics disorders: Dystonia, tardive dyskinesia, and tics.
        Curr Opin Neurol. 2010; 23: 420-425
        • Yu W.
        • Walling I.
        • Smith A.B.
        • Ramirez-Zamora A.
        • Pilitsis J.G.
        • Shin D.S.
        Deep brain stimulation of the ventral pallidum attenuates epileptiform activity and seizing behavior in pilocarpine-treated rats.
        Brain Stimul. 2016; 9: 285-295
        • Shields B.C.
        • Kahuno E.
        • Kim C.
        • Apostolides P.F.
        • Brown J.
        • Lindo S.
        • et al.
        Deconstructing behavioral neuropharmacology with cellular specificity.
        Science. 2017; 356: eaaj2161
        • Airan R.D.
        • Meyer R.A.
        • Ellens N.P.
        • Rhodes K.R.
        • Farahani K.
        • Pomper M.G.
        • et al.
        Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions.
        Nano Lett. 2017; 17: 652-659
        • Vazey E.M.
        • Aston-Jones G.
        Designer receptors: Therapeutic adjuncts to cell replacement therapy in Parkinson’s disease.
        J Clin Invest. 2014; 124: 2858-2860

      Linked Article

      • The Control of Reward Seeking
        Biological PsychiatryVol. 83Issue 12
        • Preview
          Seeking reward and avoiding punishment are two fundamental processes that together guide the appropriate selection of an action from complex choices. Dysfunctional interaction between the two processes can lead to the aberrant situation of reward seeking despite punishment, a maladaptive behavior that characterizes several psychiatric conditions and notably substance abuse disorders (1). Reward seeking has been extensively investigated in brain circuits subserving hedonic control, motivation, and self-control; however, mechanisms that would suppress this behavior are similarly important but are much less known.
        • Full-Text
        • PDF