Advertisement

Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha as a Novel Target for Bipolar Disorder and Other Neuropsychiatric Disorders

      Abstract

      Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) is a protein that regulates metabolism and inflammation by activating nuclear receptors, especially the family of peroxisome proliferator-activated receptors (PPARs). PGC-1 alpha and PPARs also regulate mitochondrial biogenesis, cellular energy production, thermogenesis, and lipid metabolism. Brain energy metabolism may also be regulated in part by the interaction between PGC-1 alpha and PPARs. Because neurodegenerative diseases (Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis) and bipolar disorder have been associated with dysregulated mitochondrial and brain energy metabolism, PGC-1 alpha may represent a potential drug target for these conditions. The purpose of this article is to review the physiology of PGC-1 alpha, PPARs, and the role of PPAR agonists to target PGC-1 alpha to treat neurodegenerative diseases and bipolar disorder. We also review clinical trials of repurposed antidiabetic thiazolidines and anti–triglyceride fibrates (PPAR agonists) for neurodegenerative diseases and bipolar disorder. PGC-1 alpha and PPARs are innovative potential targets for bipolar disorder and warrant future clinical trials.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Berk M.
        • Kapczinski F.
        • Andreazza A.C.
        • Dean O.M.
        • Giorlando F.
        • Maes M.
        • et al.
        Pathways underlying neuroprogression in bipolar disorder: Focus on inflammation, oxidative stress and neurotrophic factors.
        Neurosci Biobehav Rev. 2011; 35: 804-817
        • Sharma A.N.
        • Bauer I.E.
        • Sanches M.
        • Galvez J.F.
        • Zunta-Soares G.B.
        • Quevedo J.
        • et al.
        Common biological mechanisms between bipolar disorder and type 2 diabetes: Focus on inflammation.
        Prog Neuropsychopharmacol Biol Psychiatry. 2014; 54: 289-298
        • Moreira F.P.
        • Jansen K.
        • Cardoso T.A.
        • Mondin T.C.
        • Magalhaes P.
        • Kapczinski F.
        • et al.
        Metabolic syndrome in subjects with bipolar disorder and major depressive disorder in a current depressive episode: Population-based study—Metabolic syndrome in current depressive episode.
        J Psychiatr Res. 2017; 92: 119-123
        • Osby U.
        • Westman J.
        • Hallgren J.
        • Gissler M.
        Mortality trends in cardiovascular causes in schizophrenia, bipolar and unipolar mood disorder in Sweden 1987–2010.
        Eur J Public Health. 2016; 26: 867-871
        • Melo M.C.
        • Daher Ede F.
        • Albuquerque S.G.
        • de Bruin V.M.
        Exercise in bipolar patients: A systematic review.
        J Affect Disord. 2016; 198: 32-38
        • Sylvia L.G.
        • Friedman E.S.
        • Kocsis J.H.
        • Bernstein E.E.
        • Brody B.D.
        • Kinrys G.
        • et al.
        Association of exercise with quality of life and mood symptoms in a comparative effectiveness study of bipolar disorder.
        J Affect Disord. 2013; 151: 722-727
        • Bright J.J.
        • Kanakasabai S.
        • Chearwae W.
        • Chakraborty S.
        PPAR regulation of inflammatory signaling in CNS diseases.
        PPAR Res. 2008; 2008: 658520
        • Scarpulla R.C.
        • Vega R.B.
        • Kelly D.P.
        Transcriptional integration of mitochondrial biogenesis.
        Trends Endocrinol Metab. 2012; 23: 459-466
        • Amber-Vitos O.
        • Chaturvedi N.
        • Nachliel E.
        • Gutman M.
        • Tsfadia Y.
        The effect of regulating molecules on the structure of the PPAR–RXR complex.
        Biochim Biophys Acta. 2016; 1861: 1852-1863
        • Lin J.
        • Handschin C.
        • Spiegelman B.M.
        Metabolic control through the PGC-1 family of transcription coactivators.
        Cell Metab. 2005; 1: 361-370
        • Handschin C.
        • Spiegelman B.M.
        The role of exercise and PGC1α in inflammation and chronic disease.
        Nature. 2008; 454: 463-469
        • Lin J.
        • Wu P.-H.
        • Tarr P.T.
        • Lindenberg K.S.
        • St-Pierre J.
        • Zhang C.-Y.
        • et al.
        Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice.
        Cell. 2004; 119: 121-135
        • Mattson M.P.
        Energy intake and exercise as determinants of brain health and vulnerability to injury and disease.
        Cell Metab. 2012; 16: 706-722
        • Picard M.
        • McEwen B.S.
        Mitochondria impact brain function and cognition.
        Proc Natl Acad Sci U S A. 2014; 111: 7-8
        • Koppen A.
        • Kalkhoven E.
        Brown vs white adipocytes: The PPARgamma coregulator story.
        FEBS Lett. 2010; 584: 3250-3259
        • Rosen E.D.
        Epigenomic and transcriptional control of insulin resistance.
        J Intern Med. 2016; 280: 443-456
        • Handschin C.
        Peroxisome proliferator-activated receptor-gamma coactivator-1alpha in muscle links metabolism to inflammation.
        Clin Exp Pharmacol Physiol. 2009; 36: 1139-1143
        • Kang C.
        • Li Ji L.
        Role of PGC-1α signaling in skeletal muscle health and disease.
        Ann N Y Acad Sci. 2012; 1271: 110-117
        • Valente A.
        • Jamurtas A.Z.
        • Koutedakis Y.
        • Flouris A.D.
        Molecular pathways linking non-shivering thermogenesis and obesity: Focusing on brown adipose tissue development.
        Biol Rev Camb Philos Soc. 2015; 90: 77-88
        • Khacho M.
        • Slack R.S.
        Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain.
        Dev Dyn. 2018; 247: 47-53
        • Peters A.
        • Schweiger U.
        • Pellerin L.
        • Hubold C.
        • Oltmanns K.M.
        • Conrad M.
        • et al.
        The selfish brain: Competition for energy resources.
        Neurosci Biobehav Rev. 2004; 28: 143-180
        • Rolfe D.F.
        • Brown G.C.
        Cellular energy utilization and molecular origin of standard metabolic rate in mammals.
        Physiol Rev. 1997; 77: 731-758
        • Harris J.J.
        • Jolivet R.
        • Attwell D.
        Synaptic energy use and supply.
        Neuron. 2012; 75: 762-777
        • Sonnay S.
        • Gruetter R.
        • Duarte J.M.N.
        How energy metabolism supports cerebral function: Insights from 13C magnetic resonance studies in vivo.
        Front Neurosci. 2017; 11: 288
        • Picard M.
        • Wallace D.C.
        • Burelle Y.
        The rise of mitochondria in medicine.
        Mitochondrion. 2016; 30: 105-116
        • Cataldo A.M.
        • McPhie D.L.
        • Lange N.T.
        • Punzell S.
        • Elmiligy S.
        • Ye N.Z.
        • et al.
        Abnormalities in mitochondrial structure in cells from patients with bipolar disorder.
        Am J Pathol. 2010; 177: 575-585
        • Kato T.
        Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond.
        Schizophr Res. 2017; 187: 62-66
        • Gorlach A.
        • Bertram K.
        • Hudecova S.
        • Krizanova O.
        Calcium and ROS: A mutual interplay.
        Redox Biol. 2015; 6: 260-271
        • Maes M.
        • Leonard B.
        • Fernandez A.
        • Kubera M.
        • Nowak G.
        • Veerhuis R.
        • et al.
        (Neuro)inflammation and neuroprogression as new pathways and drug targets in depression: From antioxidants to kinase inhibitors.
        Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35: 659-663
        • Berk M.
        • Williams L.J.
        • Jacka F.N.
        • O’Neil A.
        • Pasco J.A.
        • Moylan S.
        • et al.
        So depression is an inflammatory disease, but where does the inflammation come from?.
        BMC Med. 2013; 11: 200
        • Tsunemi T.
        • La Spada A.R.
        PGC-1α at the intersection of bioenergetics regulation and neuron function: From Huntington’s disease to Parkinson’s disease and beyond.
        Prog Neurobiol. 2012; 97: 142-151
        • Austin S.
        • St-Pierre J.
        PGC1α and mitochondrial metabolism—Emerging concepts and relevance in ageing and neurodegenerative disorders.
        J Cell Sci. 2012; 125: 4963-4971
        • Scarpulla R.C.
        Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network.
        Biochim Biophys Acta. 2011; 1813: 1269-1278
        • Wareski P.
        • Vaarmann A.
        • Choubey V.
        • Safiulina D.
        • Liiv J.
        • Kuum M.
        • et al.
        PGC-1α and PGC-1β regulate mitochondrial density in neurons.
        J Biol Chem. 2009; 284: 21379-21385
        • Scarpulla R.C.
        Nuclear activators and coactivators in mammalian mitochondrial biogenesis.
        Biochim Biophys Acta. 2002; 1576: 1-14
        • Raefsky S.M.
        • Mattson M.P.
        Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance.
        Free Radic Biol Med. 2017; 102: 203-216
        • Katsouri L.
        • Blondrath K.
        • Sastre M.
        Peroxisome proliferator-activated receptor-γ cofactors in neurodegeneration.
        IUBMB Life. 2012; 64: 958-964
        • Tritos N.A.
        • Mastaitis J.W.
        • Kokkotou E.G.
        • Puigserver P.
        • Spiegelman B.M.
        • Maratos-Flier E.
        Characterization of the peroxisome proliferator activated receptor coactivator 1 alpha (PGC 1alpha) expression in the murine brain.
        Brain Res. 2003; 961: 255-260
        • St-Pierre J.
        • Drori S.
        • Uldry M.
        • Silvaggi J.M.
        • Rhee J.
        • Jager S.
        • et al.
        Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators.
        Cell. 2006; 127: 397-408
        • Kim Y.
        • Santos R.
        • Gage F.H.
        • Marchetto M.C.
        Molecular mechanisms of bipolar disorder: Progress made and future challenges.
        Front Cell Neurosci. 2017; 11: 30
        • Simon N.M.
        • McNamara K.
        • Chow C.W.
        • Maser R.S.
        • Papakostas G.I.
        • Pollack M.H.
        • et al.
        A detailed examination of cytokine abnormalities in major depressive disorder.
        Eur Neuropsychopharmacol. 2008; 18: 230-233
        • Miller A.H.
        • Maletic V.
        • Raison C.L.
        Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression.
        Biol Psychiatry. 2009; 65: 732-741
        • Raison C.L.
        • Miller A.H.
        Role of inflammation in depression: Implications for phenomenology, pathophysiology and treatment.
        Mod Trends Pharmacopsychiatry. 2013; 28: 33-48
        • Leonard B.E.
        Inflammation and depression: A causal or coincidental link to the pathophysiology?.
        Acta Neuropsychiatr. 2018; 30: 1-16
        • Brunello N.
        • Alboni S.
        • Capone G.
        • Benatti C.
        • Blom J.M.
        • Tascedda F.
        • et al.
        Acetylsalicylic acid accelerates the antidepressant effect of fluoxetine in the chronic escape deficit model of depression.
        Int Clin Psychopharmacol. 2006; 21: 219-225
        • Mendlewicz J.
        • Kriwin P.
        • Oswald P.
        • Souery D.
        • Alboni S.
        • Brunello N.
        Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: A pilot open-label study.
        Int Clin Psychopharmacol. 2006; 21: 227-231
        • Muller N.
        • Schwarz M.J.
        • Dehning S.
        • Douhe A.
        • Cerovecki A.
        • Goldstein-Muller B.
        • et al.
        The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: Results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine.
        Mol Psychiatry. 2006; 11: 680-684
        • Krishnan R.
        • Cella D.
        • Leonardi C.
        • Papp K.
        • Gottlieb A.B.
        • Dunn M.
        • et al.
        Effects of etanercept therapy on fatigue and symptoms of depression in subjects treated for moderate to severe plaque psoriasis for up to 96 weeks.
        Br J Dermatol. 2007; 157: 1275-1277
        • Rodriguez A.
        • Ezquerro S.
        • Mendez-Gimenez L.
        • Becerril S.
        • Fruhbeck G.
        Revisiting the adipocyte: A model for integration of cytokine signaling in the regulation of energy metabolism.
        Am J Physiol Endocrinol Metab. 2015; 309: E691-E714
        • Eisele P.S.
        • Furrer R.
        • Beer M.
        • Handschin C.
        The PGC-1 coactivators promote an anti-inflammatory environment in skeletal muscle in vivo.
        Biochem Biophys Res Commun. 2015; 464: 692-697
        • Eisele P.S.
        • Handschin C.
        Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology.
        Semin Immunopathol. 2014; 36: 27-53
        • Eisele P.S.
        • Salatino S.
        • Sobek J.
        • Hottiger M.O.
        • Handschin C.
        The peroxisome proliferator-activated receptor γ coactivator 1α/β (PGC-1) coactivators repress the transcriptional activity of NF-κB in skeletal muscle cells.
        J Biol Chem. 2013; 288: 2246-2260
        • Wang L.
        • Mascher H.
        • Psilander N.
        • Blomstrand E.
        • Sahlin K.
        Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle.
        J Appl Physiol. 2011; 111: 1335-1344
        • Nordsborg N.B.
        • Lundby C.
        • Leick L.
        • Pilegaard H.
        Relative workload determines exercise-induced increases in PGC-1alpha mRNA.
        Med Sci Sports Exerc. 2010; 42: 1477-1484
        • Jedrychowski M.P.
        • Wrann C.D.
        • Paulo J.A.
        • Gerber K.K.
        • Szpyt J.
        • Robinson M.M.
        • et al.
        Detection and quantitation of circulating human irisin by tandem mass spectrometry.
        Cell Metab. 2015; 22: 734-740
        • Atherton P.J.
        • Phillips B.E.
        Greek goddess or Greek myth: The effects of exercise on irisin/FNDC5 in humans.
        J Physiol. 2013; 591: 5267-5268
        • Wrann C.D.
        FNDC5/irisin—Their role in the nervous system and as a mediator for beneficial effects of exercise on the brain.
        Brain Plast. 2015; 1: 55-61
        • Wrann C.D.
        • White J.P.
        • Salogiannnis J.
        • Laznik-Bogoslavski D.
        • Wu J.
        • Ma D.
        • et al.
        Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway.
        Cell Metab. 2013; 18: 649-659
        • Jodeiri Farshbaf M.
        • Ghaedi K.
        • Megraw T.L.
        • Curtiss J.
        • Shirani Faradonbeh M.
        • Vaziri P.
        • et al.
        Does PGC1α/FNDC5/BDNF elicit the beneficial effects of exercise on neurodegenerative disorders?.
        Neuromolecular Med. 2016; 18: 1-15
        • Schnyder S.
        • Handschin C.
        Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise.
        Bone. 2015; 80: 115-125
        • Rona-Voros K.
        • Weydt P.
        The role of PGC-1α in the pathogenesis of neurodegenerative disorders.
        Curr Drug Targets. 2010; 11: 1262-1269
        • Johri A.
        • Chandra A.
        • Beal M.F.
        PGC-1α, mitochondrial dysfunction, and Huntington's disease.
        Free Radic Biol Med. 2013; 62: 37-46
        • Puddifoot C.
        • Martel M.A.
        • Soriano F.X.
        • Camacho A.
        • Vidal-Puig A.
        • Wyllie D.J.
        • et al.
        PGC-1α negatively regulates extrasynaptic NMDAR activity and excitotoxicity.
        J Neurosci. 2012; 32: 6995-7000
        • Huang H.T.
        • Liao C.K.
        • Chiu W.T.
        • Tzeng S.F.
        Ligands of peroxisome proliferator-activated receptor-alpha promote glutamate transporter-1 endocytosis in astrocytes.
        Int J Biochem Cell Biol. 2017; 86: 42-53
        • Chandra A.
        • Sharma A.
        • Calingasan N.Y.
        • White J.M.
        • Shurubor Y.
        • Yang X.W.
        • et al.
        Enhanced mitochondrial biogenesis ameliorates disease phenotype in a full-length mouse model of Huntington’s disease.
        Hum Mol Genet. 2016; 25: 2269-2282
        • Agarwal S.
        • Yadav A.
        • Chaturvedi R.K.
        Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders.
        Biochem Biophys Res Commun. 2017; 483: 1166-1177
        • Benedusi V.
        • Martorana F.
        • Brambilla L.
        • Maggi A.
        • Rossi D.
        The peroxisome proliferator-activated receptor γ (PPARγ) controls natural protective mechanisms against lipid peroxidation in amyotrophic lateral sclerosis.
        J Biol Chem. 2012; 287: 35899-35911
        • Bayer H.
        • Lang K.
        • Buck E.
        • Higelin J.
        • Barteczko L.
        • Pasquarelli N.
        • et al.
        ALS-causing mutations differentially affect PGC-1α expression and function in the brain vs. peripheral tissues.
        Neurobiol Dis. 2017; 97: 36-45
        • Kiaei M.
        • Kipiani K.
        • Chen J.
        • Calingasan N.Y.
        • Beal M.F.
        Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis.
        Exp Neurol. 2005; 191: 331-336
        • Dupuis L.
        • Dengler R.
        • Heneka M.T.
        • Meyer T.
        • Zierz S.
        • Kassubek J.
        • et al.
        A randomized, double blind, placebo-controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis.
        PLoS One. 2012; 7e37885
        • Levine T.D.
        • Bowser R.
        • Hank N.C.
        • Gately S.
        • Stephan D.
        • Saperstein D.S.
        • et al.
        A pilot trial of pioglitazone HCl and tretinoin in ALS: Cerebrospinal fluid biomarkers to monitor drug efficacy and predict rate of disease progression.
        Neurol Res Int. 2012; 2012: 582075
        • Caligiore D.
        • Helmich R.C.
        • Hallett M.
        • Moustafa A.A.
        • Timmermann L.
        • Toni I.
        • et al.
        Parkinson’s disease as a system-level disorder.
        npj Parkinson’s Dis. 2016; 2: 16025
        • Pozo Devoto V.M.
        • Dimopoulos N.
        • Alloatti M.
        • Pardi M.B.
        • Saez T.M.
        • Otero M.G.
        • et al.
        αSynuclein control of mitochondrial homeostasis in human-derived neurons is disrupted by mutations associated with Parkinson’s disease.
        Sci Rep. 2017; 7: 5042
        • Bose A.
        • Beal M.F.
        Mitochondrial dysfunction in Parkinson’s disease.
        J Neurochem. 2016; 139: 216-231
        • Di Giacomo E.
        • Benedetti E.
        • Cristiano L.
        • Antonosante A.
        • d’Angelo M.
        • Fidoamore A.
        • et al.
        Roles of PPAR transcription factors in the energetic metabolic switch occurring during adult neurogenesis.
        Cell Cycle. 2017; 16: 59-72
        • Pinto M.
        • Nissanka N.
        • Peralta S.
        • Brambilla R.
        • Diaz F.
        • Moraes C.T.
        Pioglitazone ameliorates the phenotype of a novel Parkinson’s disease mouse model by reducing neuroinflammation.
        Mol Neurodegener. 2016; 11: 25
        • Makela J.
        • Tselykh T.V.
        • Kukkonen J.P.
        • Eriksson O.
        • Korhonen L.T.
        • Lindholm D.
        Peroxisome proliferator-activated receptor-γ (PPARγ) agonist is neuroprotective and stimulates PGC-1α expression and CREB phosphorylation in human dopaminergic neurons.
        Neuropharmacology. 2016; 102: 266-275
        • NINDS Exploratory Trials in Parkinson Disease FS-ZONE Investigators
        Pioglitazone in early Parkinson's disease: A phase 2, multicentre, double-blind, randomised trial.
        Lancet Neurol. 2015; 14: 795-803
        • Monteiro-Junior R.S.
        • Cevada T.
        • Oliveira B.R.
        • Lattari E.
        • Portugal E.M.
        • Carvalho A.
        • et al.
        We need to move more: Neurobiological hypotheses of physical exercise as a treatment for Parkinson’s disease.
        Med Hypotheses. 2015; 85: 537-541
        • Hou L.
        • Heilbronner U.
        • Degenhardt F.
        • Adli M.
        • Akiyama K.
        • Akula N.
        • et al.
        Genetic variants associated with response to lithium treatment in bipolar disorder: A genome-wide association study.
        Lancet. 2016; 387: 1085-1093
        • Zandi P.P.
        • Belmonte P.L.
        • Willour V.L.
        • Goes F.S.
        • Badner J.A.
        • Simpson S.G.
        • et al.
        Association study of Wnt signaling pathway genes in bipolar disorder.
        Arch Gen Psychiatry. 2008; 65: 785-793
        • Geoffroy P.A.
        • Etain B.
        • Lajnef M.
        • Zerdazi E.H.
        • Brichant-Petitjean C.
        • Heilbronner U.
        • et al.
        Circadian genes and lithium response in bipolar disorders: Associations with PPARGC1A (PGC-1α) and RORA.
        Genes Brain Behav. 2016; 15: 660-668
        • Lan M.J.
        • Yuan P.
        • Chen G.
        • Manji H.K.
        Neuronal peroxisome proliferator-activated receptor gamma signaling: Regulation by mood-stabilizer valproate.
        J Mol Neurosci. 2008; 35: 225-234
        • Kemp D.E.
        • Ismail-Beigi F.
        • Calabrese J.R.
        Antidepressant response associated with pioglitazone: Support for an overlapping pathophysiology between major depression and metabolic syndrome.
        Am J Psychiatry. 2009; 166: 619
        • Rasgon N.L.
        • Kenna H.A.
        • Williams K.E.
        • Powers B.
        • Wroolie T.
        • Schatzberg A.F.
        Rosiglitazone add-on in treatment of depressed patients with insulin resistance: A pilot study.
        ScientificWorldJournal. 2010; 10: 321-328
        • Kemp D.E.
        • Ismail-Beigi F.
        • Ganocy S.J.
        • Conroy C.
        • Gao K.
        • Obral S.
        • et al.
        Use of insulin sensitizers for the treatment of major depressive disorder: A pilot study of pioglitazone for major depression accompanied by abdominal obesity.
        J Affect Disord. 2012; 136: 1164-1173
        • Lin K.W.
        • Wroolie T.E.
        • Robakis T.
        • Rasgon N.L.
        Adjuvant pioglitazone for unremitted depression: Clinical correlates of treatment response.
        Psychiatry Res. 2015; 230: 846-852
        • Sepanjnia K.
        • Modabbernia A.
        • Ashrafi M.
        • Modabbernia M.J.
        • Akhondzadeh S.
        Pioglitazone adjunctive therapy for moderate-to-severe major depressive disorder: Randomized double-blind placebo-controlled trial.
        Neuropsychopharmacology. 2012; 37: 2093-2100
        • Kashani L.
        • Omidvar T.
        • Farazmand B.
        • Modabbernia A.
        • Ramzanzadeh F.
        • Tehraninejad E.S.
        • et al.
        Does pioglitazone improve depression through insulin-sensitization? Results of a randomized double-blind metformin-controlled trial in patients with polycystic ovarian syndrome and comorbid depression.
        Psychoneuroendocrinology. 2013; 38: 767-776
        • Kemp D.E.
        • Schinagle M.
        • Gao K.
        • Conroy C.
        • Ganocy S.J.
        • Ismail-Beigi F.
        • et al.
        PPAR-γ agonism as a modulator of mood: Proof-of-concept for pioglitazone in bipolar depression.
        CNS Drugs. 2014; 28: 571-581
        • Zeinoddini A.
        • Sorayani M.
        • Hassanzadeh E.
        • Arbabi M.
        • Farokhnia M.
        • Salimi S.
        • et al.
        Pioglitazone adjunctive therapy for depressive episode of bipolar disorder: A randomized, double-blind, placebo-controlled trial.
        Depress Anxiety. 2015; 32: 167-173
        • Tenenbaum A.
        • Motro M.
        • Fisman E.Z.
        • Tanne D.
        • Boyko V.
        • Behar S.
        Bezafibrate for the secondary prevention of myocardial infarction in patients with metabolic syndrome.
        Arch Intern Med. 2005; 165: 1154-1160
        • Tenenbaum A.
        • Motro M.
        • Fisman E.Z.
        Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: The bezafibrate lessons.
        Cardiovasc Diabetol. 2005; 4: 14
        • Grings M.
        • Moura A.P.
        • Parmeggiani B.
        • Pletsch J.T.
        • Cardoso G.M.F.
        • August P.M.
        • et al.
        Bezafibrate prevents mitochondrial dysfunction, antioxidant system disturbance, glial reactivity and neuronal damage induced by sulfite administration in striatum of rats: Implications for a possible therapeutic strategy for sulfite oxidase deficiency.
        Biochim Biophys Acta. 2017; 1863: 2135-2148
        • Hsu H.
        • Chi C.
        Emerging role of the peroxisome proliferator-activated receptor-gamma in hepatocellular carcinoma.
        J Hepatocell Carcinoma. 2014; 1: 127-135