Advertisement

Impact of Sleep and Circadian Rhythms on Addiction Vulnerability in Adolescents

  • Ryan W. Logan
    Affiliations
    Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

    Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

    Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

    The Jackson Laboratory, Bar Harbor, Maine
    Search for articles by this author
  • Brant P. Hasler
    Affiliations
    Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
    Search for articles by this author
  • Erika E. Forbes
    Affiliations
    Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
    Search for articles by this author
  • Peter L. Franzen
    Affiliations
    Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
    Search for articles by this author
  • Mary M. Torregrossa
    Affiliations
    Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

    Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

    Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
    Search for articles by this author
  • Yanhua H. Huang
    Affiliations
    Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

    Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

    Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
    Search for articles by this author
  • Daniel J. Buysse
    Affiliations
    Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
    Search for articles by this author
  • Duncan B. Clark
    Affiliations
    Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
    Search for articles by this author
  • Colleen A. McClung
    Correspondence
    Address correspondence to Colleen A. McClung, Ph.D., University of Pittsburgh School of Medicine, Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219.
    Affiliations
    Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

    Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

    Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania

    The Jackson Laboratory, Bar Harbor, Maine
    Search for articles by this author
Published:December 14, 2017DOI:https://doi.org/10.1016/j.biopsych.2017.11.035

      Abstract

      Sleep homeostasis and circadian function are important maintaining factors for optimal health and well-being. Conversely, sleep and circadian disruptions are implicated in a variety of adverse health outcomes, including substance use disorders. These risks are particularly salient during adolescence. Adolescents require 8 to 10 hours of sleep per night, although few consistently achieve these durations. A mismatch between developmental changes and social/environmental demands contributes to inadequate sleep. Homeostatic sleep drive takes longer to build, circadian rhythms naturally become delayed, and sensitivity to the phase-shifting effects of light increases, all of which lead to an evening preference (i.e., chronotype) during adolescence. In addition, school start times are often earlier in adolescence and the use of electronic devices at night increases, leading to disrupted sleep and circadian misalignment (i.e., social jet lag). Social factors (e.g., peer influence) and school demands further impact sleep and circadian rhythms. To cope with sleepiness, many teens regularly consume highly caffeinated energy drinks and other stimulants, creating further disruptions in sleep. Chronic sleep loss and circadian misalignment enhance developmental tendencies toward increased reward sensitivity and impulsivity, increasing the likelihood of engaging in risky behaviors and exacerbating the vulnerability to substance use and substance use disorders. We review the neurobiology of brain reward systems and the impact of sleep and circadian rhythms changes on addiction vulnerability in adolescence and suggest areas that warrant additional research.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chen C.Y.
        • Storr C.L.
        • Anthony J.C.
        Early-onset drug use and risk for drug dependence problems.
        Addict Behav. 2009; 34: 319-322
        • Sharma A.
        • Morrow J.D.
        Neurobiology of adolescent substance use disorders.
        Child Adolesc Psychiatr Clin N Am. 2016; 25: 367-375
        • Chen K.
        • Kandel D.B.
        The natural history of drug use from adolescence to the mid-thirties in a general population sample.
        Am J Public Health. 1995; 85: 41-47
        • Kandel D.B.
        • Johnson J.G.
        • Bird H.R.
        • Canino G.
        • Goodman S.H.
        • Lahey B.B.
        • et al.
        Psychiatric disorders associated with substance use among children and adolescents: Findings from the Methods for the Epidemiology of Child and Adolescent Mental Disorders (MECA) Study.
        J Abnorm Child Psychol. 1997; 25: 121-132
        • O’Neil K.A.
        • Conner B.T.
        • Kendall P.C.
        Internalizing disorders and substance use disorders in youth: Comorbidity, risk, temporal order, and implications for intervention.
        Clin Psychol Rev. 2011; 31: 104-112
        • Womack S.R.
        • Shaw D.S.
        • Weaver C.M.
        • Forbes E.E.
        Bidirectional associations between cannabis use and depressive symptoms from adolescence through early adulthood among at-risk young men.
        J Stud Alcohol Drugs. 2016; 77: 287-297
        • Alegria A.A.
        • Hasin D.S.
        • Nunes E.V.
        • Liu S.M.
        • Davies C.
        • Grant B.F.
        • et al.
        Comorbidity of generalized anxiety disorder and substance use disorders: Results from the National Epidemiologic Survey on Alcohol and Related Conditions.
        J Clin Psychiatry. 2010; 71: 1187-1195
        • Blanco C.
        • Alegria A.A.
        • Liu S.M.
        • Secades-Villa R.
        • Sugaya L.
        • Davies C.
        • et al.
        Differences among major depressive disorder with and without co-occurring substance use disorders and substance-induced depressive disorder: Results from the National Epidemiologic Survey on Alcohol and Related Conditions.
        J Clin Psychiatry. 2012; 73: 865-873
        • Forbes E.E.
        • Ryan N.D.
        • Phillips M.L.
        • Manuck S.B.
        • Worthman C.M.
        • Moyles D.L.
        • et al.
        Healthy adolescents’ neural response to reward: Associations with puberty, positive affect, and depressive symptoms.
        J Am Acad Child Adolesc Psychiatry. 2010; 49: 162-172.e1-5
        • Padmanabhan A.
        • Geier C.F.
        • Ordaz S.J.
        • Teslovich T.
        • Luna B.
        Developmental changes in brain function underlying the influence of reward processing on inhibitory control.
        Dev Cogn Neurosci. 2011; 1: 517-529
        • Luciana M.
        • Collins P.F.
        Incentive motivation, cognitive control, and the adolescent brain: Is it time for a paradigm shift?.
        Child Dev Perspect. 2012; 6: 392-399
        • Padmanabhan A.
        • Luna B.
        Developmental imaging genetics: Linking dopamine function to adolescent behavior.
        Brain Cogn. 2014; 89: 27-38
        • Ernst M.
        • Fudge J.L.
        A developmental neurobiological model of motivated behavior: Anatomy, connectivity and ontogeny of the triadic nodes.
        Neurosci Biobehav Rev. 2009; 33: 367-382
        • Somerville L.H.
        • Jones R.M.
        • Casey B.J.
        A time of change: Behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues.
        Brain Cogn. 2010; 72: 124-133
        • Pfeifer J.H.
        • Allen N.B.
        Arrested development? Reconsidering dual-systems models of brain function in adolescence and disorders.
        Trends Cogn Sci. 2012; 16: 322-329
        • Shulman E.P.
        • Smith A.R.
        • Silva K.
        • Icenogle G.
        • Duell N.
        • Chein J.
        • et al.
        The dual systems model: Review, reappraisal, and reaffirmation.
        Dev Cogn Neurosci. 2016; 17: 103-117
        • DePoy L.M.
        • Noble B.
        • Allen A.G.
        • Gourley S.L.
        Developmentally divergent effects of Rho-kinase inhibition on cocaine- and BDNF-induced behavioral plasticity.
        Behav Brain Res. 2013; 243: 171-175
        • Huttenlocher P.R.
        Morphometric study of human cerebral cortex development.
        Neuropsychologia. 1990; 28: 517-527
        • Koss W.A.
        • Belden C.E.
        • Hristov A.D.
        • Juraska J.M.
        Dendritic remodeling in the adolescent medial prefrontal cortex and the basolateral amygdala of male and female rats.
        Synapse. 2014; 68: 61-72
        • Milstein J.A.
        • Elnabawi A.
        • Vinish M.
        • Swanson T.
        • Enos J.K.
        • Bailey A.M.
        • et al.
        Olanzapine treatment of adolescent rats causes enduring specific memory impairments and alters cortical development and function.
        PLoS One. 2013; 8e57308
        • Rakic P.
        • Bourgeois J.P.
        • Eckenhoff M.F.
        • Zecevic N.
        • Goldman-Rakic P.S.
        Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex.
        Science. 1986; 232: 232-235
        • Woo T.U.
        • Pucak M.L.
        • Kye C.H.
        • Matus C.V.
        • Lewis D.A.
        Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex.
        Neuroscience. 1997; 80: 1149-1158
        • Wong W.C.
        • Ford K.A.
        • Pagels N.E.
        • McCutcheon J.E.
        • Marinelli M.
        Adolescents are more vulnerable to cocaine addiction: Behavioral and electrophysiological evidence.
        J Neurosci. 2013; 33: 4913-4922
        • Doremus-Fitzwater T.L.
        • Varlinskaya E.I.
        • Spear L.P.
        Motivational systems in adolescence: Possible implications for age differences in substance abuse and other risk-taking behaviors.
        Brain Cogn. 2010; 72: 114-123
        • Brunell S.C.
        • Spear L.P.
        Effect of stress on the voluntary intake of a sweetened ethanol solution in pair-housed adolescent and adult rats.
        Alcohol Clin Exp Res. 2005; 29: 1641-1653
        • Doremus T.L.
        • Brunell S.C.
        • Rajendran P.
        • Spear L.P.
        Factors influencing elevated ethanol consumption in adolescent relative to adult rats.
        Alcohol Clin Exp Res. 2005; 29: 1796-1808
        • Ristuccia R.C.
        • Spear L.P.
        Adolescent and adult heart rate responses to self-administered ethanol.
        Alcohol Clin Exp Res. 2008; 32: 1807-1815
        • Serlin H.
        • Torregrossa M.M.
        Adolescent rats are resistant to forming ethanol seeking habits.
        Dev Cogn Neurosci. 2015; 16: 183-190
        • Anderson R.I.
        • Varlinskaya E.I.
        • Spear L.P.
        Ethanol-induced conditioned taste aversion in male sprague-dawley rats: Impact of age and stress.
        Alcohol Clin Exp Res. 2010; 34: 2106-2115
        • White A.M.
        • Truesdale M.C.
        • Bae J.G.
        • Ahmad S.
        • Wilson W.A.
        • Best P.J.
        • et al.
        Differential effects of ethanol on motor coordination in adolescent and adult rats.
        Pharmacol Biochem Behav. 2002; 73: 673-677
        • Kirschmann E.K.
        • Pollock M.W.
        • Nagarajan V.
        • Torregrossa M.M.
        Effects of adolescent cannabinoid self-administration in rats on addiction-related behaviors and working memory.
        Neuropsychopharmacology. 2017; 42: 989-1000
        • Madsen H.B.
        • Zbukvic I.C.
        • Luikinga S.J.
        • Lawrence A.J.
        • Kim J.H.
        Extinction of conditioned cues attenuates incubation of cocaine craving in adolescent and adult rats.
        Neurobiol Learn Mem. 2016; 143: 88-93
        • DePoy L.M.
        • Allen A.G.
        • Gourley S.L.
        Adolescent cocaine self-administration induces habit behavior in adulthood: Sex differences and structural consequences.
        Transl Psychiatry. 2016; 6: e875
        • Hinton E.A.
        • Wheeler M.G.
        • Gourley S.L.
        Early-life cocaine interferes with BDNF-mediated behavioral plasticity.
        Learn Mem. 2014; 21: 253-257
        • Randler C.
        Morningness-eveningness comparison in adolescents from different countries around the world.
        Chronobiol Int. 2008; 25: 1017-1028
        • Roenneberg T.
        • Kuehnle T.
        • Pramstaller P.P.
        • Ricken J.
        • Havel M.
        • Guth A.
        • et al.
        A marker for the end of adolescence.
        Curr Biol. 2004; 14: R1038-R1039
        • Carskadon M.A.
        Sleep in adolescents: The perfect storm.
        Pediatr Clin North Am. 2011; 58: 637-647
        • Crowley S.J.
        • Van Reen E.
        • LeBourgeois M.K.
        • Acebo C.
        • Tarokh L.
        • Seifer R.
        • et al.
        A longitudinal assessment of sleep timing, circadian phase, and phase angle of entrainment across human adolescence.
        PLoS One. 2014; 9e112199
        • Crowley S.J.
        • Cain S.W.
        • Burns A.C.
        • Acebo C.
        • Carskadon M.A.
        Increased sensitivity of the circadian system to light in early/mid-puberty.
        J Clin Endocrinol Metab. 2015; 100: 4067-4073
        • Cain N.
        • Gradisar M.
        Electronic media use and sleep in school-aged children and adolescents: A review.
        Sleep Med. 2010; 11: 735-742
        • Bartel K.A.
        • Gradisar M.
        • Williamson P.
        Protective and risk factors for adolescent sleep: A meta-analytic review.
        Sleep Med Rev. 2015; 21: 72-85
        • Mednick S.C.
        • Christakis N.A.
        • Fowler J.H.
        The spread of sleep loss influences drug use in adolescent social networks.
        PLoS One. 2010; 5: e9775
        • Paruthi S.
        • Brooks L.J.
        • D’Ambrosio C.
        • Hall W.A.
        • Kotagal S.
        • Lloyd R.M.
        • et al.
        Recommended amount of sleep for pediatric populations: A consensus statement of the American Academy of Sleep Medicine.
        J Clin Sleep Med. 2016; 12: 785-786
        • Basch C.E.
        • Basch C.H.
        • Ruggles K.V.
        • Rajan S.
        Prevalence of sleep duration on an average school night among 4 nationally representative successive samples of American high school students, 2007-2013.
        Prev Chronic Dis. 2014; 11: E216
        • Touitou Y.
        Adolescent sleep misalignment: A chronic jet lag and a matter of public health.
        J Physiol Paris. 2013; 107: 323-326
        • Crowley S.J.
        • Carskadon M.A.
        Modifications to weekend recovery sleep delay circadian phase in older adolescents.
        Chronobiol Int. 2010; 27: 1469-1492
        • Taylor S.R.
        • Doyle 3rd, F.J.
        • Petzold L.R.
        Oscillator model reduction preserving the phase response: Application to the circadian clock.
        Biophys J. 2008; 95: 1658-1673
        • Wittmann M.
        • Dinich J.
        • Merrow M.
        • Roenneberg T.
        Social jetlag: Misalignment of biological and social time.
        Chronobiol Int. 2006; 23: 497-509
        • Baker F.C.
        • Willoughby A.R.
        • de Zambotti M.
        • Franzen P.L.
        • Prouty D.
        • Javitz H.
        • et al.
        Age-related differences in sleep architecture and electroencephalogram in adolescents in the National Consortium on Alcohol and Neurodevelopment in Adolescence sample.
        Sleep. 2016; 39: 1429-1439
        • Feinberg I.
        • Campbell I.G.
        Sleep EEG changes during adolescence: An index of a fundamental brain reorganization.
        Brain Cogn. 2010; 72: 56-65
        • Saletin J.M.
        • van der Helm E.
        • Walker M.P.
        Structural brain correlates of human sleep oscillations.
        Neuroimage. 2013; 83: 658-668
        • Burke T.M.
        • Markwald R.R.
        • McHill A.W.
        • Chinoy E.D.
        • Snider J.A.
        • Bessman S.C.
        • et al.
        Effects of caffeine on the human circadian clock in vivo and in vitro.
        Sci Transl Med. 2015; 7: 305ra146
        • Drake C.
        • Roehrs T.
        • Shambroom J.
        • Roth T.
        Caffeine effects on sleep taken 0, 3, or 6 hours before going to bed.
        J Clin Sleep Med. 2013; 9: 1195-1200
        • McKnight-Eily L.R.
        • Eaton D.K.
        • Lowry R.
        • Croft J.B.
        • Presley-Cantrell L.
        • Perry G.S.
        Relationships between hours of sleep and health-risk behaviors in US adolescent students.
        Prev Med. 2011; 53: 271-273
        • Paiva T.
        • Gaspar T.
        • Matos M.G.
        Mutual relations between sleep deprivation, sleep stealers and risk behaviours in adolescents.
        Sleep Sci. 2016; 9: 7-13
        • Sivertsen B.
        • Skogen J.C.
        • Jakobsen R.
        • Hysing M.
        Sleep and use of alcohol and drug in adolescence. A large population-based study of Norwegian adolescents aged 16 to 19 years.
        Drug Alcohol Depend. 2015; 149: 180-186
        • Thomas A.G.
        • Monahan K.C.
        • Lukowski A.F.
        • Cauffman E.
        Sleep problems across development: A pathway to adolescent risk taking through working memory.
        J Youth Adolesc. 2015; 44: 447-464
        • Wheaton A.G.
        • Olsen E.O.
        • Miller G.F.
        • Croft J.B.
        Sleep duration and injury-related risk behaviors among high school students—United States, 2007-2013.
        MMWR Morb Mortal Wkly Rep. 2016; 65: 337-341
        • Pasch K.E.
        • Latimer L.A.
        • Cance J.D.
        • Moe S.G.
        • Lytle L.A.
        Longitudinal bi-directional relationships between sleep and youth substance use.
        J Youth Adolesc. 2012; 41: 1184-1196
        • Roberts R.E.
        • Roberts C.R.
        • Duong H.T.
        Sleepless in adolescence: prospective data on sleep deprivation, health and functioning.
        J Adolesc. 2009; 32: 1045-1057
        • Duffy J.F.
        • Dijk D.J.
        • Hall E.F.
        • Czeisler C.A.
        Relationship of endogenous circadian melatonin and temperature rhythms to self-reported preference for morning or evening activity in young and older people.
        J Investig Med. 1999; 47: 141-150
        • Mongrain V.
        • Carrier J.
        • Dumont M.
        Circadian and homeostatic sleep regulation in morningness-eveningness.
        J Sleep Res. 2006; 15: 162-166
        • Hasler B.P.
        • Soehner A.M.
        • Clark D.B.
        Sleep and circadian contributions to adolescent alcohol use disorder.
        Alcohol. 2015; 49: 377-387
        • Tavernier R.
        • Munroe M.
        • Willoughby T.
        Perceived morningness-eveningness predicts academic adjustment and substance use across university, but social jetlag is not to blame.
        Chronobiol Int. 2015; 32: 1233-1245
        • Hasler B.P.
        • Casement M.D.
        • Sitnick S.L.
        • Shaw D.S.
        • Forbes E.E.
        Eveningness among late adolescent males predicts neural reactivity to reward and alcohol dependence two years later.
        Behav Brain Res. 2017; 327: 112-120
        • O’Brien E.M.
        • Mindell J.A.
        Sleep and risk-taking behavior in adolescents.
        Behav Sleep Med. 2005; 3: 113-133
        • Pasch K.E.
        • Laska M.N.
        • Lytle L.A.
        • Moe S.G.
        Adolescent sleep, risk behaviors, and depressive symptoms: Are they linked?.
        Am J Health Behav. 2010; 34: 237-248
        • Hasler B.P.
        • Martin C.S.
        • Wood D.S.
        • Rosario B.
        • Clark D.B.
        A longitudinal study of insomnia and other sleep complaints in adolescents with and without alcohol use disorders.
        Alcohol Clin Exp Res. 2014; 38: 2225-2233
        • Hasler B.P.
        • Kirisci L.
        • Clark D.B.
        Restless sleep and variable sleep timing during late childhood accelerate the onset of alcohol and other drug involvement.
        J Stud Alcohol Drugs. 2016; 77: 649-655
        • Hasler B.P.
        • Germain A.
        • Nofzinger E.A.
        • Kupfer D.J.
        • Krafty R.T.
        • Rothenberger S.D.
        • et al.
        Chronotype and diurnal patterns of positive affect and affective neural circuitry in primary insomnia.
        J Sleep Res. 2012; 21: 515-526
        • Miller M.A.
        • Rothenberger S.D.
        • Hasler B.P.
        • Donofry S.D.
        • Wong P.M.
        • Manuck S.B.
        • et al.
        Chronotype predicts positive affect rhythms measured by ecological momentary assessment.
        Chronobiol Int. 2015; 32: 376-384
        • Murray G.
        • Nicholas C.L.
        • Kleiman J.
        • Dwyer R.
        • Carrington M.J.
        • Allen N.B.
        • et al.
        Nature’s clocks and human mood: The circadian system modulates reward motivation.
        Emotion. 2009; 9: 705-716
        • Adan A.
        • Natale V.
        • Caci H.
        • Prat G.
        Relationship between circadian typology and functional and dysfunctional impulsivity.
        Chronobiol Int. 2010; 27: 606-619
        • Caci H.
        • Robert P.
        • Boyer P.
        Novelty seekers and impulsive subjects are low in morningness.
        Eur Psychiatry. 2004; 19: 79-84
        • Drennan M.D.
        • Klauber M.R.
        • Kripke D.F.
        • Goyette L.M.
        The effects of depression and age on the Horne-Ostberg morningness-eveningness score.
        J Affect Disord. 1991; 23: 93-98
        • Hasler B.P.
        • Allen J.J.
        • Sbarra D.A.
        • Bootzin R.R.
        • Bernert R.A.
        Morningness-eveningness and depression: Preliminary evidence for the role of the behavioral activation system and positive affect.
        Psychiatry Res. 2010; 176: 166-173
        • Merikanto I.
        • Kronholm E.
        • Peltonen M.
        • Laatikainen T.
        • Vartiainen E.
        • Partonen T.
        Circadian preference links to depression in general adult population.
        J Affect Disord. 2015; 188: 143-148
        • Owens J.A.
        • Dearth-Wesley T.
        • Lewin D.
        • Gioia G.
        • Whitaker R.C.
        Self-regulation and sleep duration, sleepiness, and chronotype in adolescents.
        Pediatrics. 2016; 138e20161406
        • Tonetti L.
        • Adan A.
        • Caci H.
        • De Pascalis V.
        • Fabbri M.
        • Natale V.
        Morningness-eveningness preference and sensation seeking.
        Eur Psychiatry. 2010; 25: 111-115
        • Hasler B.P.
        • Sitnick S.L.
        • Shaw D.S.
        • Forbes E.E.
        An altered neural response to reward may contribute to alcohol problems among late adolescents with an evening chronotype.
        Psychiatry Res. 2013; 214: 357-364
        • Forbes E.E.
        • Dahl R.E.
        • Almeida J.R.
        • Ferrell R.E.
        • Nimgaonkar V.L.
        • Mansour H.
        • et al.
        PER2 rs2304672 polymorphism moderates circadian-relevant reward circuitry activity in adolescents.
        Biol Psychiatry. 2012; 71: 451-457
        • Hasler B.P.
        • Dahl R.E.
        • Holm S.M.
        • Jakubcak J.L.
        • Ryan N.D.
        • Silk J.S.
        • et al.
        Weekend-weekday advances in sleep timing are associated with altered reward-related brain function in healthy adolescents.
        Biol Psychol. 2012; 91: 334-341
        • Buysse D.J.
        • Nofzinger E.A.
        • Germain A.
        • Meltzer C.C.
        • Wood A.
        • Ombao H.
        • et al.
        Regional brain glucose metabolism during morning and evening wakefulness in humans: Preliminary findings.
        Sleep. 2004; 27: 1245-1254
        • Germain A.
        • Nofzinger E.A.
        • Meltzer C.C.
        • Wood A.
        • Kupfer D.J.
        • Moore R.Y.
        • et al.
        Diurnal variation in regional brain glucose metabolism in depression.
        Biol Psychiatry. 2007; 62: 438-445
        • Holm S.M.
        • Forbes E.E.
        • Ryan N.D.
        • Phillips M.L.
        • Tarr J.A.
        • Dahl R.E.
        Reward-related brain function and sleep in pre/early pubertal and mid/late pubertal adolescents.
        J Adolesc Health. 2009; 45: 326-334
        • Mullin B.C.
        • Phillips M.L.
        • Siegle G.J.
        • Buysse D.J.
        • Forbes E.E.
        • Franzen P.L.
        Sleep deprivation amplifies striatal activation to monetary reward.
        Psychol Med. 2013; 43: 2215-2225
        • Venkatraman V.
        • Chuah Y.M.
        • Huettel S.A.
        • Chee M.W.
        Sleep deprivation elevates expectation of gains and attenuates response to losses following risky decisions.
        Sleep. 2007; 30: 603-609
        • Gujar N.
        • Yoo S.S.
        • Hu P.
        • Walker M.P.
        Sleep deprivation amplifies reactivity of brain reward networks, biasing the appraisal of positive emotional experiences.
        J Neurosci. 2011; 31: 4466-4474
        • Telzer E.H.
        • Fuligni A.J.
        • Lieberman M.D.
        • Galvan A.
        The effects of poor quality sleep on brain function and risk taking in adolescence.
        Neuroimage. 2013; 71: 275-283
        • Thomas M.
        • Sing H.
        • Belenky G.
        • Holcomb H.
        • Mayberg H.
        • Dannals R.
        • et al.
        Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity.
        J Sleep Res. 2000; 9: 335-352
        • Franzen P.L.
        • Buysse D.J.
        • Forbes E.E.
        • Jones N.P.
        • Ohlsen T.J.
        • Germain A.
        Sleep restriction lowers striatal responses to the receipt of monetary reward in adolescents.
        Sleep. 2016; 39S: A93
        • Germain A.
        • McNamee R.
        • Khan H.
        • McMakin D.L.
        • Franzen P.
        • Forbes E.E.
        Sleep restriction amplifies neural response to reward cues compared to normal sleep and sleep deprivation.
        Sleep. 2016; 39S: A94
        • Owens J.
        • Wang G.
        • Lewin D.
        • Skora E.
        • Baylor A.
        Association between short sleep duration and risk behavior factors in middle school students.
        Sleep. 2017; 40
        • Staner L.
        Comorbidity of insomnia and depression.
        Sleep Med Rev. 2010; 14: 35-46
        • Forbes E.E.
        • Dahl R.E.
        Research review: Altered reward function in adolescent depression: what, when and how?.
        J Child Psychol Psychiatry. 2012; 53: 3-15
        • Volkow N.D.
        • Tomasi D.
        • Wang G.J.
        • Telang F.
        • Fowler J.S.
        • Logan J.
        • et al.
        Evidence that sleep deprivation downregulates dopamine D2R in ventral striatum in the human brain.
        J Neurosci. 2012; 32: 6711-6717
        • Linnet J.
        • Peterson E.
        • Doudet D.J.
        • Gjedde A.
        • Moller A.
        Dopamine release in ventral striatum of pathological gamblers losing money.
        Acta Psychiatr Scand. 2010; 122: 326-333
        • Dalley J.W.
        • Fryer T.D.
        • Brichard L.
        • Robinson E.S.
        • Theobald D.E.
        • Laane K.
        • et al.
        Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement.
        Science. 2007; 315: 1267-1270
        • Aalto J.
        • Kiianmaa K.
        REM-sleep deprivation-induced increase in ethanol intake: Role of brain monoaminergic neurons.
        Alcohol. 1986; 3: 377-381
        • Liu Z.
        • Wang Y.
        • Cai L.
        • Li Y.
        • Chen B.
        • Dong Y.
        • et al.
        Prefrontal cortex to accumbens projections in sleep regulation of reward.
        J Neurosci. 2016; 36: 7897-7910
        • McKenna B.S.
        • Dickinson D.L.
        • Orff H.J.
        • Drummond S.P.
        The effects of one night of sleep deprivation on known-risk and ambiguous-risk decisions.
        J Sleep Res. 2007; 16: 245-252
        • Puhl M.D.
        • Boisvert M.
        • Guan Z.
        • Fang J.
        • Grigson P.S.
        A novel model of chronic sleep restriction reveals an increase in the perceived incentive reward value of cocaine in high drug-taking rats.
        Pharmacol Biochem Behav. 2013; 109: 8-15
        • Steiner S.S.
        • Ellman S.J.
        Relation between REM sleep and intracranial self-stimulation.
        Science. 1972; 177: 1122-1124
        • Feil J.
        • Sheppard D.
        • Fitzgerald P.B.
        • Yucel M.
        • Lubman D.I.
        • Bradshaw J.L.
        Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control.
        Neurosci Biobehav Rev. 2010; 35: 248-275
        • Ferenczi E.A.
        • Zalocusky K.A.
        • Liston C.
        • Grosenick L.
        • Warden M.R.
        • Amatya D.
        • et al.
        Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior.
        Science. 2016; 351: aac9698
        • Jentsch J.D.
        • Taylor J.R.
        Impulsivity resulting from frontostriatal dysfunction in drug abuse: Implications for the control of behavior by reward-related stimuli.
        Psychopharmacology (Berl). 1999; 146: 373-390
        • Chen G.J.
        • Xiong Z.
        • Yan Z.
        Abeta impairs nicotinic regulation of inhibitory synaptic transmission and interneuron excitability in prefrontal cortex.
        Mol Neurodegener. 2013; 8: 3
        • LaLumiere R.T.
        • Smith K.C.
        • Kalivas P.W.
        Neural circuit competition in cocaine-seeking: Roles of the infralimbic cortex and nucleus accumbens shell.
        Eur J Neurosci. 2012; 35: 614-622
        • Peters J.
        • LaLumiere R.T.
        • Kalivas P.W.
        Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats.
        J Neurosci. 2008; 28: 6046-6053
        • Shen Z.
        • Huang P.
        • Qian W.
        • Wang C.
        • Yu H.
        • Yang Y.
        • et al.
        Severity of dependence modulates smokers’ functional connectivity in the reward circuit: A preliminary study.
        Psychopharmacology (Berl). 2016; 233: 2129-2137
        • Terraneo A.
        • Leggio L.
        • Saladini M.
        • Ermani M.
        • Bonci A.
        • Gallimberti L.
        Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study.
        Eur Neuropsychopharmacol. 2016; 26: 37-44
        • Hasler B.P.
        • Forbes E.E.
        • Franzen P.L.
        Time-of-day differences and short-term stability of the neural response to monetary reward: A pilot study.
        Psychiatry Res. 2014; 224: 22-27
        • Dominguez-Lopez S.
        • Howell R.D.
        • Lopez-Canul M.G.
        • Leyton M.
        • Gobbi G.
        Electrophysiological characterization of dopamine neuronal activity in the ventral tegmental area across the light-dark cycle.
        Synapse. 2014; 68: 454-467
        • Sidor M.M.
        • Spencer S.M.
        • Dzirasa K.
        • Parekh P.K.
        • Tye K.M.
        • Warden M.R.
        • et al.
        Daytime spikes in dopaminergic activity drive rapid mood-cycling in mice.
        Mol Psychiatry. 2015; 20: 1406-1419
        • Zhao H.
        • Rusak B.
        Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro.
        Neuroscience. 2005; 132: 519-528
        • Castaneda T.R.
        • de Prado B.M.
        • Prieto D.
        • Mora F.
        Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: Modulation by light.
        J Pineal Res. 2004; 36: 177-185
        • Webb I.C.
        • Lehman M.N.
        • Coolen L.M.
        Diurnal and circadian regulation of reward-related neurophysiology and behavior.
        Physiol Behav. 2015; 143: 58-69
        • Ferris M.J.
        • Espana R.A.
        • Locke J.L.
        • Konstantopoulos J.K.
        • Rose J.H.
        • Chen R.
        • et al.
        Dopamine transporters govern diurnal variation in extracellular dopamine tone.
        Proc Natl Acad Sci U S A. 2014; 111: E2751-E2759
        • Muto V.
        • Jaspar M.
        • Meyer C.
        • Kusse C.
        • Chellappa S.L.
        • Degueldre C.
        • et al.
        Local modulation of human brain responses by circadian rhythmicity and sleep debt.
        Science. 2016; 353: 687-690
        • Sesack S.R.
        • Grace A.A.
        Cortico-basal ganglia reward network: Microcircuitry.
        Neuropsychopharmacology. 2010; 35: 27-47
        • Salgado S.
        • Kaplitt M.G.
        The nucleus accumbens: A comprehensive review.
        Stereotact Funct Neurosurg. 2015; 93: 75-93
        • Hasler B.P.
        • Clark D.B.
        Circadian misalignment, reward-related brain function, and adolescent alcohol involvement.
        Alcohol Clin Exp Res. 2013; 37: 558-565
        • Bildt C.
        • Michelsen H.
        Gender differences in the effects from working conditions on mental health: A 4-year follow-up.
        Int Arch Occup Environ Health. 2002; 75: 252-258
        • Logan R.W.
        • Williams 3rd, W.P.
        • McClung C.A.
        Circadian rhythms and addiction: Mechanistic insights and future directions.
        Behav Neurosci. 2014; 128: 387-412
        • Sorg B.A.
        • Stark G.
        • Sergeeva A.
        • Jansen H.T.
        Photoperiodic suppression of drug reinstatement.
        Neuroscience. 2011; 176: 284-295
        • Luo A.H.
        • Aston-Jones G.
        Circuit projection from suprachiasmatic nucleus to ventral tegmental area: A novel circadian output pathway.
        Eur J Neurosci. 2009; 29: 748-760
        • Mendoza J.
        • Challet E.
        Circadian insights into dopamine mechanisms.
        Neuroscience. 2014; 282: 230-242
        • Hattar S.
        • Kumar M.
        • Park A.
        • Tong P.
        • Tung J.
        • Yau K.W.
        • et al.
        Central projections of melanopsin-expressing retinal ganglion cells in the mouse.
        J Comp Neurol. 2006; 497: 326-349
        • LeGates T.A.
        • Fernandez D.C.
        • Hattar S.
        Light as a central modulator of circadian rhythms, sleep and affect.
        Nat Rev Neurosci. 2014; 15: 443-454
        • Bedrosian T.A.
        • Nelson R.J.
        Timing of light exposure affects mood and brain circuits.
        Transl Psychiatry. 2017; 7e1017
        • Zisapel N.
        Melatonin-dopamine interactions: From basic neurochemistry to a clinical setting.
        Cell Mol Neurobiol. 2001; 21: 605-616
        • Tyhon A.
        • Lakaye B.
        • Adamantidis A.
        • Tirelli E.
        Amphetamine- and cocaine-induced conditioned place preference and concomitant psychomotor sensitization in mice with genetically inactivated melanin-concentrating hormone MCH(1) receptor.
        Eur J Pharmacol. 2008; 599: 72-80
        • Shumay E.
        • Fowler J.S.
        • Wang G.J.
        • Logan J.
        • Alia-Klein N.
        • Goldstein R.Z.
        • et al.
        Repeat variation in the human PER2 gene as a new genetic marker associated with cocaine addiction and brain dopamine D2 receptor availability.
        Transl Psychiatry. 2012; 2: e86
        • Volkow N.D.
        • Wang G.J.
        • Fowler J.S.
        • Tomasi D.
        • Telang F.
        Addiction: Beyond dopamine reward circuitry.
        Proc Natl Acad Sci U S A. 2011; 108: 15037-15042
        • Blomeyer D.
        • Buchmann A.F.
        • Lascorz J.
        • Zimmermann U.S.
        • Esser G.
        • Desrivieres S.
        • et al.
        Association of PER2 genotype and stressful life events with alcohol drinking in young adults.
        PLoS One. 2013; 8e59136
        • Comasco E.
        • Nordquist N.
        • Gokturk C.
        • Aslund C.
        • Hallman J.
        • Oreland L.
        • et al.
        The clock gene PER2 and sleep problems: Association with alcohol consumption among Swedish adolescents.
        Ups J Med Sci. 2010; 115: 41-48
        • Dong L.
        • Bilbao A.
        • Laucht M.
        • Henriksson R.
        • Yakovleva T.
        • Ridinger M.
        • et al.
        Effects of the circadian rhythm gene period 1 (per1) on psychosocial stress-induced alcohol drinking.
        Am J Psychiatry. 2011; 168: 1090-1098
        • Kovanen L.
        • Saarikoski S.T.
        • Haukka J.
        • Pirkola S.
        • Aromaa A.
        • Lonnqvist J.
        • et al.
        Circadian clock gene polymorphisms in alcohol use disorders and alcohol consumption.
        Alcohol Alcohol. 2010; 45: 303-311
        • Sjöholm L.K.
        • Kovanen L.
        • Saarikoski S.T.
        • Schalling M.
        • Lavebratt C.
        • Partonen T.
        CLOCK is suggested to associate with comorbid alcohol use and depressive disorders.
        J Circadian Rhythms. 2010; 8: 1
        • Ozburn A.R.
        • Purohit K.
        • Parekh P.K.
        • Kaplan G.N.
        • Falcon E.
        • Mukherjee S.
        • et al.
        Functional implications of the CLOCK 3111T/C single-nucleotide polymorphism.
        Front Psychiatry. 2016; 7: 67
        • Gamsby J.J.
        • Templeton E.L.
        • Bonvini L.A.
        • Wang W.
        • Loros J.J.
        • Dunlap J.C.
        • et al.
        The circadian Per1 and Per2 genes influence alcohol intake, reinforcement, and blood alcohol levels.
        Behav Brain Res. 2013; 249: 15-21
        • Spanagel R.
        • Pendyala G.
        • Abarca C.
        • Zghoul T.
        • Sanchis-Segura C.
        • Magnone M.C.
        • et al.
        The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption.
        Nat Med. 2005; 11: 35-42
        • Spencer S.
        • Falcon E.
        • Kumar J.
        • Krishnan V.
        • Mukherjee S.
        • Birnbaum S.G.
        • et al.
        Circadian genes Period 1 and Period 2 in the nucleus accumbens regulate anxiety-related behavior.
        Eur J Neurosci. 2013; 37: 242-250
        • Ozburn A.R.
        • Falcon E.
        • Twaddle A.
        • Nugent A.L.
        • Gillman A.G.
        • Spencer S.M.
        • et al.
        Direct regulation of diurnal Drd3 expression and cocaine reward by NPAS2.
        Biol Psychiatry. 2015; 77: 425-433
        • McClung C.A.
        • Sidiropoulou K.
        • Vitaterna M.
        • Takahashi J.S.
        • White F.J.
        • Cooper D.C.
        • et al.
        Regulation of dopaminergic transmission and cocaine reward by the Clock gene.
        Proc Natl Acad Sci U S A. 2005; 102: 9377-9381
        • Parekh P.K.
        • Becker-Krail D.
        • Sundaravelu P.
        • Ishigaki S.
        • Okado H.
        • Sobue G.
        • et al.
        Altered GluA1 (Gria1) function and accumbal synaptic plasticity in the ClockDelta19 model of bipolar mania.
        Biol Psychiatry. 2017; ([published online ahead of print Jun 27])
        • Wirz-Justice A.
        Chronobiology and mood disorders.
        Dialogues Clin Neurosci. 2003; 5: 315-325
        • Frank E.
        Interpersonal and social rhythm therapy: A means of improving depression and preventing relapse in bipolar disorder.
        J Clin Psychol. 2007; 63: 463-473
        • Bartlett D.J.
        • Biggs S.N.
        • Armstrong S.M.
        Circadian rhythm disorders among adolescents: Assessment and treatment options.
        Med J Aust. 2013; 199: S16-S20
        • Niederhofer H.
        • von Klitzing K.
        Bright light treatment as mono-therapy of non-seasonal depression for 28 adolescents.
        Int J Psychiatry Clin Pract. 2012; 16: 233-237

      Linked Article