Advertisement

Replication in Imaging Genetics: The Case of Threat-Related Amygdala Reactivity

Published:November 15, 2017DOI:https://doi.org/10.1016/j.biopsych.2017.11.010

      Abstract

      Background

      Low replication rates are a concern in most, if not all, scientific disciplines. In psychiatric genetics specifically, targeting intermediate brain phenotypes, which are more closely associated with putative genetic effects, was touted as a strategy leading to increased power and replicability. In the current study, we attempted to replicate previously published associations between single nucleotide polymorphisms and threat-related amygdala reactivity, which represents a robust brain phenotype not only implicated in the pathophysiology of multiple disorders, but also used as a biomarker of future risk.

      Methods

      We conducted a literature search for published associations between single nucleotide polymorphisms and threat-related amygdala reactivity and found 37 unique findings. Our replication sample consisted of 1117 young adult volunteers (629 women, mean age 19.72 ± 1.25 years) for whom both genetic and functional magnetic resonance imaging data were available.

      Results

      Of the 37 unique associations identified, only three replicated as previously reported. When exploratory analyses were conducted with different model parameters compared to the original findings, significant associations were identified for 28 additional studies: eight of these were for a different contrast/laterality; five for a different gender and/or race/ethnicity; and 15 in the opposite direction and for a different contrast, laterality, gender, and/or race/ethnicity. No significant associations, regardless of model parameters, were detected for six studies. Notably, none of the significant associations survived correction for multiple comparisons.

      Conclusions

      We discuss these patterns of poor replication with regard to the general strategy of targeting intermediate brain phenotypes in genetic association studies and the growing importance of advancing the replicability of imaging genetics findings.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Baker M.
        1,500 scientists lift the lid on reproducibility.
        Nature. 2016; 533: 452-454
        • Open Science Collaboration
        PSYCHOLOGY. Estimating the reproducibility of psychological science.
        Science. 2015; 349: aac4716
        • Prinz F.
        • Schlange T.
        • Asadullah K.
        Believe it or not: How much can we rely on published data on potential drug targets?.
        Nat Rev Drug Discov. 2011; 10: 712
        • Luo X.
        • Stavrakakis N.
        • Penninx B.W.
        • Bosker F.J.
        • Nolen W.A.
        • Boomsma D.I.
        • et al.
        Does refining the phenotype improve replication rates? A review and replication of candidate gene studies on Major Depressive Disorder and Chronic Major Depressive Disorder.
        Am J Med Genet B Neuropsychiatr Genet. 2016; 171: 215-236
        • Prisciandaro J.
        • Roberts J.
        A comparison of the predictive abilities of dimensional and categorical models of unipolar depression in the National Comorbidity Survey.
        Psychol Med. 2009; 39: 1087-1096
        • Ripke S.
        • Wray N.R.
        • Lewis C.M.
        • Hamilton S.P.
        • Weissman M.M.
        • Breen G.
        • et al.
        A mega-analysis of genome-wide association studies for major depressive disorder.
        Mol Psychiatry. 2013; 18: 497-511
        • Hariri A.R.
        The neurobiology of individual differences in complex behavioral traits.
        Annu Rev Neurosci. 2009; 32: 225
        • Hariri A.R.
        • Weinberger D.R.
        Imaging genomics.
        Br Med Bull. 2003; 65: 259-270
        • Meyer-Lindenberg A.
        • Weinberger D.R.
        Intermediate phenotypes and genetic mechanisms of psychiatric disorders.
        Nat Rev Neurosci. 2006; 7: 818-827
        • Munafò M.R.
        • Brown S.M.
        • Hariri A.R.
        Serotonin transporter (5-HTTLPR) genotype and amygdala activation: A meta-analysis.
        Biol Psychiatry. 2008; 63: 852-857
        • Bastiaansen J.A.
        • Servaas M.N.
        • Marsman J.B.C.
        • Ormel J.
        • Nolte I.M.
        • Riese H.
        • et al.
        Filling the gap: Relationship between the serotonin-transporter-linked polymorphic region and amygdala activation.
        Psychol Sci. 2014; 25: 2058-2066
        • Murphy S.
        • Norbury R.
        • Godlewska B.
        • Cowen P.
        • Mannie Z.
        • Harmer C.
        • et al.
        The effect of the serotonin transporter polymorphism (5-HTTLPR) on amygdala function: A meta-analysis.
        Mol Psychiatry. 2013; 18: 512-520
        • Thompson P.M.
        • Stein J.L.
        • Medland S.E.
        • Hibar D.P.
        • Vasquez A.A.
        • Renteria M.E.
        • et al.
        The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data.
        Brain Imaging Behav. 2014; 8: 153-182
        • Sudlow C.
        • Gallacher J.
        • Allen N.
        • Beral V.
        • Burton P.
        • Danesh J.
        • et al.
        UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age.
        PLoS Med. 2015; 12: e1001779
        • Holmes A.J.
        • Hollinshead M.O.
        • O’Keefe T.M.
        • Petrov V.I.
        • Fariello G.R.
        • Wald L.L.
        • et al.
        Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures.
        Sci Data. 2015; 2: 150031
        • Hariri A.
        Looking Inside the Disordered Brain.
        Sinauer, Sunderland, MA2015
        • Mattson W.I.
        • Hyde L.W.
        • Shaw D.S.
        • Forbes E.E.
        • Monk C.S.
        Clinical neuroprediction: Amygdala reactivity predicts depressive symptoms 2 years later.
        Soc Cogn Affect Neurosci. 2016; 11: 892-898
        • Swartz J.R.
        • Knodt A.R.
        • Radtke S.R.
        • Hariri A.R.
        A neural biomarker of psychological vulnerability to future life stress.
        Neuron. 2015; 85: 505-511
        • McLaughlin K.A.
        • Busso D.S.
        • Duys A.
        • Green J.G.
        • Alves S.
        • Way M.
        • et al.
        Amygdala response to negative stimuli predicts PTSD symptom onset following a terrorist attack.
        Depress Anxiety. 2014; 31: 834-842
        • Admon R.
        • Lubin G.
        • Stern O.
        • Rosenberg K.
        • Sela L.
        • Ben-Ami H.
        • et al.
        Human vulnerability to stress depends on amygdala’s predisposition and hippocampal plasticity.
        Proc Natl Acad Sci U S A. 2009; 106: 14120-14125
        • Hariri A.R.
        • Holmes A.
        Finding translation in stress research.
        Nat Neurosci. 2015; 18: 1347-1352
        • Swartz J.R.
        • Prather A.A.
        • Di Iorio C.R.
        • Bogdan R.
        • Hariri A.R.
        A functional interleukin-18 haplotype predicts depression and anxiety through increased threat-related amygdala reactivity in women but not men.
        Neuropsychopharmacology. 2017; 42: 419-426
        • Swartz J.R.
        • Waller R.
        • Bogdan R.
        • Knodt A.R.
        • Sabhlok A.
        • Hyde L.W.
        • Hariri A.R.
        A common polymorphism in a Williams syndrome gene predicts amygdala reactivity and extraversion in healthy adults.
        Biol Psychiatry. 2017; 81: 203-210
        • Nikolova Y.S.
        • Iruku S.P.
        • Lin C.-W.
        • Conley E.D.
        • Puralewski R.
        • French B.
        • et al.
        FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk.
        Front Psychol. 2015; 6: 1377
        • Nelson E.C.
        • Agrawal A.
        • Heath A.C.
        • Bogdan R.
        • Sherva R.
        • Zhang B.
        • et al.
        Evidence of CNIH3 involvement in opioid dependence.
        Mol Psychiatry. 2016; 21: 608
        • Waller R.
        • Corral-Frías N.S.
        • Vannucci B.
        • Bogdan R.
        • Knodt A.R.
        • Hariri A.R.
        • et al.
        An oxytocin receptor polymorphism predicts amygdala reactivity and antisocial behavior in men.
        Soc Cogn Affect Neurosci. 2016; 11: 1218-1226
        • Lohoff F.W.
        • Hodge R.
        • Narasimhan S.
        • Nall A.
        • Ferraro T.N.
        • Mickey B.J.
        • et al.
        Functional genetic variants in the vesicular monoamine transporter 1 modulate emotion processing.
        Mol Psychiatry. 2014; 19: 129-139
        • Arloth J.
        • Bogdan R.
        • Weber P.
        • Frishman G.
        • Menke A.
        • Wagner K.V.
        • et al.
        Genetic differences in the immediate transcriptome response to stress predict risk-related brain function and psychiatric disorders.
        Neuron. 2015; 86: 1189-1202
        • Savage J.E.
        • Sawyers C.
        • Roberson-Nay R.
        • Hettema J.M.
        The genetics of anxiety-related negative valence system traits.
        Am J Medical Genet B Neuropsychiatr Genet. 2016; 174: 156-177
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • Thomas L.
        • Ferreira M.A.
        • Bender D.
        • et al.
        PLINK: A tool set for whole-genome association and population-based linkage analyses.
        Am J Hum Genet. 2007; 81: 559-575
        • Do C.B.
        • Tung J.Y.
        • Dorfman E.
        • Kiefer A.K.
        • Drabant E.M.
        • Francke U.
        • et al.
        Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease.
        PLoS Genet. 2011; 7: e1002141
        • Eriksson N.
        • Macpherson J.M.
        • Tung J.Y.
        • Hon L.S.
        • Naughton B.
        • Saxonov S.
        • et al.
        Web-based, participant-driven studies yield novel genetic associations for common traits.
        PLoS Genet. 2010; 6: e1000993
        • Tung J.Y.
        • Do C.B.
        • Hinds D.A.
        • Kiefer A.K.
        • Macpherson J.M.
        • Chowdry A.B.
        • et al.
        Efficient replication of over 180 genetic associations with self-reported medical data.
        PLoS One. 2011; 6: e23473
        • Zhou Z.
        • Zhu G.
        • Hariri A.R.
        • Enoch M.-A.
        • Scott D.
        • Sinha R.
        • et al.
        Genetic variation in human NPY expression affects stress response and emotion.
        Nature. 2008; 452: 997-1001
        • Hariri A.R.
        • Mattay V.S.
        • Tessitore A.
        • Kolachana B.
        • Fera F.
        • Goldman D.
        • et al.
        Serotonin transporter genetic variation and the response of the human amygdala.
        Science. 2002; 297: 400-403
        • Muthén L.K.
        • Muthén B.O.
        Mplus User’s Guide.
        Muthén & Muthén, Los Angeles, CA2007
        • Baune B.T.
        • Dannlowski U.
        • Domschke K.
        • Janssen D.G.
        • Jordan M.A.
        • Ohrmann P.
        • et al.
        The interleukin 1 beta (IL1B) gene is associated with failure to achieve remission and impaired emotion processing in major depression.
        Biol Psychiatry. 2010; 67: 543-549
        • Weber H.
        • Richter J.
        • Straube B.
        • Lueken U.
        • Domschke K.
        • Schartner C.
        • et al.
        Allelic variation in CRHR1 predisposes to panic disorder: Evidence for biased fear processing.
        Mol Psychiatry. 2016; 21: 813
        • Domschke K.
        • Dannlowski U.
        • Hohoff C.
        • Ohrmann P.
        • Bauer J.
        • Kugel H.
        • et al.
        Neuropeptide Y (NPY) gene: Impact on emotional processing and treatment response in anxious depression.
        Eur Neuropsychopharmacol. 2010; 20: 301-309
        • Plomin R.
        • DeFries J.C.
        • Knopik V.S.
        • Neiderhiser J.M.
        Top 10 replicated findings from behavioral genetics.
        Perspect Psychol Sci. 2016; 11: 3-23
        • Munafò M.R.
        • Flint J.
        The genetic architecture of psychophysiological phenotypes.
        Psychophysiology. 2014; 51: 1331-1332
      1. Elliott L, Sharp K, Alfaro-Almagro F, Douaud G, Miller K, Marchini J, et al. (2017): The genetic basis of human brain structure and function: 1,262 genome-wide associations found from 3,144 GWAS of multimodal brain imaging phenotypes from 9,707 UK Biobank participants [published online ahead of print Aug 25]. bioRxiv.

        • Derntl B.
        • Habel U.
        • Robinson S.
        • Windischberger C.
        • Kryspin-Exner I.
        • Gur R.C.
        • et al.
        Amygdala activation during recognition of emotions in a foreign ethnic group is associated with duration of stay.
        Soc Neurosci. 2009; 4: 294-307
        • Casey B.
        • Glatt C.E.
        • Tottenham N.
        • Soliman F.
        • Bath K.
        • Amso D.
        • et al.
        Brain-derived neurotrophic factor as a model system for examining gene by environment interactions across development.
        Neuroscience. 2009; 164: 108-120
        • Blakemore S.J.
        • Choudhury S.
        Development of the adolescent brain: implications for executive function and social cognition.
        J Child Psychol Psychiatry. 2006; 47: 296-312
        • Mirowska-Guzel D.
        • Mach A.
        • Gromadzka G.
        • Czlonkowski A.
        • Czlonkowska A.
        BDNF A196G and C270T gene polymorphisms and susceptibility to multiple sclerosis in the polish population. Gender differences.
        J Neuroimmunol. 2008; 193: 170-172
        • Shalev I.
        • Lerer E.
        • Israel S.
        • Uzefovsky F.
        • Gritsenko I.
        • Mankuta D.
        • et al.
        BDNF Val66Met polymorphism is associated with HPA axis reactivity to psychological stress characterized by genotype and gender interactions.
        Psychoneuroendocrinology. 2009; 34: 382-388
        • Cosgrove K.P.
        • Mazure C.M.
        • Staley J.K.
        Evolving knowledge of sex differences in brain structure, function, and chemistry.
        Biol Psychiatry. 2007; 62: 847-855
        • Birn R.M.
        • Molloy E.K.
        • Patriat R.
        • Parker T.
        • Meier T.B.
        • Kirk G.R.
        • et al.
        The effect of scan length on the reliability of resting-state fMRI connectivity estimates.
        Neuroimage. 2013; 83: 550-558
        • Harrison B.J.
        • Pujol J.
        • Ortiz H.
        • Fornito A.
        • Pantelis C.
        • Yücel M.
        Modulation of brain resting-state networks by sad mood induction.
        PLoS One. 2008; 3: e1794
        • Willeumier K.C.
        • Taylor D.V.
        • Amen D.G.
        Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults.
        Obesity. 2011; 19: 1095-1097
        • Perthen J.E.
        • Lansing A.E.
        • Liau J.
        • Liu T.T.
        • Buxton R.B.
        Caffeine-induced uncoupling of cerebral blood flow and oxygen metabolism: a calibrated BOLD fMRI study.
        Neuroimage. 2008; 40: 237-247
        • Karama S.
        • Ducharme S.
        • Corley J.
        • Chouinard-Decorte F.
        • Starr J.M.
        • Wardlaw J.M.
        • et al.
        Cigarette smoking and thinning of the brain’s cortex.
        Mol Psychiatry. 2015; 20: 778
        • Luchtmann M.
        • Jachau K.
        • Tempelmann C.
        • Bernarding J.
        Alcohol induced region-dependent alterations of hemodynamic response: Implications for the statistical interpretation of pharmacological fMRI studies.
        Exp Brain Res. 2010; 204: 1-10
        • Hamilton C.M.
        • Strader L.C.
        • Pratt J.G.
        • Maiese D.
        • Hendershot T.
        • Kwok R.K.
        • et al.
        The PhenX Toolkit: Get the most from your measures.
        Am J Epidemiol. 2011; 174: 253-260
        • Bogdan R.
        • Hyde L.
        • Hariri A.
        A neurogenetics approach to understanding individual differences in brain, behavior, and risk for psychopathology.
        Mol Psychiatry. 2013; 18: 288-299
        • Whalley H.
        • Papmeyer M.
        • Sprooten E.
        • Romaniuk L.
        • Blackwood D.
        • Glahn D.
        • et al.
        The influence of polygenic risk for bipolar disorder on neural activation assessed using fMRI.
        Transl Psychiatry. 2012; 2: e130
        • Holmes A.J.
        • Lee P.H.
        • Hollinshead M.O.
        • Bakst L.
        • Roffman J.L.
        • Smoller J.W.
        • et al.
        Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk.
        J Neurosci. 2012; 32: 18087-18100
        • Duncan L.E.
        • Keller M.C.
        A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry.
        Am J Psychiatry. 2011; 168: 1041-1049
        • Eaves L.
        • Verhulst B.
        Problems and pit-falls in testing for G × E and epistasis in candidate gene studies of human behavior.
        Behav Genet. 2014; 44: 578-590
        • Keller M.C.
        Gene × environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution.
        Biol Psychiatry. 2014; 75: 18-24
        • Bogdan R.
        • Salmeron B.
        • Carey C.
        • Agrawal A.
        • Calhoun V.
        • Garavan H.
        • et al.
        Imaging genetics and genomics in psychiatry: A critical review of progress and potential.
        Biol Psychiatry. 2017; 82: 165-175
        • Carter C.S.
        • Bearden C.E.
        • Bullmore E.T.
        • Geschwind D.H.
        • Glahn D.C.
        • Gur R.E.
        • et al.
        Enhancing the informativeness and replicability of imaging genomics studies.
        Biol Psychiatry. 2017; 82: 157-164
        • Stevens J.S.
        • Almli L.M.
        • Fani N.
        • Gutman D.A.
        • Bradley B.
        • Norrholm S.D.
        • et al.
        PACAP receptor gene polymorphism impacts fear responses in the amygdala and hippocampus.
        Proc Natl Acad Sci U S A. 2014; 111: 3158-3163
        • Haram M.
        • Bettella F.
        • Brandt C.L.
        • Quintana D.S.
        • Nerhus M.
        • Bjella T.
        • et al.
        Contribution of oxytocin receptor polymorphisms to amygdala activation in schizophrenia spectrum disorders.
        BJPsych Open. 2016; 2: 353-358
        • Viviani R.
        Unbiased ROI selection in neuroimaging studies of individual differences.
        Neuroimage. 2010; 50: 184-189
        • Arrowsmith J.
        Trial watch: Phase II failures: 2008–2010.
        Nat Rev Drug Discov. 2011; 10: 328-329
        • Chang H.
        • Hoshina N.
        • Zhang C.
        • Ma Y.
        • Cao H.
        • Wang Y.
        • et al.
        The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders.
        Mol Psychiatry. 2018; 23: 400-412
        • Fakra E.
        • Hyde L.W.
        • Gorka A.
        • Fisher P.M.
        • Munoz K.E.
        • Kimak M.
        • et al.
        Effects of HTR1A C (− 1019) G on amygdala reactivity and trait anxiety.
        Arch Gen Psychiatry. 2009; 66: 33-40
        • Dannlowski U.
        • Kugel H.
        • Franke F.
        • Stuhrmann A.
        • Hohoff C.
        • Zwanzger P.
        • et al.
        Neuropeptide-S (NPS) receptor genotype modulates basolateral amygdala responsiveness to aversive stimuli.
        Neuropsychopharmacology. 2011; 36: 1879-1885
        • Smoller J.W.
        • Paulus M.P.
        • Fagerness J.A.
        • Purcell S.
        • Yamaki L.H.
        • Hirshfeld-Becker D.
        • et al.
        Influence of RGS2 on anxiety-related temperament, personality, and brain function.
        Arch Gen Psychiatry. 2008; 65: 298-308
        • Smoller J.W.
        • Gallagher P.J.
        • Duncan L.E.
        • McGrath L.M.
        • Haddad S.A.
        • Holmes A.J.
        • et al.
        The human ortholog of acid-sensing ion channel gene ASIC1a is associated with panic disorder and amygdala structure and function.
        Biol Psychiatry. 2014; 76: 902-910
        • Hariri A.R.
        • Gorka A.
        • Hyde L.W.
        • Kimak M.
        • Halder I.
        • Ducci F.
        • et al.
        Divergent effects of genetic variation in endocannabinoid signaling on human threat-and reward-related brain function.
        Biol Psychiatry. 2009; 66: 9-16
        • Bogdan R.
        • Williamson D.E.
        • Hariri A.R.
        Mineralocorticoid receptor Iso/Val (rs5522) genotype moderates the association between previous childhood emotional neglect and amygdala reactivity.
        Am J Psychiatry. 2012; 169: 515-522
        • Neumann S.A.
        • Brown S.M.
        • Ferrell R.E.
        • Flory J.D.
        • Manuck S.B.
        • Hariri A.R.
        Human choline transporter gene variation is associated with corticolimbic reactivity and autonomic-cholinergic function.
        Biol Psychiatry. 2006; 60: 1155-1162
        • Holz N.E.
        • Buchmann A.F.
        • Boecker R.
        • Blomeyer D.
        • Baumeister S.
        • Wolf I.
        • et al.
        Role of FKBP5 in emotion processing: Results on amygdala activity, connectivity and volume.
        Brain Struct Funct. 2015; 220: 1355-1368
        • Tost H.
        • Kolachana B.
        • Hakimi S.
        • Lemaitre H.
        • Verchinski B.A.
        • Mattay V.S.
        • et al.
        A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function.
        Proc Natl Acad Sci U S A. 2010; 107: 13936-13941
        • Redlich R.
        • Stacey D.
        • Opel N.
        • Grotegerd D.
        • Dohm K.
        • Kugel H.
        • et al.
        Evidence of an IFN-γ by early life stress interaction in the regulation of amygdala reactivity to emotional stimuli.
        Psychoneuroendocrinology. 2015; 62: 166-173
        • Joeyen-Waldorf J.
        • Nikolova Y.S.
        • Edgar N.
        • Walsh C.
        • Kota R.
        • Lewis D.A.
        • et al.
        Adenylate cyclase 7 is implicated in the biology of depression and modulation of affective neural circuitry.
        Biol Psychiatry. 2012; 71: 627-632
        • Tesli M.
        • Skatun K.C.
        • Ousdal O.T.
        • Brown A.A.
        • Thoresen C.
        • Agartz I.
        • et al.
        CACNA1C risk variant and amygdala activity in bipolar disorder, schizophrenia and healthy controls.
        PLoS One. 2013; 8: e56970
        • Ousdal O.T.
        • Brown A.A.
        • Jensen J.
        • Nakstad P.H.
        • Melle I.
        • Agartz I.
        • et al.
        Associations between variants near a monoaminergic pathways gene (PHOX2B) and amygdala reactivity: A genome-wide functional imaging study.
        Twin Res Hum Genet. 2012; 15: 273-285
        • Blasi G.
        • Bianco L.L.
        • Taurisano P.
        • Gelao B.
        • Romano R.
        • Fazio L.
        • et al.
        Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans.
        J Neurosci. 2009; 29: 14812-14819
        • Kilpatrick L.A.
        • Labus J.S.
        • Coveleskie K.
        • Hammer C.
        • Rappold G.
        • Tillisch K.
        • et al.
        The HTR3A polymorphism c.-42C> T is associated with amygdala responsiveness in patients with irritable bowel syndrome.
        Gastroenterology. 2011; 140: 1943-1951
        • Lee B.T.
        • Lee H.Y.
        • Han C.
        • Pae C.U.
        • Tae W.S.
        • Lee M.S.
        • et al.
        DRD2/ANKK1 TaqI A polymorphism affects corticostriatal activity in response to negative affective facial stimuli.
        Behav Brain Res. 2011; 223: 36-41
        • Canli T.
        • Congdon E.
        • Gutknecht L.
        • Constable R.
        • Lesch K.
        Amygdala responsiveness is modulated by tryptophan hydroxylase-2 gene variation.
        J Neural Transm. 2005; 112: 1479-1485
        • Woudstra S.
        • Bochdanovits Z.
        • Van Tol M.
        • Veltman D.
        • Zitman F.
        • Van Buchem M.
        • et al.
        Piccolo genotype modulates neural correlates of emotion processing but not executive functioning.
        Transl Psychiatry. 2012; 2: e99
        • Wellman C.L.
        • Camp M.
        • Jones V.M.
        • MacPherson K.P.
        • Ihne J.
        • Fitzgerald P.
        • et al.
        Convergent effects of mouse Pet-1 deletion and human PET-1 variation on amygdala fear and threat processing.
        Exp Neurol. 2013; 250: 260-269
        • Marusak H.A.
        • Furman D.J.
        • Kuruvadi N.
        • Shattuck D.W.
        • Joshi S.H.
        • Joshi A.A.
        • et al.
        Amygdala responses to salient social cues vary with oxytocin receptor genotype in youth.
        Neuropsychologia. 2015; 79: 1-9
        • Liu X.
        • Akula N.
        • Skup M.
        • Brotman M.A.
        • Leibenluft E.
        • McMahon F.J.
        A genome-wide association study of amygdala activation in youths with and without bipolar disorder.
        J Am Acad Child Adolesc Psychiatry. 2010; 49: 33-41
        • Domschke K.
        • Baune B.T.
        • Havlik L.
        • Stuhrmann A.
        • Suslow T.
        • Kugel H.
        • et al.
        Catechol-O-methyltransferase gene variation: Impact on amygdala response to aversive stimuli.
        Neuroimage. 2012; 60: 2222-2229
        • Ridder S.
        • Treutlein J.
        • Nees F.
        • Lang S.
        • Diener S.
        • Wessa M.
        • et al.
        Brain activation during fear conditioning in humans depends on genetic variations related to functioning of the hypothalamic–pituitary–adrenal axis: First evidence from two independent subsamples.
        Psychol Med. 2012; 42: 2325-2335
        • Soliman F.
        • Glatt C.E.
        • Bath K.G.
        • Levita L.
        • Jones R.M.
        • Pattwell S.S.
        • et al.
        A genetic variant BDNF polymorphism alters extinction learning in both mouse and human.
        Science. 2010; 327: 863-866