Advertisement

Brain Stimulation Over the Frontopolar Cortex Enhances Motivation to Exert Effort for Reward

  • Alexander Soutschek
    Correspondence
    Address correspondence to Alexander Soutschek, Ph.D., Department of Economics, University of Zurich, Blumlisalpstrasse 10, 8006 Zurich, Switzerland.
    Affiliations
    Laboratory for Social and Neural Systems Research, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
    Search for articles by this author
  • Pyungwon Kang
    Affiliations
    Laboratory for Social and Neural Systems Research, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
    Search for articles by this author
  • Christian C. Ruff
    Affiliations
    Laboratory for Social and Neural Systems Research, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland

    Department of Economics, and Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
    Search for articles by this author
  • Author Footnotes
    1 TAH and PNT contributed equally to this work.
    Todd A. Hare
    Footnotes
    1 TAH and PNT contributed equally to this work.
    Affiliations
    Laboratory for Social and Neural Systems Research, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland

    Department of Economics, and Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
    Search for articles by this author
  • Author Footnotes
    1 TAH and PNT contributed equally to this work.
    Philippe N. Tobler
    Footnotes
    1 TAH and PNT contributed equally to this work.
    Affiliations
    Laboratory for Social and Neural Systems Research, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland

    Department of Economics, and Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
    Search for articles by this author
  • Author Footnotes
    1 TAH and PNT contributed equally to this work.
Published:November 15, 2017DOI:https://doi.org/10.1016/j.biopsych.2017.11.007

      Abstract

      Background

      Loss of motivation is a characteristic feature of several psychiatric and neurological disorders. However, the neural mechanisms underlying human motivation are far from being understood. Here, we investigate the role that the frontopolar cortex (FPC) plays in motivating cognitive and physical effort exertion by computing subjective effort equivalents.

      Methods

      We manipulated neural processing with transcranial direct current stimulation targeting the FPC while 141 healthy participants decided whether or not to engage in cognitive or physical effort to obtain rewards.

      Results

      We found that brain stimulation targeting the FPC increased the amount of both types of effort participants were willing to exert for rewards.

      Conclusions

      Our findings provide important insights into the neural mechanisms involved in motivating effortful behavior. Moreover, they suggest that considering the motivation-related activity of the FPC could facilitate the development of treatments for the loss of motivation commonly seen in psychiatric and other neurological disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hartmann M.N.
        • Hager O.M.
        • Reimann A.V.
        • Chumbley J.R.
        • Kirschner M.
        • Seifritz E.
        • et al.
        Apathy but not diminished expression in schizophrenia is associated with discounting of monetary rewards by physical effort.
        Schizophr Bull. 2015; 41: 503-512
        • Treadway M.T.
        • Zald D.H.
        Reconsidering anhedonia in depression: Lessons from translational neuroscience.
        Neurosci Biobehav Rev. 2011; 35: 537-555
        • Pedersen K.F.
        • Alves G.
        • Aarsland D.
        • Larsen J.P.
        Occurrence and risk factors for apathy in Parkinson disease: A 4-year prospective longitudinal study.
        J Neurol Neurosurg Psychiatry. 2009; 80: 1279-1282
        • Koechlin E.
        • Ody C.
        • Kouneiher F.
        The architecture of cognitive control in the human prefrontal cortex.
        Science. 2003; 302: 1181-1185
        • Tsujimoto S.
        • Genovesio A.
        • Wise S.P.
        Frontal pole cortex: Encoding ends at the end of the endbrain.
        Trends Cogn Sci. 2011; 15: 169-176
        • Locke H.S.
        • Braver T.S.
        Motivational influences on cognitive control: Behavior, brain activation, and individual differences.
        Cogn Affect Behav Neurosci. 2008; 8: 99-112
        • Pochon J.B.
        • Levy R.
        • Fossati P.
        • Lehericy S.
        • Poline J.B.
        • Pillon B.
        • et al.
        The neural system that bridges reward and cognition in humans: An fMRI study.
        Proc Natl Acad Sci U S A. 2002; 99: 5669-5674
        • Crockett M.J.
        • Braams B.R.
        • Clark L.
        • Tobler P.N.
        • Robbins T.W.
        • Kalenscher T.
        Restricting temptations: neural mechanisms of precommitment.
        Neuron. 2013; 79: 391-401
        • Daw N.D.
        • O'Doherty J.P.
        • Dayan P.
        • Seymour B.
        • Dolan R.J.
        Cortical substrates for exploratory decisions in humans.
        Nature. 2006; 441: 876-879
        • Raja Beharelle A.
        • Polania R.
        • Hare T.A.
        • Ruff C.C.
        Transcranial stimulation over frontopolar cortex elucidates the choice attributes and neural mechanisms used to resolve exploration-exploitation trade-offs.
        J Neurosci. 2015; 35: 14544-14556
        • Soutschek A.
        • Ugazio G.
        • Crockett M.J.
        • Ruff C.C.
        • Kalenscher T.
        • Tobler P.N.
        Binding oneself to the mast: Stimulating frontopolar cortex enhances precommitment.
        Soc Cogn Affect Neurosci. 2017; 12: 635-642
        • Boorman E.D.
        • Behrens T.E.
        • Woolrich M.W.
        • Rushworth M.F.
        How green is the grass on the other side? Frontopolar cortex and the evidence in favor of alternative courses of action.
        Neuron. 2009; 62: 733-743
        • Burke C.J.
        • Brunger C.
        • Kahnt T.
        • Park S.Q.
        • Tobler P.N.
        Neural integration of risk and effort costs by the frontal pole: Only upon request.
        J Neurosci. 2013; 33: 1706-1713a
        • Schmidt L.
        • Lebreton M.
        • Clery-Melin M.L.
        • Daunizeau J.
        • Pessiglione M.
        Neural mechanisms underlying motivation of mental versus physical effort.
        PLoS Biol. 2012; 10: e1001266
        • Hosking J.G.
        • Floresco S.B.
        • Winstanley C.A.
        Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: A comparison of two rodent cost/benefit decision-making tasks.
        Neuropsychopharmacology. 2015; 40: 1005-1015
        • Chong T.T.
        • Apps M.
        • Giehl K.
        • Sillence A.
        • Grima L.L.
        • Husain M.
        Neurocomputational mechanisms underlying subjective valuation of effort costs.
        PLoS Biol. 2017; 15: e1002598
        • Nitsche M.A.
        • Paulus W.
        Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.
        J Physiol. 2000; 527: 633-639
        • Bonnelle V.
        • Manohar S.
        • Behrens T.
        • Husain M.
        Individual differences in premotor brain systems underlie behavioral apathy.
        Cereb Cortex. 2016; 26: 807-819
        • Bonnelle V.
        • Veromann K.R.
        • Burnett Heyes S.
        • Lo Sterzo E.
        • Manohar S.
        • Husain M.
        Characterization of reward and effort mechanisms in apathy.
        J Physiol Paris. 2015; 109: 16-26
        • Nitsche M.A.
        • Doemkes S.
        • Karakose T.
        • Antal A.
        • Liebetanz D.
        • Lang N.
        • et al.
        Shaping the effects of transcranial direct current stimulation of the human motor cortex.
        J Neurophysiol. 2007; 97: 3109-3117
        • Jung Y.-J.
        • Kim J.-H.
        • Im C.-H.
        COMETS: A MATLAB toolbox for simulating local electric fields generated by transcranial direct current stimulation (tDCS).
        Biomed Eng Lett. 2013; 3: 39-46
        • Carver C.S.
        • White T.L.
        Behavioral inhibition, behavioural activation, and affective responses to impending reward and punishment: The BIS/BAS Scales.
        J Pers Soc Psychol. 1994; 67: 319-333
        • Snaith R.P.
        • Hamilton M.
        • Morley S.
        • Humayan A.
        • Hargreaves D.
        • Trigwell P.
        A scale for the assessment of hedonic tone the Snaith-Hamilton pleasure scale.
        Br J Psychiatry. 1995; 167: 99-103
        • Steyer R.
        • Schwenkmezger P.
        • Notz P.
        • Eid M.
        Theoretical analysis of a multidimensional mood questionnaire (MDBF).
        Diagnostica. 1994; 40: 320-328
        • Rushworth M.F.
        • Noonan M.P.
        • Boorman E.D.
        • Walton M.E.
        • Behrens T.E.
        Frontal cortex and reward-guided learning and decision-making.
        Neuron. 2011; 70: 1054-1069
        • Salamone J.D.
        • Correa M.
        The mysterious motivational functions of mesolimbic dopamine.
        Neuron. 2012; 76: 470-485
        • Zenon A.
        • Devesse S.
        • Olivier E.
        Dopamine manipulation affects response vigor independently of opportunity cost.
        J Neurosci. 2016; 36: 9516-9525
        • Westbrook A.
        • Braver T.S.
        Dopamine Does Double Duty in Motivating Cognitive Effort.
        Neuron. 2016; 89: 695-710
        • Holtzheimer P.E.
        • Kelley M.E.
        • Gross R.E.
        • Filkowski M.M.
        • Garlow S.J.
        • Barrocas A.
        • et al.
        Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression.
        Arch Gen Psychiatry. 2012; 69: 150-158
        • Zenon A.
        • Sidibe M.
        • Olivier E.
        Disrupting the supplementary motor area makes physical effort appear less effortful.
        J Neurosci. 2015; 35: 8737-8744
        • Bestmann S.
        • de Berker A.O.
        • Bonaiuto J.
        Understanding the behavioural consequences of noninvasive brain stimulation.
        Trends Cogn Sci. 2015; 19: 13-20
        • Bartra O.
        • McGuire J.T.
        • Kable J.W.
        The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value.
        Neuroimage. 2013; 76: 412-427
        • Jacobson L.
        • Koslowsky M.
        • Lavidor M.
        tDCS polarity effects in motor and cognitive domains: A meta-analytical review.
        Exp Brain Res. 2012; 216: 1-10
        • Apps M.A.
        • Grima L.L.
        • Manohar S.
        • Husain M.
        The role of cognitive effort in subjective reward devaluation and risky decision-making.
        Sci Rep. 2015; 5: 16880
        • Ang Y.S.
        • Lockwood P.
        • Apps M.A.
        • Muhammed K.
        • Husain M.
        Distinct subtypes of apathy revealed by the apathy motivation index.
        PLoS One. 2017; 12: e0169938
        • Kirschner M.
        • Hager O.M.
        • Bischof M.
        • Hartmann M.N.
        • Kluge A.
        • Seifritz E.
        • et al.
        Ventral striatal hypoactivation is associated with apathy but not diminished expression in patients with schizophrenia.
        J Psychiatry Neurosci. 2016; 41: 152-161
        • Skorvanek M.
        • Gdovinova Z.
        • Rosenberger J.
        • Saeedian R.G.
        • Nagyova I.
        • Groothoff J.W.
        • et al.
        The associations between fatigue, apathy, and depression in Parkinson's disease.
        Acta Neurol Scand. 2015; 131: 80-87
        • Semprini R.
        • Lubrano A.
        • Misaggi G.
        • Martorana A.
        Apathy as marker of frail status.
        J Aging Res. 2012; 2012: 436251
        • Carstensen L.L.
        • Mikels J.A.
        • Mather M.
        Aging and the intersection of cognition, motivation and emotion.
        in: Birren J. Schaie K.W. Handbook of the Psychology of Aging. Academic Press, London2006: 343-362
        • Canu E.
        • Kostic M.
        • Agosta F.
        • Munjiza A.
        • Ferraro P.M.
        • Pesic D.
        • et al.
        Brain structural abnormalities in patients with major depression with or without generalized anxiety disorder comorbidity.
        J Neurol. 2015; 262: 1255-1265
        • Asmal L.
        • du Plessis S.
        • Vink M.
        • Chiliza B.
        • Kilian S.
        • Emsley R.
        Symptom attribution and frontal cortical thickness in first-episode schizophrenia.
        Early Interv Psychiatry. 2016; ([published online ahead of print August 29])
        • O'Callaghan C.
        • Shine J.M.
        • Lewis S.J.
        • Hornberger M.
        Neuropsychiatric symptoms in Parkinson's disease: fronto-striatal atrophy contributions.
        Parkinsonism Relat Disord. 2014; 20: 867-872
        • Jorge R.E.
        • Starkstein S.E.
        • Robinson R.G.
        Apathy following stroke.
        Can J Psychiatry. 2010; 55: 350-354

      CHORUS Manuscript

      View Open Manuscript