Advertisement

A Schizophrenia-Linked KALRN Coding Variant Alters Neuron Morphology, Protein Function, and Transcript Stability

Published:November 07, 2017DOI:https://doi.org/10.1016/j.biopsych.2017.10.024

      Abstract

      Background

      Large-scale genetic studies have revealed that rare sequence variants, including single nucleotide variants (SNVs), in glutamatergic synaptic genes are enriched in schizophrenia patients. However, the majority are too rare to show any association with disease and have not been examined functionally. One such SNV, KALRN-P2255T, displays a penetrance that greatly exceeds that of previously identified schizophrenia-associated SNVs. Therefore, we sought to characterize its effects on the function of kalirin (Kal)-9, a dual Ras-related C3 botulinum toxin substrate 1 and Ras homologue gene family, member A (RhoA) guanine nucleotide exchange factor, upregulated in human schizophrenia brain tissue.

      Methods

      Kal9 was overexpressed in primary rat cortical neurons or human embryonic kidney 293 (HEK293) cells. The effects of the P2255T variant on dendritic branching, dendritic spine morphology, protein and messenger RNA stability, and catalytic activity were examined.

      Results

      Kal9-P2255T leads to diminished basal dendritic branching and dendritic spine size, compared with wild-type Kal9. The P2255T SNV directly affected Kal9 protein function, causing increased RhoA activation in HEK293 cells, but had no effect on Ras-related C3 botulinum toxin substrate 1 activation. Consistent with human postmortem findings, we found that Kal9-P2255T protein levels were higher than those of wild-type Kal9 in neurons. Increased messenger RNA stability was detected in HEK293 cells, indicating that this was the cause of the higher protein levels. When analyzed together, increased intrinsic RhoA guanine nucleotide exchange factor catalytic activity combined with increased messenger RNA expression led to net enhancement of RhoA activation, known to negatively impact neuronal morphology.

      Conclusions

      Taken together, our data reveal a novel mechanism for disease-associated SNVs and provide a platform for modeling morphological changes in mental disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rutkowski T.P.
        • Schroeder J.P.
        • Gafford G.M.
        • Warren S.T.
        • Weinshenker D.
        • Caspary T.
        • et al.
        Unraveling the genetic architecture of copy number variants associated with schizophrenia and other neuropsychiatric disorders.
        J Neurosci Res. 2016; 95: 1144-1160
        • Gejman P.V.
        • Sanders A.R.
        • Duan J.
        The role of genetics in the etiology of schizophrenia.
        Psychiatr Clin North Am. 2010; 33: 35-66
        • Fromer M.
        • Pocklington A.J.
        • Kavanagh D.H.
        • Williams H.J.
        • Dwyer S.
        • Gormley P.
        • et al.
        De novo mutations in schizophrenia implicate synaptic networks.
        Nature. 2014; 506: 179-184
        • Hall J.
        • Trent S.
        • Thomas K.L.
        • O'Donovan M.C.
        • Owen M.J.
        Genetic risk for schizophrenia: Convergence on synaptic pathways involved in plasticity.
        Biol Psychiatry. 2015; 77: 52-58
        • Purcell S.M.
        • Moran J.L.
        • Fromer M.
        • Ruderfer D.
        • Solovieff N.
        • Roussos P.
        • et al.
        A polygenic burden of rare disruptive mutations in schizophrenia.
        Nature. 2014; 506: 185-190
        • Kushima I.
        • Nakamura Y.
        • Aleksic B.
        • Ikeda M.
        • Ito Y.
        • Shiino T.
        • et al.
        Resequencing and association analysis of the KALRN and EPHB1 genes and their contribution to schizophrenia susceptibility.
        Schizophr Bull. 2012; 38: 552-560
        • Sullivan P.F.
        • Daly M.J.
        • O'Donovan M.
        Genetic architectures of psychiatric disorders: The emerging picture and its implications.
        Nat Rev Genet. 2012; 13: 537-551
        • Hill J.J.
        • Hashimoto T.
        • Lewis D.A.
        Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia.
        Mol Psychiatry. 2006; 11: 557-566
        • Rubio M.D.
        • Haroutunian V.
        • Meador-Woodruff J.H.
        Abnormalities of the Duo/Ras-related C3 botulinum toxin substrate 1/p21-activated kinase 1 pathway drive myosin light chain phosphorylation in frontal cortex in schizophrenia.
        Biol Psychiatry. 2012; 71: 906-914
        • Deo A.J.
        • Cahill M.E.
        • Li S.
        • Goldszer I.
        • Henteleff R.
        • Vanleeuwen J.E.
        • et al.
        Increased expression of Kalirin-9 in the auditory cortex of schizophrenia subjects: Its role in dendritic pathology.
        Neurobiol Dis. 2012; 45: 796-803
        • Penzes P.
        • Johnson R.C.
        • Kambampati V.
        • Mains R.E.
        • Eipper B.A.
        Distinct roles for the two Rho GDP/GTP exchange factor domains of kalirin in regulation of neurite growth and neuronal morphology.
        J Neurosci. 2001; 21: 8426-8434
        • Johnson R.C.
        • Penzes P.
        • Eipper B.A.
        • Mains R.E.
        Isoforms of kalirin, a neuronal Dbl family member, generated through use of different 5′- and 3′-ends along with an internal translational initiation site.
        J Biol Chem. 2000; 275: 19324-19333
        • Tolias K.F.
        • Duman J.G.
        • Um K.
        Control of synapse development and plasticity by Rho GTPase regulatory proteins.
        Prog Neurobiol. 2011; 94: 133-148
        • Duman J.G.
        • Mulherkar S.
        • Tu Y.K.
        • J XC
        • Tolias K.F.
        Mechanisms for spatiotemporal regulation of Rho-GTPase signaling at synapses.
        Neurosci Lett. 2015; 601: 4-10
        • Soderling S.H.
        • Guire E.S.
        • Kaech S.
        • White J.
        • Zhang F.
        • Schutz K.
        • et al.
        A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory.
        J Neurosci. 2007; 27: 355-365
        • Wegner A.M.
        • Nebhan C.A.
        • Hu L.
        • Majumdar D.
        • Meier K.M.
        • Weaver A.M.
        • et al.
        N-wasp and the arp2/3 complex are critical regulators of actin in the development of dendritic spines and synapses.
        J Biol Chem. 2008; 283: 15912-15920
        • Meng Y.
        • Zhang Y.
        • Tregoubov V.
        • Janus C.
        • Cruz L.
        • Jackson M.
        • et al.
        Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice.
        Neuron. 2002; 35: 121-133
        • Hedrick N.G.
        • Harward S.C.
        • Hall C.E.
        • Murakoshi H.
        • McNamara J.O.
        • Yasuda R.
        Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity.
        Nature. 2016; 538: 104-108
        • Govek E.E.
        • Newey S.E.
        • Akerman C.J.
        • Cross J.R.
        • Van der Veken L.
        • Van Aelst L.
        The X-linked mental retardation protein oligophrenin-1 is required for dendritic spine morphogenesis.
        Nat Neurosci. 2004; 7: 364-372
        • Mizuki Y.
        • Takaki M.
        • Sakamoto S.
        • Okamoto S.
        • Kishimoto M.
        • Okahisa Y.
        • et al.
        Human rho guanine nucleotide exchange factor 11 (ARHGEF11) regulates dendritic morphogenesis.
        Int J Mol Sci. 2016; 18: 67
        • Nakayama A.Y.
        • Harms M.B.
        • Luo L.
        Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons.
        J Neurosci. 2000; 20: 5329-5338
        • Hayashi-Takagi A.
        • Takaki M.
        • Graziane N.
        • Seshadri S.
        • Murdoch H.
        • Dunlop A.J.
        • et al.
        Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1.
        Nat Neurosci. 2010; 13: 327-332
        • Cahill M.E.
        • Remmers C.
        • Jones K.A.
        • Xie Z.
        • Sweet R.A.
        • Penzes P.
        Neuregulin1 signaling promotes dendritic spine growth through kalirin.
        J Neurochem. 2013; 126: 625-635
        • Morrow E.M.
        • Kane A.
        • Goff D.C.
        • Walsh C.A.
        Sequence analysis of P21-activated kinase 3 (PAK3) in chronic schizophrenia with cognitive impairment.
        Schizophr Res. 2008; 106: 265-267
        • Mulle J.G.
        • Dodd A.F.
        • McGrath J.A.
        • Wolyniec P.S.
        • Mitchell A.A.
        • Shetty A.C.
        • et al.
        Microdeletions of 3q29 confer high risk for schizophrenia.
        Am J Hum Genet. 2010; 87: 229-236
        • Consortium SWGotPG
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Warde-Farley D.
        • Donaldson S.L.
        • Comes O.
        • Zuberi K.
        • Badrawi R.
        • Chao P.
        • et al.
        The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function.
        Nucleic Acids Res. 2010; 38: W214-W220
        • Glantz L.A.
        • Lewis D.A.
        Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 65-73
        • Sweet R.A.
        • Henteleff R.A.
        • Zhang W.
        • Sampson A.R.
        • Lewis D.A.
        Reduced dendritic spine density in auditory cortex of subjects with schizophrenia.
        Neuropsychopharmacology. 2009; 34: 374-389
        • Wills Z.P.
        • Mandel-Brehm C.
        • Mardinly A.R.
        • McCord A.E.
        • Giger R.J.
        • Greenberg M.E.
        The nogo receptor family restricts synapse number in the developing hippocampus.
        Neuron. 2012; 73: 466-481
        • Xia Z.
        • Dudek H.
        • Miranti C.K.
        • Greenberg M.E.
        Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism.
        J Neurosci. 1996; 16: 5425-5436
        • Schindelin J.
        • Arganda-Carreras I.
        • Frise E.
        • Kaynig V.
        • Longair M.
        • Pietzsch T.
        • et al.
        Fiji: An open-source platform for biological-image analysis.
        Nat Methods. 2012; 9: 676-682
        • Woolfrey K.M.
        • Srivastava D.P.
        • Photowala H.
        • Yamashita M.
        • Barbolina M.V.
        • Cahill M.E.
        • et al.
        Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines.
        Nat Neurosci. 2009; 12: 1275-1284
        • Smith K.R.
        • Kopeikina K.J.
        • Fawcett-Patel J.M.
        • Leaderbrand K.
        • Gao R.
        • Schurmann B.
        • et al.
        Psychiatric risk factor ANK3/ankyrin-G nanodomains regulate the structure and function of glutamatergic synapses.
        Neuron. 2014; 84: 399-415
        • Russell T.A.
        • Blizinsky K.D.
        • Cobia D.J.
        • Cahill M.E.
        • Xie Z.
        • Sweet R.A.
        • et al.
        A sequence variant in human KALRN impairs protein function and coincides with reduced cortical thickness.
        Nat Commun. 2014; 5: 4858
        • Gustafsson M.G.
        Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution.
        Proc Natl Acad Sci U S A. 2005; 102: 13081-13086
        • Branco T.
        • Hausser M.
        Synaptic integration gradients in single cortical pyramidal cell dendrites.
        Neuron. 2011; 69: 885-892
        • Gordon U.
        • Polsky A.
        • Schiller J.
        Plasticity compartments in basal dendrites of neocortical pyramidal neurons.
        J Neurosci. 2006; 26: 12717-12726
        • Yan Z.
        • Kim E.
        • Datta D.
        • Lewis D.A.
        • Soderling S.H.
        Synaptic actin dysregulation, a convergent mechanism of mental disorders?.
        J Neurosci. 2016; 36: 11411-11417
        • Zuker M.
        Mfold web server for nucleic acid folding and hybridization prediction.
        Nucleic Acids Res. 2003; 31: 3406-3415
        • Chamary J.V.
        • Hurst L.D.
        Evidence for selection on synonymous mutations affecting stability of mRNA secondary structure in mammals.
        Genome Biol. 2005; 6: R75
        • Duan J.
        • Wainwright M.S.
        • Comeron J.M.
        • Saitou N.
        • Sanders A.R.
        • Gelernter J.
        • et al.
        Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor.
        Hum Mol Genet. 2003; 12: 205-216
        • Lennox A.L.
        • Mao H.
        • Silver D.L.
        RNA on the brain: Emerging layers of post-transcriptional regulation in cerebral cortex development.
        Wiley Interdiscip Rev Dev Biol Jan. 2017; 7
        • Iossifov I.
        • O'Roak B.J.
        • Sanders S.J.
        • Ronemus M.
        • Krumm N.
        • Levy D.
        • et al.
        The contribution of de novo coding mutations to autism spectrum disorder.
        Nature. 2014; 515: 216-221
        • Kim M.J.
        • Biag J.
        • Fass D.M.
        • Lewis M.C.
        • Zhang Q.
        • Fleishman M.
        • et al.
        Functional analysis of rare variants found in schizophrenia implicates a critical role for GIT1-PAK3 signaling in neuroplasticity.
        Mol Psychiatry. 2016; 22: 417-429
        • Ikeda M.
        • Aleksic B.
        • Kinoshita Y.
        • Okochi T.
        • Kawashima K.
        • Kushima I.
        • et al.
        Genome-wide association study of schizophrenia in a Japanese population.
        Biol Psychiatry. 2011; 69: 472-478
        • Wei Q.
        • Wang L.
        • Wang Q.
        • Kruger W.D.
        • Dunbrack Jr., R.L.
        Testing computational prediction of missense mutation phenotypes: Functional characterization of 204 mutations of human cystathionine beta synthase.
        Proteins. 2010; 78: 2058-2074
        • Harrison P.J.
        The current and potential impact of genetics and genomics on neuropsychopharmacology.
        Eur Neuropsychopharmacol. 2015; 25: 671-681
        • Lek M.
        • Karczewski K.J.
        • Minikel E.V.
        • Samocha K.E.
        • Banks E.
        • Fennell T.
        • et al.
        Analysis of protein-coding genetic variation in 60,706 humans.
        Nature. 2016; 536: 285-291
        • Cahill M.E.
        • Xie Z.
        • Day M.
        • Photowala H.
        • Barbolina M.V.
        • Miller C.A.
        • et al.
        Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes.
        Proc Natl Acad Sci U S A. 2009; 106: 13058-13063
        • Xie Z.
        • Cahill M.E.
        • Penzes P.
        Kalirin loss results in cortical morphological alterations.
        Mol Cell Neurosci. 2010; 43: 81-89
        • Penzes P.
        • Remmers C.
        Kalirin signaling: Implications for synaptic pathology.
        Mol Neurobiol. 2012; 45: 109-118
        • Dang M.
        • Wang Z.
        • Zhang R.
        • Li X.
        • Peng Y.
        • Han X.
        • et al.
        KALRN Rare and Common variants and susceptibility to ischemic stroke in Chinese Han population.
        Neuromol Med. 2015; 17: 241-250
        • Cai D.C.
        • Fonteijn H.
        • Guadalupe T.
        • Zwiers M.
        • Wittfeld K.
        • Teumer A.
        • et al.
        A genome-wide search for quantitative trait loci affecting the cortical surface area and thickness of Heschl's gyrus.
        Genes Brain Behav. 2014; 13: 675-685
        • Makrythanasis P.
        • Guipponi M.
        • Santoni F.A.
        • Zaki M.
        • Issa M.Y.
        • Ansar M.
        • et al.
        Exome sequencing discloses KALRN homozygous variant as likely cause of intellectual disability and short stature in a consanguineous pedigree.
        Hum Genomics. 2016; 10: 26
        • Ward-Caviness C.
        • Haynes C.
        • Blach C.
        • Dowdy E.
        • Gregory S.G.
        • Shah S.H.
        • et al.
        Gene-smoking interactions in multiple Rho-GTPase pathway genes in an early-onset coronary artery disease cohort.
        Hum Genet. 2013; 132: 1371-1382
        • DeWan A.T.
        • Egan K.B.
        • Hellenbrand K.
        • Sorrentino K.
        • Pizzoferrato N.
        • Walsh K.M.
        • et al.
        Whole-exome sequencing of a pedigree segregating asthma.
        BMC Med Genet. 2012; 13: 95
        • Krug T.
        • Manso H.
        • Gouveia L.
        • Sobral J.
        • Xavier J.M.
        • Albergaria I.
        • et al.
        Kalirin: A novel genetic risk factor for ischemic stroke.
        Hum Genet. 2010; 127: 513-523
        • Horne B.D.
        • Hauser E.R.
        • Wang L.
        • Muhlestein J.B.
        • Anderson J.L.
        • Carlquist J.F.
        • et al.
        Validation study of genetic associations with coronary artery disease on chromosome 3q13-21 and potential effect modification by smoking.
        Ann Hum Genet. 2009; 73: 551-558
        • Lesch K.P.
        • Timmesfeld N.
        • Renner T.J.
        • Halperin R.
        • Roser C.
        • Nguyen T.T.
        • et al.
        Molecular genetics of adult ADHD: Converging evidence from genome-wide association and extended pedigree linkage studies.
        J Neural Transm (Vienna). 2008; 115: 1573-1585
        • Wang L.
        • Hauser E.R.
        • Shah S.H.
        • Pericak-Vance M.A.
        • Haynes C.
        • Crosslin D.
        • et al.
        Peakwide mapping on chromosome 3q13 identifies the kalirin gene as a novel candidate gene for coronary artery disease.
        Am J Hum Genet. 2007; 80: 650-663
        • Moyer C.E.
        • Shelton M.A.
        • Sweet R.A.
        Dendritic spine alterations in schizophrenia.
        Neurosci Lett. 2015; 601: 46-53
        • Black J.E.
        • Kodish I.M.
        • Grossman A.W.
        • Klintsova A.Y.
        • Orlovskaya D.
        • Vostrikov V.
        • et al.
        Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia.
        Am J Psychiatry. 2004; 161: 742-744
        • Broadbelt K.
        • Byne W.
        • Jones L.B.
        Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex.
        Schizophr Res. 2002; 58: 75-81
        • Kalus P.
        • Muller T.J.
        • Zuschratter W.
        • Senitz D.
        The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients.
        Neuroreport. 2000; 11: 3621-3625
        • Kolluri N.
        • Sun Z.
        • Sampson A.R.
        • Lewis D.A.
        Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia.
        Am J Psychiatry. 2005; 162: 1200-1202
        • Konopaske G.T.
        • Lange N.
        • Coyle J.T.
        • Benes F.M.
        Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder.
        JAMA Psychiatry. 2014; 71: 1323-1331
        • Fu A.K.
        • Ip N.Y.
        Regulation of postsynaptic signaling in structural synaptic plasticity.
        Curr Opin Neurobiol. 2017; 45: 148-155
        • Larkman A.U.
        Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions.
        J Comp Neurol. 1991; 306: 332-343
        • Lisman J.E.
        • Coyle J.T.
        • Green R.W.
        • Javitt D.C.
        • Benes F.M.
        • Heckers S.
        • et al.
        Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia.
        Trends Neurosci. 2008; 31: 234-242
        • Datta D.
        • Arion D.
        • Corradi J.P.
        • Lewis D.A.
        Altered expression of CDC42 signaling pathway components in cortical layer 3 pyramidal cells in schizophrenia.
        Biol Psychiatry. 2015; 78: 775-785
        • Kim I.H.
        • Racz B.
        • Wang H.
        • Burianek L.
        • Weinberg R.
        • Yasuda R.
        • et al.
        Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities.
        J Neurosci. 2013; 33: 6081-6092
        • English J.A.
        • Dicker P.
        • Focking M.
        • Dunn M.J.
        • Cotter D.R.
        2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease.
        Proteomics. 2009; 9: 3368-3382
        • Gotea V.
        • Gartner J.J.
        • Qutob N.
        • Elnitski L.
        • Samuels Y.
        The functional relevance of somatic synonymous mutations in melanoma and other cancers.
        Pigment Cell Melanoma Res. 2015; 28: 673-684

      Linked Article

      • Translating Schizophrenia Population Genetics Findings to Neurobiological Mechanisms: The Case of KALRN-9
        Biological PsychiatryVol. 83Issue 6
        • Preview
          In the “post–genome-wide association study era,” we are increasingly being faced with the question: so what’s next? How do we derive biological meaning from single nucleotide variants (SNVs)? In this issue of Biological Psychiatry, Russell et al. (1) explore the neurobiological impact of a rare SNV (rs143835330, kalirin [KALRN] gene) associated with schizophrenia, on neuron morphology, protein function, and transcript stability. Their approach represents one informative way of inferring how genetic risk mechanisms impinge upon the brain.
        • Full-Text
        • PDF