Advertisement

Defects in Bioenergetic Coupling in Schizophrenia

      Abstract

      Synaptic neurotransmission relies on maintenance of the synapse and meeting the energy demands of neurons. Defects in excitatory and inhibitory synapses have been implicated in schizophrenia, likely contributing to positive and negative symptoms as well as impaired cognition. Recently, accumulating evidence has suggested that bioenergetic systems, important in both synaptic function and cognition, are abnormal in psychiatric illnesses such as schizophrenia. Animal models of synaptic dysfunction demonstrated endophenotypes of schizophrenia as well as bioenergetic abnormalities. We report findings on the bioenergetic interplay of astrocytes and neurons and discuss how dysregulation of these pathways may contribute to the pathogenesis of schizophrenia, highlighting metabolic systems as important therapeutic targets.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. American Psychiatric Association (2000): Diagnostic and Statistical Manual of Mental Disorders, 4th ed, Text Revision. Washington, DC: American Psychiatric Association.

        • Buchanan R.W.
        • Carpenter W.T.
        Schizophrenia: Introduction and overview.
        in: Sadock B.J. Sadock V.A. Comprehensive Textbook of Psychiatry, vol. 1. Lippincott, Williams and Wilkins, Philadelphia2000: 1096-1110
        • Fleischhacker W.
        Negative symptoms in patients with schizophrenia with special reference to the primary versus secondary distinction.
        Encephale. 2000; 26: 12-14
        • Zanello A.
        • Curtis L.
        • Badan Bâ M.
        • Merlo M.C.
        Working memory impairments in first-episode psychosis and chronic schizophrenia.
        Psychiatry Res. 2009; 165: 10-18
        • Potkin S.G.
        • Turner J.A.
        • Brown G.G.
        • McCarthy G.
        • Greve D.N.
        • Glover G.H.
        • et al.
        Working memory and DLPFC inefficiency in schizophrenia: The FBIRN study.
        Schizophr Bull. 2009; 35: 19-31
        • Wobrock T.
        • Schneider M.
        • Kadovic D.
        • Schneider-Axmann T.
        • Ecker U.K.
        • Retz W.
        • et al.
        Reduced cortical inhibition in first-episode schizophrenia.
        Schizophr Res. 2008; 105: 252-261
        • Schizophrenia Working Group of the Psychiatric Genomics Consortium
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Fromer M.
        • Pocklington A.J.
        • Kavanagh D.H.
        • Williams H.J.
        • Dwyer S.
        • Gormley P.
        • et al.
        De novo mutations in schizophrenia implicate synaptic networks.
        Nature. 2014; 506: 179-184
        • Kirov G.
        • Pocklington A.J.
        • Holmans P.
        • Ivanov D.
        • Ikeda M.
        • Ruderfer D.
        • et al.
        De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia.
        Mol Psychiatry. 2012; 17: 142-153
        • Owen M.J.
        • Craddock N.
        • O’Donovan M.C.
        Suggestion of roles for both common and rare risk variants in genome-wide studies of schizophrenia.
        Arch Gen Psychiatry. 2010; 67: 667-673
        • Pellerin L.
        • Magistretti P.J.
        Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization.
        Proc Natl Acad Sci U S A. 1994; 91: 10625-10629
        • Chatton J.Y.
        • Marquet P.
        • Magistretti P.J.
        A quantitative analysis of L-glutamate-regulated Na+ dynamics in mouse cortical astrocytes: Implications for cellular bioenergetics.
        Eur J Neurosci. 2000; 12: 3843-3853
        • Loaiza A.
        • Porras O.H.
        • Barros L.F.
        Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy.
        J Neurosci. 2003; 23: 7337-7342
        • Balcar V.J.
        • Johnston G.A.
        The structural specificity of the high affinity uptake of l-glutamate and l-aspartate by rat brain slices.
        J Neurochem. 1972; 19: 2657-2666
        • Chih C.P.
        • Roberts Jr., E.L.
        Energy substrates for neurons during neural activity: A critical review of the astrocyte-neuron lactate shuttle hypothesis.
        J Cereb Blood Flow Metab. 2003; 23: 1263-1281
        • Pellerin L.
        • Pellegri G.
        • Bittar P.G.
        • Charnay Y.
        • Bouras C.
        • Martin J.L.
        • et al.
        Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle.
        Dev Neurosci. 1998; 20: 291-299
        • Nagase M.
        • Takahashi Y.
        • Watabe A.M.
        • Kubo Y.
        • Kato F.
        On-site energy supply at synapses through monocarboxylate transporters maintains excitatory synaptic transmission.
        J Neurosci. 2014; 34: 2605-2617
        • Pellerin L.
        • Bouzier-Sore A.K.
        • Aubert A.
        • Serres S.
        • Merle M.
        • Costalat R.
        • et al.
        Activity-dependent regulation of energy metabolism by astrocytes: An update.
        Glia. 2007; 55: 1251-1262
        • Magistretti P.J.
        • Chatton J.-Y.
        Relationship between L-glutamate-regulated intracellular Na+ dynamics and ATP hydrolysis in astrocytes.
        J Neural Transm. 2005; 112: 77-85
        • Rouach N.
        • Koulakoff A.
        • Abudara V.
        • Willecke K.
        • Giaume C.
        Astroglial metabolic networks sustain hippocampal synaptic transmission.
        Science. 2007; 322: 1551-1555
        • Weber B.
        • Barros L.F.
        The astrocyte: Powerhouse and recycling center.
        Cold Spring Harb Perspect Biol. 2015; 7
        • Schurr A.
        Lactate: The ultimate cerebral oxidative energy substrate?.
        J Cereb Blood Flow Metab. 2005; 26: 142-152
        • Magistretti P.J.
        • Allaman I.
        A cellular perspective on brain energy metabolism and functional imaging.
        Neuron. 2015; 86: 883-901
        • Newman L.A.
        • Korol D.L.
        • Gold P.E.
        Lactate produced by glycogenolysis in astrocytes regulates memory processing.
        PLoS One. 2011; 6: e28427
        • Suzuki A.
        • Stern S.A.
        • Bozdagi O.
        • Huntley G.W.
        • Walker R.H.
        • Magistretti P.J.
        • et al.
        Astrocyte-neuron lactate transport is required for long-term memory formation.
        Cell. 2011; 144: 810-823
        • Jolivet R.
        • Allaman I.
        • Pellerin L.
        • Magistretti P.J.
        • Weber B.
        Comment on recent modeling studies of astrocyte-neuron metabolic interactions.
        J Cereb Blood Flow Metab. 2010; 30: 1982-1986
        • Mangia S.
        • DiNuzzo M.
        • Giove F.
        • Carruthers A.
        • Simpson I.A.
        • Vannucci S.J.
        Response to “comment on recent modeling studies of astrocyte-neuron metabolic interactions”: Much ado about nothing.
        J Cereb Blood Flow Metab. 2011; 31: 1346-1353
        • Bubber P.
        • Hartounian V.
        • Gibson G.E.
        • Blass J.P.
        Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients.
        Eur Neuropsychopharmacol. 2011; 21: 254-260
        • Kung L.
        • Roberts R.C.
        Mitochondrial pathology in human schizophrenic striatum: A postmortem ultrastructural study.
        Synapse. 1999; 31: 67-75
        • Du F.
        • Cooper A.J.
        • Thida T.
        • Sehovic S.
        • Lukas S.E.
        • Cohen B.M.
        • et al.
        In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31P magnetization transfer spectroscopy.
        JAMA Psychiatry. 2014; 71: 19-27
        • Zhou K.
        • Yang Y.
        • Gao L.
        • He G.
        • Li W.
        • Tang K.
        • et al.
        NMDA receptor hypofunction induces dysfunctions of energy metabolism and semaphorin signaling in rats: A synaptic proteome study.
        Schizophr Bull. 2012; 38: 579-591
        • Sun L.
        • Li J.
        • Zhou K.
        • Zhang M.
        • Yang J.
        • Li Y.
        • et al.
        Metabolomic analysis reveals metabolic disturbance in the cortex and hippocampus of subchronic MK-801 treated rats.
        PloS One. 2013; 8: e60598
        • Regenold W.T.
        • Phatak P.
        • Marano C.M.
        • Sassan A.
        • Conley R.R.
        • Kling M.A.
        Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: Implications for the mitochondrial dysfunction hypothesis.
        Biol Psychiatry. 2009; 65: 489-494
        • Martins-de-Souza D.
        • Gattaz W.F.
        • Schmitt A.
        • Novello J.C.
        • Marangoni S.
        • Turck C.W.
        • et al.
        Proteome analysis of schizophrenia patients Wernicke’s area reveals an energy metabolism dysregulation.
        BMC Psychiatry. 2009; 9: 17
        • Prabakaran S.
        • Swatton J.E.
        • Ryan M.M.
        • Huffaker S.J.
        • Huang J.T.
        • Griffin J.L.
        • et al.
        Mitochondrial dysfunction in schizophrenia: Evidence for compromised brain metabolism and oxidative stress.
        Mol Psychiatry. 2004; 9 (643): 684-697
        • Pennington K.
        • Beasley C.L.
        • Dicker P.
        • Fagan A.
        • English J.
        • Pariante C.M.
        • et al.
        Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder.
        Mol Psychiatry. 2008; 13: 1102-1117
        • Beasley C.L.
        • Pennington K.
        • Behan A.
        • Wait R.
        • Dunn M.J.
        • Cotter D.
        Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: Evidence for disease-associated changes.
        Proteomics. 2006; 6: 3414-3425
        • Middleton F.A.
        • Mirnics K.
        • Pierri J.N.
        • Lewis D.A.
        • Levitt P.
        Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia.
        J Neurosci. 2002; 22: 2718-2729
        • Beasley C.L.
        • Dwork A.J.
        • Rosoklija G.
        • Mann J.J.
        • Mancevski B.
        • Jakovski Z.
        • et al.
        Metabolic abnormalities in fronto-striatal-thalamic white matter tracts in schizophrenia.
        Schizophr Res. 2009; 109: 159-166
        • Ben-Shachar D.
        Mitochondrial dysfunction in schizophrenia: A possible linkage to dopamine.
        J Neurochem. 2002; 83: 1241-1251
        • Ben-Shachar D.
        • Laifenfeld D.
        Mitochondria, synaptic plasticity, and schizophrenia.
        Int Rev Neurobiol. 2004; 59: 273-296
        • Stone W.S.
        • Faraone S.V.
        • Su J.
        • Tarbox S.I.
        • Van Eerdewegh P.
        • Tsuang M.T.
        Evidence for linkage between regulatory enzymes in glycolysis and schizophrenia in a multiplex sample.
        Am J Med Genet B Neuropsychiatr Genet. 2004; 127B: 5-10
        • Altar C.A.
        • Jurata L.W.
        • Charles V.
        • Lemire A.
        • Liu P.
        • Bukhman Y.
        • et al.
        Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts.
        Biol Psychiatry. 2005; 58: 85-96
        • Arion D.
        • Corradi J.P.
        • Tang S.
        • Datta D.
        • Boothe F.
        • He A.
        • et al.
        Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder.
        Mol Psychiatry. 2015; 20: 1397-1405
        • Arion D.
        • Huo Z.
        • Enwright J.F.
        • Corradi J.P.
        • Tseng G.
        • Lewis D.A.
        Transcriptome alterations in prefrontal pyramidal cells distinguish schizophrenia from bipolar and major depressive disorders.
        Biol Psychiatry. 2017; 82: 594-600
        • Garey L.J.
        • Ong W.Y.
        • Patel T.S.
        • Kanani M.
        • Davis A.
        • Mortimer A.M.
        • et al.
        Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia.
        J Neurol Neurosurg Psychiatry. 1998; 65: 446-453
        • Glantz L.A.
        • Lewis D.A.
        Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 65-73
        • Glausier J.R.
        • Lewis D.A.
        Dendritic spine pathology in schizophrenia.
        Neuroscience. 2013; 251: 90-107
        • Kolluri N.
        • Sun Z.
        • Sampson A.R.
        • Lewis D.A.
        Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia.
        Am J Psychiatry. 2005; 162: 1200-1202
        • Hegde A.N.
        • DiAntonio A.
        Ubiquitin and the synapse.
        Nat Rev Neurosci. 2002; 3: 854-861
        • Murphey R.K.
        • Godenschwege T.A.
        New roles for ubiquitin in the assembly and function of neuronal circuits.
        Neuron. 2002; 36: 5-8
        • Pak D.T.S.
        • Sheng M.
        Targeted protein degradation and synapse remodeling by an inducible protein kinase.
        Science. 2003; 302: 1368-1373
        • Ehlers M.
        Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system.
        Nat Neurosci. 2003; 6: 231-242
        • Speese S.D.
        • Trotta N.
        • Rodesch C.K.
        • Aravamudan B.
        • Broadie K.
        The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy.
        Curr Biol. 2003; 13: 899-910
        • Herrero-Mendez A.
        • Almeida A.
        • Fernandez E.
        • Maestre C.
        • Moncada S.
        • Bolanos J.P.
        The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1.
        Nat Cell Biol. 2009; 11: 747-752
        • McDermott E.
        • de Silva P.
        Impaired neuronal glucose uptake in pathogenesis of schizophrenia—can GLUT 1 and GLUT 3 deficits explain imaging, post-mortem and pharmacological findings?.
        Med Hypotheses. 2005; 65: 1076-1081
        • Maurer I.
        • Zierz S.
        • Möller H.-J.
        Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia.
        Schizophr Res. 2001; 48: 125-136
        • Cavelier L.
        • Jazin E.E.
        • Eriksson I.
        • Prince J.
        • Bave U.
        • Oreland L.
        • et al.
        Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics.
        Genomics. 1995; 29: 217-224
        • McCullumsmith R.E.
        • Hammond J.H.
        • Shan D.
        • Meador-Woodruff J.H.
        Postmortem brain: An underutilized substrate for studying severe mental illness.
        Neuropsychopharmacology. 2014; 39: 65-87
        • Pettegrew J.W.
        • Keshavan M.S.
        • Panchalingam K.
        • Strychor S.
        • Kaplan D.B.
        • Tretta M.G.
        • Allen M.
        Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics: A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy.
        Arch Gen Psychiatry. 1991; 48: 563-568
        • Rowland L.M.
        • Pradhan S.
        • Korenic S.
        • Wijtenburg S.A.
        • Hong L.E.
        • Edden R.A.
        • et al.
        Elevated brain lactate in schizophrenia: A 7 T magnetic resonance spectroscopy study.
        Transl Psychiatry. 2016; 6: e967
        • Hardingham G.E.
        • Do K.Q.
        Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis.
        Nat Rev Neurosci. 2016; 17: 125-134
        • Powell S.B.
        • Sejnowski T.J.
        • Behrens M.M.
        Behavioral and neurochemical consequences of cortical oxidative stress on parvalbumin-interneuron maturation in rodent models of schizophrenia.
        Neuropharmacology. 2012; 62: 1322-1331
        • Ben-Ari Y.
        Excitatory actions of gaba during development: the nature of the nurture.
        Nat Rev Neurosci. 2002; 3: 728-739
        • Sullivan C.R.
        • Funk A.J.
        • Shan D.
        • Haroutunian V.
        • McCullumsmith R.E.
        Decreased chloride channel expression in the dorsolateral prefrontal cortex in schizophrenia.
        PloS One. 2015; 10: e0123158
        • Arion D.
        • Lewis D.A.
        Altered expression of regulators of the cortical chloride transporters NKCC1 and KCC2 in schizophrenia.
        Arch Gen Psychiatry. 2011; 68: 21-31
        • Windrem M.S.
        • Osipovitch M.
        • Liu Z.
        • Bates J.
        • Chandler-Militello D.
        • Zou L.
        • et al.
        Human iPSC glial mouse chimeras reveal glial contributions to schizophrenia.
        Cell Stem Cell. 2017; 21: 195-208.e196
        • Schousboe A.
        • Bak L.K.
        • Madsen K.K.
        • Waagepetersen H.S.
        Amino acid neurotransmitter synthesis and removal.
        in: Kettenmann H. Ransom B.R. Neuroglia, 3rd ed. Oxford University Press, Oxford2013: 443-456
        • Schousboe A.
        • Scafidi S.
        • Bak L.K.
        • Waagepetersen H.S.
        • McKenna M.C.
        Glutamate metabolism in the brain focusing on astrocytes.
        Adv Neurobiol. 2014; 11: 13-30
        • Petr G.T.
        • Sun Y.
        • Frederick N.M.
        • Zhou Y.
        • Dhamne S.C.
        • Hameed M.Q.
        • et al.
        Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes.
        J Neurosci. 2015; 35: 5187-5201
        • McKenna M.C.
        • Sonnewald U.
        • Huang X.
        • Stevenson J.
        • Zielke H.R.
        Exogenous glutamate concentration regulates the metabolic fate of glutamate in astrocytes.
        J Neurochem. 1996; 66: 386-393
        • McKenna M.C.
        Glutamate pays its own way in astrocytes.
        Front Endocrinol. 2013; 4: 191
        • Sonnewald U.
        • Westergaard N.
        • Petersen S.B.
        • Unsgard G.
        • Schousboe A.
        Metabolism of [U-13C]glutamate in astrocytes studied by 13C NMR spectroscopy: Incorporation of more label into lactate than into glutamine demonstrates the importance of the tricarboxylic acid cycle.
        J Neurochem. 1993; 61: 1179-1182
        • McCullumsmith R.E.
        • O’Donovan S.M.
        • Drummond J.B.
        • Benesh F.S.
        • Simmons M.
        • Roberts R.
        • et al.
        Cell-specific abnormalities of glutamate transporters in schizophrenia: Sick astrocytes and compensating relay neurons?.
        Mol Psychiatry. 2016; 6: 823-830
        • Genda E.N.
        • Jackson J.G.
        • Sheldon A.L.
        • Locke S.F.
        • Greco T.M.
        • O’Donnell J.C.
        • et al.
        Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria.
        J Neurosci. 2011; 31: 18275-18288
        • O’Donovan S.M.
        • Hasselfeld K.
        • Bauer D.
        • Simmons M.
        • Roussos P.
        • Haroutunian V.
        • et al.
        Glutamate transporter splice variant expression in an enriched pyramidal cell population in schizophrenia.
        Transl Psychiatry. 2015; 5: e579
        • Shan D.
        • Mount D.
        • Moore S.
        • Haroutunian V.
        • Meador-Woodruff J.H.
        • McCullumsmith R.E.
        Abnormal partitioning of hexokinase 1 suggests disruption of a glutamate transport protein complex in schizophrenia.
        Schizophr Res. 2014; 154: 1-13
        • O’Donovan S.M.
        • Sullivan C.R.
        • Robert McCullumsmith R.E.
        The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders.
        NPJ Schizophr. 2017; 3: 32
        • Shan D.
        • Lucas E.K.
        • Drummond J.B.
        • Haroutunian V.
        • Meador-Woodruff J.H.
        • McCullumsmith R.E.
        Abnormal expression of glutamate transporters in temporal lobe areas in elderly patients with schizophrenia.
        Schizophr Res. 2013; 144: 1-8
        • Webster M.J.
        • Knable M.B.
        • Johnston-Wilson N.
        • Nagata K.
        • Inagaki M.
        • Yolken R.H.
        Immunohistochemical localization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression.
        Brain Behav Immun. 2001; 15: 388-400
        • Magistretti P.J.
        Neuron-glia metabolic coupling and plasticity.
        J Exp Biol. 2006; 209: 2304-2311
        • Pongrac J.
        • Middleton F.A.
        • Lewis D.A.
        • Levitt P.
        • Mirnics K.
        Gene expression profiling with DNA microarrays: Advancing our understanding of psychiatric disorders.
        Neurochem Res. 2002; 27: 1049-1063
        • Mirnics K.
        • Middleton F.A.
        • Lewis D.A.
        • Levitt P.
        Analysis of complex brain disorders with gene expression microarrays: Schizophrenia as a disease of the synapse.
        Trends Neurosci. 2001; 24: 479-486
        • Frankle W.G.
        • Lerma J.
        • Laruelle M.
        The synaptic hypothesis of schizophrenia.
        Neuron. 2003; 39: 205-216
        • Stephan K.E.
        • Friston K.J.
        • Frith C.D.
        Dysconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring.
        Schizophr Bull. 2009; 35: 509-527
        • Khvotchev M.
        Schizophrenia and synapse: Emerging role of presynaptic fusion machinery.
        Biol Psychiatry. 2010; 67: 197-198
        • Hayashi-Takagi A.
        • Sawa A.
        Disturbed synaptic connectivity in schizophrenia: Convergence of genetic risk factors during neurodevelopment.
        Brain Res Bull. 2010; 83: 140-146
        • Harrison P.J.
        • Law A.J.
        Neuregulin 1 and schizophrenia: Genetics, gene expression, and neurobiology.
        Biol Psychiatry. 2006; 60: 132-140
        • Millar J.K.
        • Wilson-Annan J.C.
        • Anderson S.
        • Christie S.
        • Taylor M.S.
        • Semple C.A.
        • et al.
        Disruption of two novel genes by a translocation co-segregating with schizophrenia.
        Hum Mol Genet. 2000; 9: 1415-1423
        • Stefansson H.
        • Sigurdsson E.
        • Steinthorsdottir V.
        • Bjornsdottir S.
        • Sigmundsson T.
        • Ghosh S.
        • et al.
        Neuregulin 1 and susceptibility to schizophrenia.
        Am J Hum Genet. 2002; 71: 877-892
        • St Clair D.
        • Blackwood D.
        • Muir W.
        • Carothers A.
        • Walker M.
        • Spowart G.
        • et al.
        Association within a family of a balanced autosomal translocation with major mental illness.
        Lancet. 1990; 336: 13-16
        • Gulsuner S.
        • Walsh T.
        • Watts A.C.
        • Lee M.K.
        • Thornton A.M.
        • Casadei S.
        • et al.
        Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network.
        Cell. 2013; 154: 518-529
        • Mirnics K.
        • Middleton F.
        • Marquez A.
        • Lewis D.
        • Levitt P.
        Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex.
        Neuron. 2000; 28: 53-67
        • Purcell S.M.
        • Moran J.L.
        • Fromer M.
        • Ruderfer D.
        • Solovieff N.
        • Roussos P.
        • et al.
        A polygenic burden of rare disruptive mutations in schizophrenia.
        Nature. 2014; 506: 185-190
        • Kirov G.
        • Rujescu D.
        • Ingason A.
        • Collier D.A.
        • O’Donovan M.C.
        • Owen M.J.
        Neurexin 1 (NRXN1) deletions in schizophrenia.
        Schizophr Bull. 2009; 35: 851-854
        • Kirov G.
        • Gumus D.
        • Chen W.
        • Norton N.
        • Georgieva L.
        • Sari M.
        • et al.
        Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia.
        Hum Mol Genet. 2008; 17: 458-465
        • Glantz L.A.
        • Lewis D.A.
        Dendritic spine density in schizophrenia and depression.
        Arch Gen Psychiatry. 2001; 58: 203
        • Selemon L.D.
        • Goldman-Rakic P.S.
        The reduced neuropil hypothesis: A circuit based model of schizophrenia.
        Biol Psychiatry. 1999; 45: 17-25
        • Meador-Woodruff J.
        • Clinton S.
        • Beneyto M.
        • McCullumsmith R.
        Molecular abnormalities of the glutamate synapse in the thalamus in schizophrenia.
        Ann N Y Acad Sci. 2003; 1003: 75-93
        • Spangaro M.
        • Bosia M.
        • Zanoletti A.
        • Bechi M.
        • Cocchi F.
        • Pirovano A.
        • et al.
        Cognitive dysfunction and glutamate reuptake: Effect of EAAT2 polymorphism in schizophrenia.
        Neurosci Lett. 2012; 522: 151-155
        • Oni-Orisan A.
        • Kristiansen L.
        • Haroutunian V.
        • Meador-Woodruff J.
        • McCullumsmith R.
        Altered vesicular glutamate transporter expression in the anterior cingulate cortex in schizophrenia.
        Biol Psychiatry. 2008; 63: 766-775
        • Meador-Woodruff J.
        • Healy D.
        Glutamate receptor expression in schizophrenic brain.
        Brain Res Brain Res Rev. 2000; 31: 288-294
        • Alda M.
        • Ahrens B.
        • Lit W.
        • Dvorakova M.
        • Labelle A.
        • Zvolsky P.
        • et al.
        Age of onset in familial and sporadic schizophrenia.
        Acta Psychiatr Scand. 1996; 93: 447-450
        • Akbarian S.
        • Sucher N.J.
        • Bradley D.
        • Tafazzoli A.
        • Trinh D.
        • Hetrick W.P.
        • et al.
        Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics.
        J Neurosci. 1996; 16: 19-30
        • Balu D.T.
        • Coyle J.T.
        Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia.
        Neurosci Biobehav Rev. 2011; 35: 848-870
        • Coyle J.
        • Tsai G.
        • Goff D.
        Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia.
        Ann N Y Acad Sci. 2003; 1003: 318-327
        • Coyle J.T.
        The glutamatergic dysfunction hypothesis for schizophrenia.
        Harv Rev Psychiatry. 1996; 3: 241-253
        • Funk A.
        • Rumbaugh G.
        • Harotunian V.
        • McCullumsmith R.
        • Meador-Woodruff J.
        Decreased expression of NMDA receptor-associated proteins in frontal cortex of elderly patients with schizophrenia.
        Neuroreport. 2009; 20: 1019-1022
        • Coyle J.T.
        • Tsai G.
        • Goff D.C.
        Ionotropic glutamate receptors as therapeutic targets in schizophrenia.
        Curr Drug Targets CNS Neurol Disord. 2002; 1: 183-189
        • Luby E.D.
        • Cohen B.D.
        • Rosenbaum G.
        • Gottlieb J.S.
        • Kelley R.
        Study of a new schizophrenomimetic drug; sernyl.
        AMA Arch Neurol Psychiatry. 1959; 81: 363-369
        • Krystal J.H.
        • Karper L.P.
        • Seibyl J.P.
        • Freeman G.K.
        • Delaney R.
        • Bremner J.D.
        • et al.
        Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
        Arch Gen Psychiatry. 1994; 51: 199-214
        • Lahti A.C.
        • Weiler M.A.
        • Tamara Michaelidis B.A.
        • Parwani A.
        • Tamminga C.A.
        Effects of ketamine in normal and schizophrenic volunteers.
        Neuropsychopharmacology. 2001; 25: 455-467
        • Mouri A.
        • Noda Y.
        • Enomoto T.
        • Nabeshima T.
        Phencyclidine animal models of schizophrenia: Approaches from abnormality of glutamatergic neurotransmission and neurodevelopment.
        Neurochemistry Int. 2007; 51: 173-184
        • Olney J.W.
        • Farber N.B.
        Glutamate receptor dysfunction and schizophrenia.
        Arch Gen psychiatry. 1995; 52: 998-1007
        • Duncan G.
        • Miyamoto S.
        • Gu H.
        • Lieberman J.
        • Koller B.
        • Snouwaert J.
        Alterations in regional brain metabolism in genetic and pharmacological models of reduced NMDA receptor function.
        Brain Res. 2002; 951: 166-176
        • Dzirasa K.
        • Ramsey A.J.
        • Takahashi D.Y.
        • Stapleton J.
        • Potes J.M.
        • Williams J.K.
        • et al.
        Hyperdopaminergia and NMDA receptor hypofunction disrupt neural phase signaling.
        J Neurosci. 2009; 29: 8215-8224
        • Halene T.B.
        • Ehrlichman R.S.
        • Liang Y.
        • Christian E.P.
        • Jonak G.J.
        • Gur T.L.
        • et al.
        Assessment of NMDA receptor NR1 subunit hypofunction in mice as a model for schizophrenia.
        Genes Brain Behav. 2009; 8: 661-675
        • Jentsch J.D.
        • Roth R.H.
        The neuropsychopharmacology of phencyclidine: From NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia.
        Neuropsychopharmacology. 1999; 20: 201-225
        • Ramsey A.J.
        NR1 knockdown mice as a representative model of the glutamate hypothesis of schizophrenia.
        Prog Brain Res. 2009; 179: 51-58
        • Mohn A.R.
        • Gainetdinov R.R.
        • Caron M.G.
        • Koller B.H.
        Mice with reduced NMDA receptor expression display behaviors related to schizophrenia.
        Cell. 1999; 98: 427-436
        • Duncan G.E.
        • Moy S.S.
        • Lieberman J.A.
        • Koller B.H.
        Effects of haloperidol, clozapine, and quetiapine on sensorimotor gating in a genetic model of reduced NMDA receptor function.
        Psychopharmacology. 2006; 184: 190-200
        • Inta D.
        • Monyer H.
        • Sprengel R.
        • Meyer-Lindenberg A.
        • Gass P.
        Mice with genetically altered glutamate receptors as models of schizophrenia: A comprehensive review.
        Neurosci Biobehav Rev. 2010; 34: 285-294
        • Javitt D.C.
        • Zukin S.R.
        Recent advances in the phencyclidine model of schizophrenia.
        Am J Psychiatry. 1991; 148: 1301-1308
        • Rung J.P.
        • Carlsson A.
        • Ryden Markinhuhta K.
        • Carlsson M.L.
        (+)-MK-801 induced social withdrawal in rats; a model for negative symptoms of schizophrenia.
        Prog Neuropsychopharmacol Biol Psychiatry. 2005; 29: 827-832
        • Guo X.
        • Hamilton P.
        • Reish N.
        • Sweatt J.
        • Miller C.
        • Rumbaugh G.
        Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of schizophrenia.
        Neuropsychopharmacology. 2009; 34: 1659-1672
        • Barkus C.
        • Feyder M.
        • Graybeal C.
        • Wright T.
        • Wiedholz L.
        • Izquierdo A.
        • et al.
        Do GluA1 knockout mice exhibit behavioral abnormalities relevant to the negative or cognitive symptoms of schizophrenia and schizoaffective disorder?.
        Neuropharmacology. 2012; 62: 1263-1272
        • Bannerman D.M.
        • Deacon R.M.
        • Brady S.
        • Bruce A.
        • Sprengel R.
        • Seeburg P.H.
        • et al.
        A comparison of GluR-A-deficient and wild-type mice on a test battery assessing sensorimotor, affective, and cognitive behaviors.
        Behav Neurosci. 2004; 118: 643-647
        • Hikida T.
        • Jaaro-Peled H.
        • Seshadri S.
        • Oishi K.
        • Hookway C.
        • Kong S.
        • et al.
        Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans.
        Proc Natl Acad Sci U S A. 2007; 104: 14501-14506
        • Pletnikov M.V.
        • Ayhan Y.
        • Nikolskaia O.
        • Xu Y.
        • Ovanesov M.V.
        • Huang H.
        • et al.
        Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia.
        Mol Psychiatry. 2008; 13 (115): 173-186
        • Wesseling H.
        • Guest P.C.
        • Lee C.M.
        • Wong E.H.
        • Rahmoune H.
        • Bahn S.
        Integrative proteomic analysis of the NMDA NR1 knockdown mouse model reveals effects on central and peripheral pathways associated with schizophrenia and autism spectrum disorders.
        Mol Autism. 2014; 5 (2014): 38
      2. Sullivan CR, Click K, Koene R, Ramsey A, McCullumsmith RE (2016): Decreased lactate dehydrogenase activity and abnormal expression of lactate shuttle transporters in schizophrenia. Abstract presented at Society for Neuroscience Meeting, November 12–16, San Diego, California.

        • Bergersen L.H.
        Lactate transport and signaling in the brain: Potential therapeutic targets and roles in body-brain interaction.
        J Cereb Blood Flow Metab. 2015; 35: 176-185
        • Herberth M.
        • Koethe D.
        • Cheng T.M.K.
        • Krzyszton N.D.
        • Schoeffmann S.
        • Guest P.C.
        • et al.
        Impaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patients.
        Mol Psychiatry. 2011; 16: 848-859
        • Martins-de-Souza D.
        • Gattaz W.F.
        • Schmitt A.
        • Maccarrone G.
        • Hunyadi-Gulyas E.
        • Eberlin M.N.
        • et al.
        Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia.
        J Psychiatr Res. 2009; 43: 978-986
        • Yang J.
        • Chen T.
        • Sun L.
        • Zhao Z.
        • Qi X.
        • Zhou K.
        • et al.
        Potential metabolite markers of schizophrenia.
        Mol Psychiatry. 2013; 18: 67-78
        • Loubinoux I.
        • Meric P.
        • Borredon J.
        • Correze J.-L.
        • Gillet B.
        • Beloeil J.-C.
        • et al.
        Cerebral metabolic changes induced by MK-801: A 1D (phosphorus and proton) and 2D (proton) in vivo NMR spectroscopy study.
        Brain Res. 1994; 643: 115-124
        • Clow D.W.
        • Lee S.J.
        • Hammer Jr., R.P.
        Competitive (AP7) and non-competitive (MK-801) NMDA receptor antagonists differentially alter glucose utilization in rat cortex.
        Synapse. 1991; 7: 260-268
        • Eyjolfsson E.M.
        • Nilsen L.H.
        • Kondziella D.
        • Brenner E.
        • Håberg A.
        • Sonnewald U.
        Altered 13C glucose metabolism in the cortico-striato-thalamo-cortical loop in the MK-801 rat model of schizophrenia.
        J Cereb Blood Flow Metab. 2010; 31: 976-985
        • Wesseling H.
        • Chan M.K.
        • Tsang T.M.
        • Ernst A.
        • Peters F.
        • Guest P.C.
        • et al.
        A combined metabonomic and proteomic approach identifies frontal cortex changes in a chronic phencyclidine rat model in relation to human schizophrenia brain pathology.
        Neuropsychopharmacology. 2013; 38: 2532-2544
        • Wiedholz L.
        • Owens W.
        • Horton R.
        • Feyder M.
        • Karlsson R.
        • Hefner K.
        • et al.
        Mice lacking the AMPA GluR1 receptor exhibit striatal hyperdopaminergia and “schizophrenia-related” behaviors.
        Mol Psychiatry. 2008; 13: 631-640
        • Paylor R.
        • Nguyen M.
        • Crawley J.N.
        • Patrick J.
        • Beaudet A.
        • Orr-Urtreger A.
        Alpha7 nicotinic receptor subunits are not necessary for hippocampal-dependent learning or sensorimotor gating: A behavioral characterization of Acra7-deficient mice.
        Learn Mem. 1998; 5: 302-316
        • Fernandes C.
        • Hoyle E.
        • Dempster E.
        • Schalkwyk L.C.
        • Collier D.A.
        Performance deficit of alpha7 nicotinic receptor knockout mice in a delayed matching-to-place task suggests a mild impairment of working/episodic-like memory.
        Genes Brain Behav. 2006; 5: 433-440
        • Salas R.
        • Orr-Urtreger A.
        • Broide R.S.
        • Beaudet A.
        • Paylor R.
        • De Biasi M.
        The nicotinic acetylcholine receptor subunit alpha 5 mediates short-term effects of nicotine in vivo.
        Mol Pharmacol. 2003; 63: 1059-1066
        • Labrie V.
        • Fukumura R.
        • Rastogi A.
        • Fick L.J.
        • Wang W.
        • Boutros P.C.
        • et al.
        Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model.
        Hum Mol Genet. 2009; 18: 3227-3243
        • Weckmann K.
        • Labermaier C.
        • Asara J.M.
        • Müller M.B.
        • Turck C.W.
        Time-dependent metabolomic profiling of ketamine drug action reveals hippocampal pathway alterations and biomarker candidates.
        Transl Psychiatry. 2014; 4: e481
        • Pascual O.
        • Casper K.B.
        • Kubera C.
        • Zhang J.
        • Revilla-Sanchez R.
        • Sul J.Y.
        • et al.
        Astrocytic purinergic signaling coordinates synaptic networks.
        Science. 2005; 310: 113-116