Advertisement

Antidepressants Rescue Stress-Induced Disruption of Synaptic Plasticity via Serotonin Transporter–Independent Inhibition of L-Type Calcium Channels

      Abstract

      Background

      Long-term synaptic plasticity is a basic ability of the brain to dynamically adapt to external stimuli and regulate synaptic strength and ultimately network function. It is dysregulated by behavioral stress in animal models of depression and in humans with major depressive disorder. Antidepressants have been shown to restore disrupted synaptic plasticity in both animal models and humans; however, the underlying mechanism is unclear.

      Methods

      We examined modulation of synaptic plasticity by selective serotonin reuptake inhibitors (SSRIs) in hippocampal brain slices from wild-type rats and serotonin transporter (SERT) knockout mice. Recombinant voltage-gated calcium (Ca2+) channels in heterologous expression systems were used to determine the modulation of Ca2+ channels by SSRIs. We tested the behavioral effects of SSRIs in the chronic behavioral despair model of depression both in the presence and in the absence of SERT.

      Results

      SSRIs selectively inhibited hippocampal long-term depression. The inhibition of long-term depression by SSRIs was mediated by a direct block of voltage-activated L-type Ca2+ channels and was independent of SERT. Furthermore, SSRIs protected both wild-type and SERT knockout mice from behavioral despair induced by chronic stress. Finally, long-term depression was facilitated in animals subjected to the behavioral despair model, which was prevented by SSRI treatment.

      Conclusions

      These results showed that antidepressants protected synaptic plasticity and neuronal circuitry from the effects of stress via a modulation of Ca2+ channels and synaptic plasticity independent of SERT. Thus, L-type Ca2+ channels might constitute an important signaling hub for stress response and for pathophysiology and treatment of depression.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kessler R.C.
        • Chiu W.T.
        • Demler O.
        • Merikangas K.R.
        • Walters E.E.
        Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication.
        Arch Gen Psychiatry. 2005; 62: 617-627
        • Pratt L.A.
        • Brody D.J.
        • Gu Q.
        Antidepressant use in persons aged 12 and over: United States, 2005-2008.
        NCHS Data Brief. 2011; : 1-8
        • Krishnan V.
        • Nestler E.J.
        The molecular neurobiology of depression.
        Nature. 2008; 455: 894-902
        • Schildkraut J.J.
        The catecholamine hypothesis of affective disorders: A review of supporting evidence.
        Am J Psychiatry. 1965; 122: 509-522
        • Delgado P.L.
        Depression: The case for a monoamine deficiency.
        J Clin Psychiatry. 2000; 61: 7-11
        • Heninger G.R.
        • Delgado P.L.
        • Charney D.S.
        The revised monoamine theory of depression: A modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans.
        Pharmacopsychiatry. 1996; 29: 2-11
        • Linden D.J.
        The return of the spike: Postsynaptic action potentials and the induction of LTP and LTD.
        Neuron. 1999; 22: 661-666
        • Normann C.
        • Peckys D.
        • Schulze C.H.
        • Walden J.
        • Jonas P.
        • Bischofberger J.
        Associative long-term depression in the hippocampus is dependent on postsynaptic N-type Ca2+ channels.
        J Neurosci. 2000; 20: 8290-8297
        • Niehusmann P.
        • Seifert G.
        • Clark K.
        • Atas H.C.
        • Herpfer I.
        • Fiebich B.
        • et al.
        Coincidence detection and stress modulation of spike time-dependent long-term depression in the hippocampus.
        J Neurosci. 2010; 30: 6225-6235
        • Engert F.
        • Bonhoeffer T.
        Dendritic spine changes associated with hippocampal long-term synaptic plasticity.
        Nature. 1999; 399: 66-70
        • Toni N.
        • Buchs P.A.
        • Nikonenko I.
        • Bron C.R.
        • Muller D.
        LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite.
        Nature. 1999; 402: 421-425
        • Kandel E.R.
        The molecular biology of memory storage: A dialogue between genes and synapses.
        Science. 2001; 294: 1030-1038
        • Nabavi S.
        • Fox R.
        • Proulx C.D.
        • Lin J.Y.
        • Tsien R.Y.
        • Malinow R.
        Engineering a memory with LTD and LTP.
        Nature. 2014; 511: 348-352
        • Castren E.
        Is mood chemistry?.
        Nat Rev Neurosci. 2005; 6: 241-246
        • Castrén E.
        Neuronal network plasticity and recovery from depression.
        JAMA Psychiatry. 2013; 70: 983-989
        • Holderbach R.
        • Clark K.
        • Moreau J.L.
        • Bischofberger J.
        • Normann C.
        Enhanced long-term synaptic depression in an animal model of depression.
        Biol Psychiatry. 2007; 62: 92-100
        • Normann C.
        • Schmitz D.
        • Furmaier A.
        • Doing C.
        • Bach M.
        Long-term plasticity of visually evoked potentials in humans is altered in major depression.
        Biol Psychiatry. 2007; 62: 373-380
        • Player M.J.
        • Taylor J.L.
        • Weickert C.S.
        • Alonzo A.
        • Sachdev P.
        • Martin D.
        • et al.
        Neuroplasticity in depressed individuals compared with healthy controls.
        Neuropsychopharmacology. 2013; 38: 2101-2108
        • Kuhn M.
        • Mainberger F.
        • Feige B.
        • Maier J.G.
        • Mall V.
        • Jung N.H.
        • et al.
        State-dependent partial occlusion of cortical LTP-like plasticity in major depression.
        Neuropsychopharmacology. 2016; 41: 1521-1529
        • Bath K.G.
        • Jing D.Q.
        • Dincheva I.
        • Neeb C.C.
        • Pattwell S.S.
        • Chao M.V.
        • et al.
        BDNF Val66Met impairs fluoxetine-induced enhancement of adult hippocampus plasticity.
        Neuropsychopharmacology. 2012; 37: 1297-1304
        • Maya Vetencourt J.F.
        • Sale A.
        • Viegi A.
        • Baroncelli L.
        • De Pasquale R.
        • O’Leary O.F.
        • et al.
        The antidepressant fluoxetine restores plasticity in the adult visual cortex.
        Science. 2008; 320: 385-388
        • Karpova N.N.
        • Pickenhagen A.
        • Lindholm J.
        • Tiraboschi E.
        • Kulesskaya N.
        • Agustsdottir A.
        • et al.
        Fear erasure in mice requires synergy between antidepressant drugs and extinction training.
        Science. 2011; 334: 1731-1744
        • Von Frijtag J.C.
        • Kamal A.
        • Reijmers L.G.
        • Schrama L.H.
        • van den Bos R.
        • Spruijt B.M.
        Chronic imipramine treatment partially reverses the long-term changes of hippocampal synaptic plasticity in socially stressed rats.
        Neurosci Lett. 2001; 309: 153-156
        • Shakesby A.C.
        • Anwyl R.
        • Rowan M.J.
        Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: Rapid actions of serotonergic and antidepressant agents.
        J Neurosci. 2002; 22: 3638-3644
        • Levkovitz Y.
        • Grisaru N.
        • Segal M.
        Transcranial magnetic stimulation and antidepressive drugs share similar cellular effects in rat hippocampus.
        Neuropsychopharmacology. 2001; 24: 608-616
        • Batsikadze G.
        • Paulus W.
        • Kuo M.-F.
        • Nitsche M.A.
        Effect of serotonin on paired associative stimulation-induced plasticity in the human motor cortex.
        Neuropsychopharmacology. 2013; 38: 2260-2267
        • Charney D.S.
        • Manji H.K.
        Life stress, genes, and depression: Multiple pathways lead to increased risk and new opportunities for intervention.
        Sci STKE. 2004; 2004: re5
        • Roy A.
        • Campbell M.K.
        A unifying framework for depression: Bridging the major biological and psychosocial theories through stress.
        Clin Invest Med. 2013; 36: E170-E190
        • Nemeroff C.B.
        The preeminent role of early untoward experience on vulnerability to major psychiatric disorders: The nature-nurture controversy revisited and soon to be resolved.
        Mol Psychiatry. 1999; 4: 106-108
        • Swaab D.F.
        • Bao A.-M.
        • Lucassen P.J.
        The stress system in the human brain in depression and neurodegeneration.
        Ageing Res Rev. 2005; 4: 141-194
        • Nestler E.J.
        • Hyman S.E.
        Animal models of neuropsychiatric disorders.
        Nat Neurosci. 2010; 13: 1161-1169
        • Krugers H.J.
        • Hoogenraad C.C.
        • Groc L.
        Stress hormones and AMPA receptor trafficking in synaptic plasticity and memory.
        Nat Rev Neurosci. 2010; 11: 675-681
        • Kim J.J.
        • Diamond D.M.
        The stressed hippocampus, synaptic plasticity and lost memories.
        Nat Rev Neurosci. 2002; 3: 453-462
        • de Kloet E.R.
        • Joëls M.
        • Holsboer F.
        Stress and the brain: From adaptation to disease.
        Nat Rev Neurosci. 2005; 6: 463-475
        • Sapolsky R.M.
        Stress and the brain: Individual variability and the inverted-U.
        Nat Neurosci. 2015; 18: 1344-1346
        • Xu L.
        • Anwyl R.
        • Rowan M.J.
        Behavioural stress facilitates the induction of long-term depression in the hippocampus.
        Nature. 1997; 387: 497-500
        • Xu L.
        • Holscher C.
        • Anwyl R.
        • Rowan M.J.
        Glucocorticoid receptor and protein/RNA synthesis-dependent mechanisms underlie the control of synaptic plasticity by stress.
        Proc Natl Acad Sci U S A. 1998; 95: 3204-3208
        • Bolo N.R.
        • Hodé Y.
        • Nédélec J.F.
        • Lainé E.
        • Wagner G.
        • Macher J.P.
        Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy.
        Neuropsychopharmacology. 2000; 23: 428-438
        • Karson C.N.
        • Newton J.E.
        • Livingston R.
        • Jolly J.B.
        • Cooper T.B.
        • Sprigg J.
        • Komoroski R.A.
        Human brain fluoxetine concentrations.
        J Neuropsychiatry Clin Neurosci. 1993; 5: 322-329
        • Deak F.
        • Lasztoczi B.
        • Pacher P.
        • Petheo G.L.
        • Valeria K.
        • Spat A.
        Inhibition of voltage-gated calcium channels by fluoxetine in rat hippocampal pyramidal cells.
        Neuropharmacology. 2000; 39: 1029-1036
        • Witchel H.J.
        • Pabbathi V.K.
        • Hofmann G.
        • Paul A.A.
        • Hancox J.C.
        Inhibitory actions of the selective serotonin re-uptake inhibitor citalopram on HERG and ventricular L-type calcium currents.
        FEBS Lett. 2002; 512: 59-66
        • Ungvari Z.
        • Pacher P.
        • Kecskeméti V.
        • Koller A.
        Fluoxetine dilates isolated small cerebral arteries of rats and attenuates constrictions to serotonin, norepinephrine, and a voltage-dependent Ca(2+) channel opener.
        Stroke J Cereb Circ. 1999; 30: 1949-1954
        • Sur C.
        • Betz H.
        • Schloss P.
        Immunocytochemical detection of the serotonin transporter in rat brain.
        Neuroscience. 1996; 73: 217-231
        • Chameau P.
        • Qin Y.
        • Spijker S.
        • Smit G.
        • Joels M.
        Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus.
        J Neurophysiol. 2007; 97: 5-14
        • Petit-Demouliere B.
        • Chenu F.
        • Bourin M.
        Forced swimming test in mice: A review of antidepressant activity.
        Psychopharmacol Berl. 2005; 177: 245-255
        • Serchov T.
        • Clement H.-W.
        • Schwarz M.K.
        • Iasevoli F.
        • Tosh D.K.
        • Idzko M.
        • et al.
        Increased signaling via adenosine A1 receptors, sleep deprivation, imipramine, and ketamine inhibit depressive-like behavior via induction of Homer1a.
        Neuron. 2015; 87: 549-562
        • Sun P.
        • Wang F.
        • Wang L.
        • Zhang Y.
        • Yamamoto R.
        • Sugai T.
        • et al.
        Increase in cortical pyramidal cell excitability accompanies depression-like behavior in mice: A transcranial magnetic stimulation study.
        J Neurosci. 2011; 31: 16464-16472
        • Lira A.
        • Zhou M.
        • Castanon N.
        • Ansorge M.S.
        • Gordon J.A.
        • Francis J.H.
        • et al.
        Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice.
        Biol Psychiatry. 2003; 54: 960-971
        • Lavoie P.A.
        • Beauchamp G.
        • Elie R.
        Atypical antidepressants inhibit depolarization-induced calcium uptake in rat hippocampus synaptosomes.
        Can J Physiol Pharmacol. 1997; 75: 983-987
        • Stauderman K.A.
        • Gandhi V.C.
        • Jones D.J.
        Fluoxetine-induced inhibition of synaptosomal [3H]5-HT release: possible Ca(2+)-channel inhibition.
        Life Sci. 1992; 50: 2125-2138
        • Park K.S.
        • Kong I.D.
        • Park K.C.
        • Lee J.W.
        Fluoxetine inhibits L-type Ca2+ and transient outward K+ currents in rat ventricular myocytes.
        Yonsei Med J. 1999; 40: 144-151
        • Yaris E.
        • Kesim M.
        • Kadioglu M.
        • Kalyoncu N.I.
        • Ulku C.
        • Ozyavuz R.
        The effects of paroxetine on rat isolated vas deferens.
        Pharmacol Res. 2003; 48: 335-345
        • Bianchi M.T.
        Non-serotonin anti-depressant actions: Direct ion channel modulation by SSRIs and the concept of single agent poly-pharmacy.
        Med Hypotheses. 2008; 70: 951-956
        • Andersen J.
        • Stuhr-Hansen N.
        • Zachariassen L.G.
        • Koldsø H.
        • Schiøtt B.
        • Strømgaard K.
        • Kristensen A.S.
        Molecular basis for selective serotonin reuptake inhibition by the antidepressant agent fluoxetine (Prozac).
        Mol Pharmacol. 2014; 85: 703-714
        • Zaydman M.A.
        • Cui J.
        PIP2 regulation of KCNQ channels: Biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating.
        Front Physiol. 2014; 5: 195
        • Casamassima F.
        • Hay A.C.
        • Benedetti A.
        • Lattanzi L.
        • Cassano G.B.
        • Perlis R.H.
        L-type calcium channels and psychiatric disorders: A brief review.
        Am J Med Genet Part B Neuropsychiatr Genet. 2010; 153B: 1373-1390
        • Sinnegger-Brauns M.J.
        • Hetzenauer A.
        • Huber I.G.
        • Renström E.
        • Wietzorrek G.
        • Berjukov S.
        • et al.
        Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca 2+ channels.
        J Clin Invest. 2004; 113: 1430-1439
        • Yoshimizu T.
        • Pan J.Q.
        • Mungenast A.E.
        • Madison J.M.
        • Su S.
        • Ketterman J.
        • et al.
        Functional implications of a psychiatric risk variant within CACNA1C in induced human neurons.
        Mol Psychiatry. 2015; 20 ([erratum appears in Mol Psychiatry 20(2):284]): 162-169
        • Berger S.M.
        • Bartsch D.
        The role of L-type voltage-gated calcium channels Cav1.2 and Cav1.3 in normal and pathological brain function.
        Cell Tissue Res. 2014; 357: 463-476
        • Green E.K.
        • Grozeva D.
        • Jones I.
        • Jones L.
        • Kirov G.
        • Caesar S.
        • et al.
        The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia.
        Mol Psychiatry. 2010; 15: 1016-1022
        • Bigos K.L.
        • Mattay V.S.
        • Callicott J.H.
        • Straub R.E.
        • Vakkalanka R.
        • Kolachana B.
        • et al.
        Genetic variation in CACNA1C affects brain circuitries related to mental illness.
        Arch Gen Psychiatry. 2010; 67: 939-945
        • Erk S.
        • Meyer-Lindenberg A.
        • Schnell K.
        • Opitz von Boberfeld C.
        • Esslinger C.
        • Kirsch P.
        • et al.
        Brain function in carriers of a genome-wide supported bipolar disorder variant.
        Arch Gen Psychiatry. 2010; 67: 803-811
        • Dao D.T.
        • Mahon P.B.
        • Cai X.
        • Kovacsics C.E.
        • Blackwell R.A.
        • Arad M.
        • et al.
        Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans.
        Biol Psychiatry. 2010; 68: 801-810
        • Bhat S.
        • Dao D.T.
        • Terrillion C.E.
        • Arad M.
        • Smith R.J.
        • Soldatov N.M.
        • Gould T.D.
        CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease.
        Prog Neurobiol. 2012; 99: 1-14
        • Xiong W.
        • Wei H.
        • Xiang X.
        • Cao J.
        • Dong Z.
        • Wang Y.
        • et al.
        The effect of acute stress on LTP and LTD induction in the hippocampal CA1 region of anesthetized rats at three different ages.
        Brain Res. 2004; 1005: 187-192
        • Pavlides C.
        • Nivon L.G.
        • McEwen B.S.
        Effects of chronic stress on hippocampal long-term potentiation.
        Hippocampus. 2002; 12: 245-257
        • Mamczarz J.
        • Budziszewska B.
        • Antkiewicz-Michaluk L.
        • Vetulani J.
        The Ca2+ channel blockade changes the behavioral and biochemical effects of immobilization stress.
        Neuropsychopharmacology. 1999; 20: 248-254
        • Musazzi L.
        • Tornese P.
        • Sala N.
        • Popoli M.
        Acute stress is not acute: Sustained enhancement of glutamate release after acute stress involves readily releasable pool size and synapsin I activation.
        Mol Psychiatry. 2017; 22: 1226-1227
        • Kendler K.S.
        • Karkowski L.M.
        • Prescott C.A.
        Causal relationship between stressful life events and the onset of major depression.
        Am J Psychiatry. 1999; 156: 837-841
        • Nissen C.
        • Holz J.
        • Blechert J.
        • Feige B.
        • Riemann D.
        • Voderholzer U.
        • Normann C.
        Learning as a model for neural plasticity in major depression.
        Biol Psychiatry. 2010; 68: 544-552
        • Kuhn M.
        • Höger N.
        • Feige B.
        • Blechert J.
        • Normann C.
        • Nissen C.
        Fear extinction as a model for synaptic plasticity in major depressive disorder.
        PloS One. 2014; 9: e115280
        • Musazzi L.
        • Treccani G.
        • Mallei A.
        • Popoli M.
        The action of antidepressants on the glutamate system: Regulation of glutamate release and glutamate receptors.
        Biol Psychiatry. 2013; 73: 1180-1188
        • Yohn C.N.
        • Gergues M.M.
        • Samuels B.A.
        The role of 5-HT receptors in depression.
        Mol Brain. 2017; 10: 28
        • Nackenoff A.G.
        • Moussa-Tooks A.B.
        • McMeekin A.M.
        • Veenstra-VanderWeele J.
        • Blakely R.D.
        Essential contributions of serotonin transporter inhibition to the acute and chronic actions of fluoxetine and citalopram in the SERT Met172 mouse.
        Neuropsychopharmacology. 2016; 41: 1733-1741
        • Dulawa S.C.
        • Hen R.
        Recent advances in animal models of chronic antidepressant effects: The novelty-induced hypophagia test.
        Neurosci Biobehav Rev. 2005; 29: 771-783