Advertisement

Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia

Published:September 28, 2017DOI:https://doi.org/10.1016/j.biopsych.2017.09.022

      Abstract

      Background

      Executive cognitive functions, including working memory, cognitive flexibility, and inhibition, are impaired in schizophrenia. Executive functions rely on coordinated information processing between the prefrontal cortex (PFC) and thalamus, particularly the mediodorsal nucleus. This raises the possibility that anatomical connectivity between the PFC and mediodorsal thalamus may be 1) reduced in schizophrenia and 2) related to deficits in executive function. The current investigation tested these hypotheses.

      Methods

      Forty-five healthy subjects and 62 patients with a schizophrenia spectrum disorder completed a battery of tests of executive function and underwent diffusion-weighted imaging. Probabilistic tractography was used to quantify anatomical connectivity between six cortical regions, including PFC, and the thalamus. Thalamocortical anatomical connectivity was compared between healthy subjects and patients with schizophrenia using region-of-interest and voxelwise approaches, and the association between PFC-thalamic anatomical connectivity and severity of executive function impairment was examined in patients.

      Results

      Anatomical connectivity between the thalamus and PFC was reduced in schizophrenia. Voxelwise analysis localized the reduction to areas of the mediodorsal thalamus connected to lateral PFC. Reduced PFC-thalamic connectivity in schizophrenia correlated with impaired working memory but not cognitive flexibility and inhibition. In contrast to reduced PFC-thalamic connectivity, thalamic connectivity with somatosensory and occipital cortices was increased in schizophrenia.

      Conclusions

      The results are consistent with models implicating disrupted PFC-thalamic connectivity in the pathophysiology of schizophrenia and mechanisms of cognitive impairment. PFC-thalamic anatomical connectivity may be an important target for procognitive interventions. Further work is needed to determine the implications of increased thalamic connectivity with sensory cortex.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Miyake A.
        • Friedman N.P.
        • Emerson M.J.
        • Witzki A.H.
        • Howerter A.
        • Wager T.D.
        The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis.
        Cogn Psychol. 2000; 41: 49-100
        • Heinrichs R.W.
        • Zakzanis K.K.
        Neurocognitive deficit in schizophrenia: A quantitative review of the evidence.
        Neuropsychology. 1998; 12: 426-445
        • Palmer B.W.
        • Heaton R.K.
        • Paulsen J.S.
        • Kuck J.
        • Braff D.
        • Harris M.J.
        • et al.
        Is it possible to be schizophrenic yet neuropsychologically normal?.
        Neuropsychology. 1997; 11: 437-446
        • Wilk C.M.
        • Gold J.M.
        • McMahon R.P.
        • Humber K.
        • Iannone V.N.
        • Buchanan R.W.
        No, it is not possible to be schizophrenic yet neuropsychologically normal.
        Neuropsychology. 2005; 19: 778-786
        • Weickert T.W.
        • Goldberg T.E.
        • Gold J.M.
        • Bigelow L.B.
        • Egan M.F.
        • Weinberger D.R.
        Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect.
        Arch Gen Psychiatry. 2000; 57: 907-913
        • Dickinson D.
        • Ragland J.D.
        • Gold J.M.
        • Gur R.C.
        General and specific cognitive deficits in schizophrenia: Goliath defeats David?.
        Biol Psychiatry. 2008; 64: 823-827
        • Lepage M.
        • Bodnar M.
        • Bowie C.R.
        Neurocognition: Clinical and functional outcomes in schizophrenia.
        Can J Psychiatry. 2014; 59: 5-12
        • Woodward N.D.
        • Purdon S.E.
        • Meltzer H.Y.
        • Zald D.H.
        A meta-analysis of neuropsychological change to clozapine, olanzapine, quetiapine, and risperidone in schizophrenia.
        Int J Neuropsychopharmacol. 2005; 8: 457-472
        • Woodward N.D.
        • Purdon S.E.
        • Meltzer H.Y.
        • Zald D.H.
        A meta-analysis of cognitive change with haloperidol in clinical trials of atypical antipsychotics: Dose effects and comparison to practice effects.
        Schizophr Res. 2007; 89: 211-224
        • Simons D.J.
        • Boot W.R.
        • Charness N.
        • Gathercole S.E.
        • Chabris C.F.
        • Hambrick D.Z.
        • et al.
        Do “brain-training” programs work?.
        Psychol Sci Public Interest. 2016; 17: 103-186
        • de Witte L.
        • Brouns R.
        • Kavadias D.
        • Engelborghs S.
        • De Deyn P.P.
        • Marien P.
        Cognitive, affective and behavioural disturbances following vascular thalamic lesions: A review.
        Cortex. 2011; 47: 273-319
        • Van der Werf Y.D.
        • Scheltens P.
        • Lindeboom J.
        • Witter M.P.
        • Uylings H.B.
        • Jolles J.
        Deficits of memory, executive functioning and attention following infarction in the thalamus; a study of 22 cases with localised lesions.
        Neuropsychologia. 2003; 41: 1330-1344
        • Niendam T.A.
        • Laird A.R.
        • Ray K.L.
        • Dean Y.M.
        • Glahn D.C.
        • Carter C.S.
        Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions.
        Cogn Affect Behav Neurosci. 2012; 12: 241-268
        • Block A.E.
        • Dhanji H.
        • Thompson-Tardif S.F.
        • Floresco S.B.
        Thalamic-prefrontal cortical-ventral striatal circuitry mediates dissociable components of strategy set shifting.
        Cereb Cortex. 2007; 17: 1625-1636
        • Bolkan S.S.
        • Stujenske J.M.
        • Parnaudeau S.
        • Spellman T.J.
        • Rauffenbart C.
        • Abbas A.I.
        • et al.
        Thalamic projections sustain prefrontal activity during working memory maintenance.
        Nat Neurosci. 2017; 20: 987-996
        • Parnaudeau S.
        • O’Neill P.K.
        • Bolkan S.S.
        • Ward R.D.
        • Abbas A.I.
        • Roth B.L.
        • et al.
        Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition.
        Neuron. 2013; 77: 1151-1162
        • Parnaudeau S.
        • Taylor K.
        • Bolkan S.S.
        • Ward R.D.
        • Balsam P.D.
        • Kellendonk C.
        Mediodorsal thalamus hypofunction impairs flexible goal-directed behavior.
        Biol Psychiatry. 2015; 77: 445-453
        • Schmitt L.I.
        • Wimmer R.D.
        • Nakajima M.
        • Happ M.
        • Mofakham S.
        • Halassa M.M.
        Thalamic amplification of cortical connectivity sustains attentional control.
        Nature. 2017; 545: 219-223
        • Glahn D.C.
        • Laird A.R.
        • Ellison-Wright I.
        • Thelen S.M.
        • Robinson J.L.
        • Lancaster J.L.
        • et al.
        Meta-analysis of gray matter anomalies in schizophrenia: Application of anatomic likelihood estimation and network analysis.
        Biol Psychiatry. 2008; 64: 774-781
        • Minzenberg M.J.
        • Laird A.R.
        • Thelen S.
        • Carter C.S.
        • Glahn D.C.
        Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia.
        Arch Gen Psychiatry. 2009; 66: 811-822
        • Giraldo-Chica M.
        • Woodward N.D.
        Review of thalamocortical resting-state fMRI studies in schizophrenia.
        Schizophr Res. 2017; 180: 58-63
        • Andreasen N.C.
        The role of the thalamus in schizophrenia.
        Can J Psychiatry. 1997; 42: 27-33
        • Andreasen N.C.
        • Paradiso S.
        • O’Leary D.S.
        “Cognitive dysmetria” as an integrative theory of schizophrenia: A dysfunction in cortical-subcortical-cerebellar circuitry?.
        Schizophr Bull. 1998; 24: 203-218
        • Jones E.G.
        Cortical development and thalamic pathology in schizophrenia.
        Schizophr Bull. 1997; 23: 483-501
        • Swerdlow N.R.
        Integrative circuit models and their implications for the pathophysiologies and treatments of the schizophrenias.
        Curr Top Behav Neurosci. 2010; 4: 555-583
        • Cronenwett W.J.
        • Csernansky J.
        Thalamic pathology in schizophrenia.
        Curr Top Behav Neurosci. 2010; 4: 509-528
        • Cho K.I.
        • Shenton M.E.
        • Kubicki M.
        • Jung W.H.
        • Lee T.Y.
        • Yun J.Y.
        • et al.
        Altered thalamo-cortical white matter connectivity: Probabilistic tractography study in clinical-high risk for psychosis and first-episode psychosis.
        Schizophr Bull. 2016; 42: 723-731
        • Kubota M.
        • Miyata J.
        • Sasamoto A.
        • Sugihara G.
        • Yoshida H.
        • Kawada R.
        • et al.
        Thalamocortical disconnection in the orbitofrontal region associated with cortical thinning in schizophrenia.
        JAMA Psychiatry. 2013; 70: 12-21
        • Marenco S.
        • Stein J.L.
        • Savostyanova A.A.
        • Sambataro F.
        • Tan H.Y.
        • Goldman A.L.
        • et al.
        Investigation of anatomical thalamo-cortical connectivity and fMRI activation in schizophrenia.
        Neuropsychopharmacology. 2012; 37: 499-507
        • First M.B.
        • Spitzer R.L.
        • Gibbon M.
        • Williams J.B.W.
        Structured Clinical Interview for DSM-IV Axis I Disorders. Clinical Version (SCID-CV).
        American Psychiatric Press Inc, Washington, DC1996
        • Kay S.R.
        • Fiszbein A.
        • Opler L.A.
        The positive and negative syndrome scale (PANSS) for schizophrenia.
        Schizophr Bull. 1987; 13: 261-276
        • Wechsler D.
        Wechsler Test of Adult Reading.
        Pearson, San Antonio, TX2001
        • Wechsler D.
        Wechsler Memory Scale–3rd Edition.
        The Psychological Corporation, San Antonio, TX1997
        • Kongs S.K.
        • Thompson L.L.
        • Iverson G.L.
        • Heaton R.K.
        Wisconsin Card Sorting Test-64 Card Version.
        Psychological Assessment Resources, Odessa, FL2000
        • Carter C.S.
        • Minzenberg M.
        • West R.
        • Macdonald III, A.
        CNTRICS imaging biomarker selections: Executive control paradigms.
        Schizophr Bull. 2012; 38: 34-42
        • Purdon S.E.
        The Screen for Cognitive Impairment in Psychiatry (SCIP): Administration Manual and Normative Data.
        PNL Inc, Edmonton, Alberta2005
        • Asman A.J.
        • Landman B.A.
        Hierarchical performance estimation in the statistical label fusion framework.
        Med Image Anal. 2014; 18: 1070-1081
        • Ashburner J.
        A fast diffeomorphic image registration algorithm.
        Neuroimage. 2007; 38: 95-113
        • Lauzon C.B.
        • Asman A.J.
        • Esparza M.L.
        • Burns S.S.
        • Fan Q.
        • Gao Y.
        • et al.
        Simultaneous analysis and quality assurance for diffusion tensor imaging.
        PLoS One. 2013; 8: e61737
        • Behrens T.E.
        • Berg H.J.
        • Jbabdi S.
        • Rushworth M.F.
        • Woolrich M.W.
        Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?.
        Neuroimage. 2007; 34: 144-155
        • Behrens T.E.
        • Johansen-Berg H.
        • Woolrich M.W.
        • Smith S.M.
        • Wheeler-Kingshott C.A.
        • Boulby P.A.
        • et al.
        Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging.
        Nat Neurosci. 2003; 6: 750-757
        • Johansen-Berg H.
        • Behrens T.E.
        • Sillery E.
        • Ciccarelli O.
        • Thompson A.J.
        • Smith S.M.
        • et al.
        Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus.
        Cereb Cortex. 2005; 15: 31-39
        • Woodward N.D.
        • Rogers B.
        • Heckers S.
        Functional resting-state networks are differentially affected in schizophrenia.
        Schizophr Res. 2011; 130: 86-93
        • Andreasen N.C.
        • O’Leary D.S.
        • Cizadlo T.
        • Arndt S.
        • Rezai K.
        • Ponto L.L.
        • et al.
        Schizophrenia and cognitive dysmetria: A positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry.
        Proc Natl Acad Sci U S A. 1996; 93: 9985-9990
        • Lisman J.E.
        • Pi H.J.
        • Zhang Y.
        • Otmakhova N.A.
        A thalamo-hippocampal-ventral tegmental area loop may produce the positive feedback that underlies the psychotic break in schizophrenia.
        Biol Psychiatry. 2010; 68: 17-24
        • Ramsay I.S.
        • Nienow T.M.
        • MacDonald III, A.W.
        Increases in intrinsic thalamocortical connectivity and overall cognition following cognitive remediation in chronic schizophrenia.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2017; 2: 355-362
        • Ramsay I.S.
        • MacDonald III, A.W.
        Brain correlates of cognitive remediation in schizophrenia: Activation likelihood analysis shows preliminary evidence of neural target engagement.
        Schizophr Bull. 2015; 41: 1276-1284
        • Anticevic A.
        • Haut K.
        • Murray J.D.
        • Repovs G.
        • Yang G.J.
        • Diehl C.
        • et al.
        Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk.
        JAMA Psychiatry. 2015; 72: 882-891
        • Anticevic A.
        • Cole M.W.
        • Repovs G.
        • Murray J.D.
        • Brumbaugh M.S.
        • Winkler A.M.
        • et al.
        Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness.
        Cereb Cortex. 2014; 24: 3116-3130
        • Anticevic A.
        • Yang G.
        • Savic A.
        • Murray J.D.
        • Cole M.W.
        • Repovs G.
        • et al.
        Mediodorsal and visual thalamic connectivity differ in schizophrenia and bipolar disorder with and without psychosis history.
        Schizophr Bull. 2014; 40: 1227-1243
        • Woodward N.D.
        • Heckers S.
        Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders.
        Biol Psychiatry. 2016; 79: 1016-1025
        • Woodward N.D.
        • Karbasforoushan H.
        • Heckers S.
        Thalamocortical dysconnectivity in schizophrenia.
        Am J Psychiatry. 2012; 169: 1092-1099
        • Cheng W.
        • Palaniyappan L.
        • Li M.
        • Kendrick K.M.
        • Zhang J.
        • Luo Q.
        • et al.
        Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry.
        NPJ Schizophr. 2015; 1: 15016
        • Atluri G.
        • Steinbach M.
        • Lim K.O.
        • Kumar V.
        • Macdonald III, A.
        Connectivity cluster analysis for discovering discriminative subnetworks in schizophrenia.
        Hum Brain Mapp. 2015; 36: 756-767
        • Lerman-Sinkoff D.B.
        • Barch D.M.
        Network community structure alterations in adult schizophrenia: Identification and localization of alterations.
        Neuroimage Clin. 2016; 10: 96-106
        • Tu P.C.
        • Lee Y.C.
        • Chen Y.S.
        • Hsu J.W.
        • Li C.T.
        • Su T.P.
        Network-specific cortico-thalamic dysconnection in schizophrenia revealed by intrinsic functional connectivity analyses.
        Schizophr Res. 2015; 166: 137-143
        • Klingner C.M.
        • Langbein K.
        • Dietzek M.
        • Smesny S.
        • Witte O.W.
        • Sauer H.
        • et al.
        Thalamocortical connectivity during resting state in schizophrenia.
        Eur Arch Psychiatry Clin Neurosci. 2014; 264: 111-119
        • Wang H.L.
        • Rau C.L.
        • Li Y.M.
        • Chen Y.P.
        • Yu R.
        Disrupted thalamic resting-state functional networks in schizophrenia.
        Front Behav Neurosci. 2015; 9: 45
        • Skatun K.C.
        • Kaufmann T.
        • Brandt C.L.
        • Doan N.T.
        • Alnaes D.
        • Tonnesen S.
        • et al.
        Thalamo-cortical functional connectivity in schizophrenia and bipolar disorder.
        Brain Imaging Behav. 2017; ([published online ahead of print Apr 25])
        • Honey C.J.
        • Sporns O.
        • Cammoun L.
        • Gigandet X.
        • Thiran J.P.
        • Meuli R.
        • et al.
        Predicting human resting-state functional connectivity from structural connectivity.
        Proc Natl Acad Sci U S A. 2009; 106: 2035-2040
        • Dekaban A.
        Human thalamus; an anatomical, developmental and pathological study. II. Development of the human thalamic nuclei.
        J Comp Neurol. 1954; 100: 63-97
        • Mojsilovic J.
        • Zecevic N.
        Early development of the human thalamus: Golgi and Nissl study.
        Early Hum Dev. 1991; 27: 119-144
        • Krsnik Z.
        • Majic V.
        • Vasung L.
        • Huang H.
        • Kostovic I.
        Growth of thalamocortical fibers to the somatosensory cortex in the human fetal brain.
        Front Neurosci. 2017; 11: 233
        • Lopez-Bendito G.
        • Molnar Z.
        Thalamocortical development: How are we going to get there?.
        Nat Rev Neurosci. 2003; 4: 276-289
        • Fama R.
        • Sullivan E.V.
        Thalamic structures and associated cognitive functions: Relations with age and aging.
        Neurosci Biobehav Rev. 2015; 54: 29-37
        • Fair D.A.
        • Bathula D.
        • Mills K.L.
        • Dias T.G.
        • Blythe M.S.
        • Zhang D.
        • et al.
        Maturing thalamocortical functional connectivity across development.
        Front Syst Neurosci. 2010; 4: 10
        • Tourdias T.
        • Saranathan M.
        • Levesque I.R.
        • Su J.
        • Rutt B.K.
        Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T.
        Neuroimage. 2014; 84: 534-545
        • Ciccarelli O.
        • Behrens T.E.
        • Altmann D.R.
        • Orrell R.W.
        • Howard R.S.
        • Johansen-Berg H.
        • et al.
        Probabilistic diffusion tractography: A potential tool to assess the rate of disease progression in amyotrophic lateral sclerosis.
        Brain. 2006; 129: 1859-1871