Advertisement

Structural Neuroimaging of Anorexia Nervosa: Future Directions in the Quest for Mechanisms Underlying Dynamic Alterations

  • Joseph A. King
    Affiliations
    Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
    Search for articles by this author
  • Guido K.W. Frank
    Affiliations
    Departments of Psychiatry and Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, Colorado
    Search for articles by this author
  • Paul M. Thompson
    Affiliations
    Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Marina del Rey, California
    Search for articles by this author
  • Stefan Ehrlich
    Correspondence
    Address correspondence to Stefan Ehrlich, M.D., Division of Psychological and Social Medicine and Developmental Neuroscience, Technische Universität Dresden, Faculty of Medicine, University Hospital C. G. Carus, Fetscherstraße 74, Dresden 01307, Germany.
    Affiliations
    Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany

    Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
    Search for articles by this author

      Abstract

      Anorexia nervosa (AN) is a serious eating disorder characterized by self-starvation and extreme weight loss. Pseudoatrophic brain changes are often readily visible in individual brain scans, and AN may be a valuable model disorder to study structural neuroplasticity. Structural magnetic resonance imaging studies have found reduced gray matter volume and cortical thinning in acutely underweight patients to normalize following successful treatment. However, some well-controlled studies have found regionally greater gray matter and persistence of structural alterations following long-term recovery. Findings from diffusion tensor imaging studies of white matter integrity and connectivity are also inconsistent. Furthermore, despite the severity of AN, the number of existing structural neuroimaging studies is still relatively low, and our knowledge of the underlying cellular and molecular mechanisms for macrostructural brain changes is rudimentary. We critically review the current state of structural neuroimaging in AN and discuss the potential neurobiological basis of structural brain alterations in the disorder, highlighting impediments to progress, recent developments, and promising future directions. In particular, we argue for the utility of more standardized data collection, adopting a connectomics approach to understanding brain network architecture, employing advanced magnetic resonance imaging methods that quantify biomarkers of brain tissue microstructure, integrating data from multiple imaging modalities, strategic longitudinal observation during weight restoration, and large-scale data pooling. Our overarching objective is to motivate carefully controlled research of brain structure in eating disorders, which will ultimately help predict therapeutic response and improve treatment.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zipfel S.
        • Giel K.E.
        • Bulik C.M.
        • Hay P.
        • Schmidt U.
        Anorexia nervosa: Aetiology, assessment, and treatment.
        Lancet Psychiatry. 2015; 2: 1099-1111
        • Papadopoulos F.C.
        • Ekbom A.
        • Brandt L.
        • Ekselius L.
        Excess mortality, causes of death and prognostic factors in anorexia nervosa.
        Br J Psychiatry J Ment Sci. 2009; 194: 10-17
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders, 5th ed (DSM-5).
        American Psychiatric Publishing, Arlington, VA2013
        • Brooks S.J.
        • Rask-Andersen M.
        • Benedict C.
        • Schiöth H.B.
        A debate on current eating disorder diagnoses in light of neurobiological findings: Is it time for a spectrum model?.
        BMC Psychiatry. 2012; 12: 76
        • Treasure J.
        • Zipfel S.
        • Micali N.
        • Wade T.
        • Stice E.
        • Claudino A.
        • et al.
        Anorexia nervosa.
        Nat Rev Dis Primer. 2015; 1: 15074
        • Frank G.K.W.
        The perfect storm—a bio-psycho-social risk model for developing and maintaining eating disorders.
        Front Behav Neurosci. 2016; 10: 44
        • Frank G.K.W.
        • Shott M.E.
        The role of psychotropic medications in the management of anorexia nervosa: Rationale, evidence and future prospects.
        CNS Drugs. 2016; 30: 419-442
        • Hill L.
        • Peck S.K.
        • Wierenga C.E.
        • Kaye W.H.
        Applying neurobiology to the treatment of adults with anorexia nervosa.
        J Eat Disord. 2016; 4: 31
        • Kaye W.H.
        • Wierenga C.E.
        • Bailer U.F.
        • Simmons A.N.
        • Bischoff-Grethe A.
        Nothing tastes as good as skinny feels: The neurobiology of anorexia nervosa.
        Trends Neurosci. 2013; 36: 110-120
        • Heidrich R.
        • Schmidt-Matthias H.
        (Encephalographic findings in anorexia nervosa.).
        Arch Psychiatr Nervenkrankh Ver Mit Z Gesamte Neurol Psychiatr. 1961; 202: 183-201
        • Ashburner J.
        • Friston K.J.
        Voxel-based morphometry—the methods.
        Neuroimage. 2000; 11: 805-821
        • Dale A.M.
        • Fischl B.
        • Sereno M.I.
        Cortical surface-based analysis. I. Segmentation and surface reconstruction.
        Neuroimage. 1999; 9: 179-194
        • Fischl B.
        • Sereno M.I.
        • Dale A.M.
        Cortical surface-based analysis. II. Inflation, flattening, and a surface-based coordinate system.
        Neuroimage. 1999; 9: 195-207
        • Smith S.M.
        • Jenkinson M.
        • Johansen-Berg H.
        • Rueckert D.
        • Nichols T.E.
        • Mackay C.E.
        • et al.
        Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data.
        Neuroimage. 2006; 31: 1487-1505
        • Behrens T.E.J.
        • Woolrich M.W.
        • Jenkinson M.
        • Johansen-Berg H.
        • Nunes R.G.
        • Clare S.
        • et al.
        Characterization and propagation of uncertainty in diffusion-weighted MR imaging.
        Magn Reson Med. 2003; 50: 1077-1088
        • Phillipou A.
        • Rossell S.L.
        • Castle D.J.
        The neurobiology of anorexia nervosa: A systematic review.
        Aust N Z J Psychiatry. 2014; 48: 128-152
        • Frank G.K.W.
        Recent advances in neuroimaging to model eating disorder neurobiology.
        Curr Psychiatry Rep. 2015; 17: 559
        • Wagner A.
        • Greer P.
        • Bailer U.F.
        • Frank G.K.
        • Henry S.E.
        • Putnam K.
        • et al.
        Normal brain tissue volumes after long-term recovery in anorexia and bulimia nervosa.
        Biol Psychiatry. 2006; 59: 291-293
        • King J.A.
        • Geisler D.
        • Ritschel F.
        • Boehm I.
        • Seidel M.
        • Roschinski B.
        • et al.
        Global cortical thinning in acute anorexia nervosa normalizes following long-term weight restoration.
        Biol Psychiatry. 2015; 77: 624-632
        • Bernardoni F.
        • King J.A.
        • Geisler D.
        • Stein E.
        • Jaite C.
        • Nätsch D.
        • et al.
        Weight restoration therapy rapidly reverses cortical thinning in anorexia nervosa: A longitudinal study.
        Neuroimage. 2016; 130: 214-222
        • Mühlau M.
        • Gaser C.
        • Ilg R.
        • Conrad B.
        • Leibl C.
        • Cebulla M.H.
        • et al.
        Gray matter decrease of the anterior cingulate cortex in anorexia nervosa.
        Am J Psychiatry. 2007; 164: 1850-1857
        • Frank G.K.
        • Shott M.E.
        • Hagman J.O.
        • Mittal V.A.
        Alterations in brain structures related to taste reward circuitry in ill and recovered anorexia nervosa and in bulimia nervosa.
        Am J Psychiatry. 2013; 170: 1152-1160
        • Roberto C.A.
        • Mayer L.E.S.
        • Brickman A.M.
        • Barnes A.
        • Muraskin J.
        • Yeung L.-K.
        • et al.
        Brain tissue volume changes following weight gain in adults with anorexia nervosa.
        Int J Eat Disord. 2011; 44: 406-411
        • Via E.
        • Zalesky A.
        • Sánchez I.
        • Forcano L.
        • Harrison B.J.
        • Pujol J.
        • et al.
        Disruption of brain white matter microstructure in women with anorexia nervosa.
        J Psychiatry Neurosci. 2014; 39: 367-375
        • Shott M.E.
        • Pryor T.L.
        • Yang T.T.
        • Frank G.K.W.
        Greater insula white matter fiber connectivity in women recovered from anorexia nervosa.
        Neuropsychopharmacology. 2016; 41: 498-507
        • Van den Eynde F.
        • Suda M.
        • Broadbent H.
        • Guillaume S.
        • Van den Eynde M.
        • Steiger H.
        • et al.
        Structural magnetic resonance imaging in eating disorders: A systematic review of voxel-based morphometry studies.
        Eur Eat Disord Rev. 2012; 20: 94-105
        • Titova O.E.
        • Hjorth O.C.
        • Schiöth H.B.
        • Brooks S.J.
        Anorexia nervosa is linked to reduced brain structure in reward and somatosensory regions: A meta-analysis of VBM studies.
        BMC Psychiatry. 2013; 13: 110
        • Seitz J.
        • Bühren K.
        • von Polier G.G.
        • Heussen N.
        • Herpertz-Dahlmann B.
        • Konrad K.
        Morphological changes in the brain of acutely ill and weight-recovered patients with anorexia nervosa. A meta-analysis and qualitative review.
        Z Kinder Jugendpsychiatr Psychother. 2014; 42 (quiz 17–18): 7-17
        • Seitz J.
        • Herpertz-Dahlmann B.
        • Konrad K.
        Brain morphological changes in adolescent and adult patients with anorexia nervosa.
        J Neural Transm (Vienna). 2016; 123: 949-959
        • Martin Monzon B.
        • Hay P.
        • Foroughi N.
        • Touyz S.
        White matter alterations in anorexia nervosa: A systematic review of diffusion tensor imaging studies.
        World J Psychiatry. 2016; 6: 177-186
        • Seitz J.
        • Walter M.
        • Mainz V.
        • Herpertz-Dahlmann B.
        • Konrad K.
        • von Polier G.
        Brain volume reduction predicts weight development in adolescent patients with anorexia nervosa.
        J Psychiatr Res. 2015; 68: 228-237
        • Fonville L.
        • Giampietro V.
        • Williams S.C.R.
        • Simmons A.
        • Tchanturia K.
        Alterations in brain structure in adults with anorexia nervosa and the impact of illness duration.
        Psychol Med. 2014; 44: 1965-1975
        • Kohlmeyer K.
        • Lehmkuhl G.
        • Poutska F.
        Computed tomography of anorexia nervosa.
        AJNR Am J Neuroradiol. 1983; 4: 437-438
        • Winkler A.M.
        • Kochunov P.
        • Blangero J.
        • Almasy L.
        • Zilles K.
        • Fox P.T.
        • et al.
        Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies.
        Neuroimage. 2010; 53: 1135-1146
        • Lavagnino L.
        • Amianto F.
        • Mwangi B.
        • D’Agata F.
        • Spalatro A.
        • Zunta Soares G.B.
        • et al.
        The relationship between cortical thickness and body mass index differs between women with anorexia nervosa and healthy controls.
        Psychiatry Res. 2016; 248: 105-109
        • Schultz C.C.
        • Wagner G.
        • de la Cruz F.
        • Berger S.
        • Reichenbach J.R.
        • Sauer H.
        • Bär K.J.
        Evidence for alterations of cortical folding in anorexia nervosa.
        Eur Arch Psychiatry Clin Neurosci. 2017; 267: 41-49
        • Favaro A.
        • Tenconi E.
        • Degortes D.
        • Manara R.
        • Santonastaso P.
        Gyrification brain abnormalities as predictors of outcome in anorexia nervosa.
        Hum Brain Mapp. 2015; 36: 5113-5122
        • Giedd J.N.
        • Raznahan A.
        • Alexander-Bloch A.
        • Schmitt E.
        • Gogtay N.
        • Rapoport J.L.
        Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development.
        Neuropsychopharmacology. 2015; 40: 43-49
        • Frank G.K.
        • Shott M.E.
        • Hagman J.O.
        • Yang T.T.
        Localized brain volume and white matter integrity alterations in adolescent anorexia nervosa.
        J Am Acad Child Adolesc Psychiatry. 2013; 52: 1066-1075.e5
        • Travis K.E.
        • Golden N.H.
        • Feldman H.M.
        • Solomon M.
        • Nguyen J.
        • Mezer A.
        • et al.
        Abnormal white matter properties in adolescent girls with anorexia nervosa.
        Neuroimage Clin. 2015; 9: 648-659
        • Pfuhl G.
        • King J.A.
        • Geisler D.
        • Roschinski B.
        • Ritschel F.
        • Seidel M.
        • et al.
        Preserved white matter microstructure in young patients with anorexia nervosa?.
        Hum Brain Mapp. 2016; 37: 4069-4083
        • Vogel K.
        • Timmers I.
        • Kumar V.
        • Nickl-Jockschat T.
        • Bastiani M.
        • Roebroek A.
        • et al.
        White matter microstructural changes in adolescent anorexia nervosa including an exploratory longitudinal study.
        Neuroimage Clin. 2016; 11: 614-621
        • Cha J.
        • Ide J.S.
        • Bowman F.D.
        • Simpson H.B.
        • Posner J.
        • Steinglass J.E.
        Abnormal reward circuitry in anorexia nervosa: A longitudinal, multimodal MRI study.
        Hum Brain Mapp. 2016; 37: 3835-3846
        • Olivo G.
        • Wiemerslage L.
        • Swenne I.
        • Zhukowsky C.
        • Salonen-Ros H.
        • Larsson E.-M.
        • et al.
        Limbic-thalamo-cortical projections and reward-related circuitry integrity affects eating behavior: A longitudinal DTI study in adolescents with restrictive eating disorders.
        PloS One. 2017; 12: e0172129
        • Le Bihan D.
        Looking into the functional architecture of the brain with diffusion MRI.
        Nat Rev Neurosci. 2003; 4: 469-480
        • Jones D.K.
        • Cercignani M.
        Twenty-five pitfalls in the analysis of diffusion MRI data.
        NMR Biomed. 2010; 23: 803-820
        • Frank G.K.W.
        • Shott M.E.
        • Riederer J.
        • Pryor T.L.
        Altered structural and effective connectivity in anorexia and bulimia nervosa in circuits that regulate energy and reward homeostasis.
        Transl Psychiatry. 2016; 6: e932
        • Brooks S.J.
        • Barker G.J.
        • O’Daly O.G.
        • Brammer M.
        • Williams S.C.R.
        • Benedict C.
        • et al.
        Restraint of appetite and reduced regional brain volumes in anorexia nervosa: A voxel-based morphometric study.
        BMC Psychiatry. 2011; 11: 179
        • Favaro A.
        • Tenconi E.
        • Degortes D.
        • Manara R.
        • Santonastaso P.
        Effects of obstetric complications on volume and functional connectivity of striatum in anorexia nervosa patients.
        Int J Eat Disord. 2014; 47: 686-695
        • Friederich H.-C.
        • Walther S.
        • Bendszus M.
        • Biller A.
        • Thomann P.
        • Zeigermann S.
        • et al.
        Grey matter abnormalities within cortico-limbic-striatal circuits in acute and weight-restored anorexia nervosa patients.
        Neuroimage. 2012; 59: 1106-1113
        • Mainz V.
        • Schulte-Rüther M.
        • Fink G.R.
        • Herpertz-Dahlmann B.
        • Konrad K.
        Structural brain abnormalities in adolescent anorexia nervosa before and after weight recovery and associated hormonal changes.
        Psychosom Med. 2012; 74: 574-582
        • Boghi A.
        • Sterpone S.
        • Sales S.
        • D’Agata F.
        • Bradac G.B.
        • Zullo G.
        • Munno D.
        In vivo evidence of global and focal brain alterations in anorexia nervosa.
        Psychiatry Res. 2011; 192: 154-159
        • Amianto F.
        • Caroppo P.
        • D’Agata F.
        • Spalatro A.
        • Lavagnino L.
        • Caglio M.
        • et al.
        Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: A voxel-based morphometry study.
        Psychiatry Res. 2013; 213: 210-216
        • Castro-Fornieles J.
        • Bargalló N.
        • Lázaro L.
        • Andrés S.
        • Falcon C.
        • Plana M.T.
        • Junqué C.
        A cross-sectional and follow-up voxel-based morphometric MRI study in adolescent anorexia nervosa.
        J Psychiatr Res. 2009; 43: 331-340
        • Suchan B.
        • Busch M.
        • Schulte D.
        • Grönemeyer D.
        • Grönermeyer D.
        • Herpertz S.
        • Vocks S.
        Reduction of gray matter density in the extrastriate body area in women with anorexia nervosa.
        Behav Brain Res. 2010; 206: 63-67
        • Bomba M.
        • Riva A.
        • Veggo F.
        • Grimaldi M.
        • Morzenti S.
        • Neri F.
        • Nacinovich R.
        Impact of speed and magnitude of weight loss on the development of brain trophic changes in adolescents with anorexia nervosa: A case control study.
        Ital J Pediatr. 2013; 39: 14
        • Jones D.K.
        • Knösche T.R.
        • Turner R.
        White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI.
        Neuroimage. 2013; 73: 239-254
        • Kaufmann L.K.
        • Baur V.
        • Hänggi J.
        • Jäncke L.
        • Piccirelli M.
        • Kollias S.
        • et al.
        Fornix underwater? Ventricular enlargement biases forniceal diffusion magnetic resonance imaging indices in anorexia nervosa.
        Biol Psychiatry Cogn Neurosci Neuroimaging. 2017; 2: 430-437
        • Yau W.-Y.W.
        • Bischoff-Grethe A.
        • Theilmann R.J.
        • Torres L.
        • Wagner A.
        • Kaye W.H.
        • Fennema-Notestine C.
        Alterations in white matter microstructure in women recovered from anorexia nervosa.
        Int J Eat Disord. 2013; 46: 701-708
        • Zhang A.
        • Leow A.
        • Zhan L.
        • GadElkarim J.
        • Moody T.
        • Khalsa S.
        • et al.
        Brain connectome modularity in weight-restored anorexia nervosa and body dysmorphic disorder.
        Psychol Med. 2016; 46: 2785-2797
        • Button K.S.
        • Ioannidis J.P.A.
        • Mokrysz C.
        • Nosek B.A.
        • Flint J.
        • Robinson E.S.J.
        • Munafò M.R.
        Power failure: Why small sample size undermines the reliability of neuroscience.
        Nat Rev Neurosci. 2013; 14: 365-376
        • Fusar-Poli P.
        • Radua J.
        • Frascarelli M.
        • Mechelli A.
        • Borgwardt S.
        • Di Fabio F.
        • et al.
        Evidence of reporting biases in voxel-based morphometry (VBM) studies of psychiatric and neurological disorders.
        Hum Brain Mapp. 2014; 35: 3052-3065
        • Trefler A.
        • Sadeghi N.
        • Thomas A.G.
        • Pierpaoli C.
        • Baker C.I.
        • Thomas C.
        Impact of time-of-day on brain morphometric measures derived from T1-weighted magnetic resonance imaging.
        Neuroimage. 2016; 133: 41-52
        • McNamara R.K.
        • Asch R.H.
        • Lindquist D.M.
        • Krikorian R.
        Role of polyunsaturated fatty acids in human brain structure and function across the lifespan: An update on neuroimaging findings.
        Prostaglandins Leukot Essent Fatty Acids. 2017; ([published online ahead of print May 9])
        • Suda M.
        • Narita K.
        • Takei Y.
        • Aoyama Y.
        • Takahashi K.
        • Yuki N.
        • et al.
        Changes in gray matter volume with rapid body weight changes in anorexia nervosa: A voxel-based morphometric study.
        Biol Psychiatry. 2011; 70: e35-e36
        • Streitbürger D.-P.
        • Möller H.E.
        • Tittgemeyer M.
        • Hund-Georgiadis M.
        • Schroeter M.L.
        • Mueller K.
        Investigating structural brain changes of dehydration using voxel-based morphometry.
        PloS One. 2012; 7: e44195
        • Hart S.
        • Abraham S.
        • Luscombe G.
        • Russell J.
        Fluid intake in patients with eating disorders.
        Int J Eat Disord. 2005; 38: 55-59
        • Evrard F.
        • da Cunha M.P.
        • Lambert M.
        • Devuyst O.
        Impaired osmoregulation in anorexia nervosa: A case-control study.
        Nephrol Dial Transplant. 2004; 19: 3034-3039
        • Meyers S.M.
        • Tam R.
        • Lee J.S.
        • Kolind S.H.
        • Vavasour I.M.
        • Mackie E.
        • et al.
        Does hydration status affect MRI measures of brain volume or water content?.
        J Magn Reson Imaging. 2016; 44: 296-304
        • Shaw P.
        • Kabani N.J.
        • Lerch J.P.
        • Eckstrand K.
        • Lenroot R.
        • Gogtay N.
        • et al.
        Neurodevelopmental trajectories of the human cerebral cortex.
        J Neurosci. 2008; 28: 3586-3594
        • Bailer U.F.
        • Kaye W.H.
        A review of neuropeptide and neuroendocrine dysregulation in anorexia and bulimia nervosa.
        Curr Drug Targets CNS Neurol Disord. 2003; 2: 53-59
        • Schorr M.
        • Miller K.K.
        The endocrine manifestations of anorexia nervosa: Mechanisms and management.
        Nat Rev Endocrinol. 2017; 13: 174-186
        • Prince A.C.
        • Brooks S.J.
        • Stahl D.
        • Treasure J.
        Systematic review and meta-analysis of the baseline concentrations and physiologic responses of gut hormones to food in eating disorders.
        Am J Clin Nutr. 2009; 89: 755-765
        • Navari S.
        • Dazzan P.
        Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings.
        Psychol Med. 2009; 39: 1763-1777
        • Pletzer B.
        • Kronbichler M.
        • Kerschbaum H.
        Differential effects of androgenic and anti-androgenic progestins on fusiform and frontal gray matter volume and face recognition performance.
        Brain Res. 2015; 1596: 108-115
        • Pletzer B.
        • Kronbichler M.
        • Aichhorn M.
        • Bergmann J.
        • Ladurner G.
        • Kerschbaum H.H.
        Menstrual cycle and hormonal contraceptive use modulate human brain structure.
        Brain Res. 2010; 1348: 55-62
        • Gümmer R.
        • Giel K.E.
        • Schag K.
        • Resmark G.
        • Junne F.P.
        • Becker S.
        • et al.
        High levels of physical activity in anorexia nervosa: A systematic review.
        Eur Eat Disord Rev. 2015; 23: 333-344
        • Blakemore S.J.
        • Burnett S.
        • Dahl R.E.
        The role of puberty in the developing adolescent brain.
        Hum Brain Mapp. 2010; 31: 926-933
        • Nichols T.E.
        • Das S.
        • Eickhoff S.B.
        • Evans A.C.
        • Glatard T.
        • Hanke M.
        • et al.
        Best practices in data analysis and sharing in neuroimaging using MRI.
        Nat Neurosci. 2017; 20: 299-303
        • Zatorre R.J.
        • Fields R.D.
        • Johansen-Berg H.
        Plasticity in gray and white: Neuroimaging changes in brain structure during learning.
        Nat Neurosci. 2012; 15: 528-536
        • Artmann H.
        • Grau H.
        • Adelmann M.
        • Schleiffer R.
        Reversible and non-reversible enlargement of cerebrospinal fluid spaces in anorexia nervosa.
        Neuroradiology. 1985; 27: 304-312
        • Bourre J.M.
        Effects of nutrients (in food) on the structure and function of the nervous system: Update on dietary requirements for brain. Part 1: Micronutrients.
        J Nutr Health Aging. 2006; 10: 377-385
        • Bourre J.M.
        Effects of nutrients (in food) on the structure and function of the nervous system: Update on dietary requirements for brain. Part 2: Macronutrients.
        J Nutr Health Aging. 2006; 10: 386-399
        • Matochik J.A.
        • London E.D.
        • Yildiz B.O.
        • Ozata M.
        • Caglayan S.
        • DePaoli A.M.
        • et al.
        Effect of leptin replacement on brain structure in genetically leptin-deficient adults.
        J Clin Endocrinol Metab. 2005; 90: 2851-2854
        • Haas V.
        • Riedl A.
        • Hofmann T.
        • Nischan A.
        • Burghardt R.
        • Boschmann M.
        • Klapp B.
        Bioimpedance and bioimpedance vector analysis in patients with anorexia nervosa.
        Eur Eat Disord Rev. 2012; 20: 400-405
        • Caregaro L.
        • Di Pascoli L.
        • Favaro A.
        • Nardi M.
        • Santonastaso P.
        Sodium depletion and hemoconcentration: Overlooked complications in patients with anorexia nervosa?.
        Nutrition. 2005; 21: 438-445
        • Docx M.K.F.
        • Gewillig M.
        • Simons A.
        • Vandenberghe P.
        • Weyler J.
        • Ramet J.
        • Mertens L.
        Pericardial effusions in adolescent girls with anorexia nervosa: Clinical course and risk factors.
        Eat Disord. 2010; 18: 218-225
        • Swenne I.
        The significance of routine laboratory analyses in the assessment of teenage girls with eating disorders and weight loss.
        Eat Weight Disord. 2004; 9: 269-278
        • Ehrlich S.
        • Querfeld U.
        • Pfeiffer E.
        Refeeding oedema: An important complication in the treatment of anorexia nervosa.
        Eur Child Adolesc Psychiatry. 2006; 15: 241-243
        • Pirker A.
        • Kramer L.
        • Voller B.
        • Loader B.
        • Auff E.
        • Prayer D.
        Type of edema in posterior reversible encephalopathy syndrome depends on serum albumin levels: An MR imaging study in 28 patients.
        AJNR Am J Neuroradiol. 2011; 32: 527-531
        • Neumarker K.J.
        • Dudeck U.
        • Meyer U.
        • Neumarker U.
        • Schulz E.
        • Schonheit B.
        Anorexia nervosa and sudden death in childhood: Clinical data and results obtained from quantitative neurohistological investigations of cortical neurons.
        Eur Arch Psychiatry Clin Neurosci. 1997; 247: 16-22
        • Barbarich-Marsteller N.C.
        • Fornal C.A.
        • Takase L.F.
        • Bocarsly M.E.
        • Arner C.
        • Walsh B.T.
        • et al.
        Activity-based anorexia is associated with reduced hippocampal cell proliferation in adolescent female rats.
        Behav Brain Res. 2013; 236: 251-257
        • Bergmann O.
        • Spalding K.L.
        • Frisén J.
        Adult neurogenesis in humans.
        Cold Spring Harb Perspect Biol. 2015; 7: a018994
        • Ehrlich S.
        • Burghardt R.
        • Weiss D.
        • Salbach-Andrae H.
        • Craciun E.M.
        • Goldhahn K.
        • et al.
        Glial and neuronal damage markers in patients with anorexia nervosa.
        J Neural Transm (Vienna). 2008; 115: 921-927
        • Rosengren L.E.
        • Ahlsén G.
        • Belfrage M.
        • Gillberg C.
        • Haglid K.G.
        • Hamberger A.
        A sensitive ELISA for glial fibrillary acidic protein: Application in CSF of children.
        J Neurosci Methods. 1992; 44: 113-119
        • Nichols N.R.
        • Day J.R.
        • Laping N.J.
        • Johnson S.A.
        • Finch C.E.
        GFAP mRNA increases with age in rat and human brain.
        Neurobiol Aging. 1993; 14: 421-429
        • Misra M.
        • Tsai P.
        • Anderson E.J.
        • Hubbard J.L.
        • Gallagher K.
        • Soyka L.A.
        • et al.
        Nutrient intake in community-dwelling adolescent girls with anorexia nervosa and in healthy adolescents.
        Am J Clin Nutr. 2006; 84: 698-706
        • Fernstrom M.H.
        • Weltzin T.E.
        • Neuberger S.
        • Srinivasagam N.
        • Kaye W.H.
        Twenty-four-hour food intake in patients with anorexia nervosa and in healthy control subjects.
        Biol Psychiatry. 1994; 36: 696-702
        • Holman R.T.
        • Adams C.E.
        • Nelson R.A.
        • Grater S.J.
        • Jaskiewicz J.A.
        • Johnson S.B.
        • Erdman J.W.
        Patients with anorexia nervosa demonstrate deficiencies of selected essential fatty acids, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids.
        J Nutr. 1995; 125: 901-907
        • Shih P.B.
        Integrating multi-omics biomarkers and postprandial metabolism to develop personalized treatment for anorexia nervosa.
        Prostaglandins Other Lipid Mediat. 2017; 132: 69-76
        • Shih P.B.
        • Yang J.
        • Morisseau C.
        • German J.B.
        • Zeeland A.A.
        • Armando A.M.
        • et al.
        Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa.
        Mol Psychiatry. 2016; 21: 537-546
        • Piomelli D.
        • Astarita G.
        • Rapaka R.
        A neuroscientist’s guide to lipidomics.
        Nat Rev Neurosci. 2007; 8: 743-754
        • Yehuda S.
        • Rabinovitz S.
        • Mostofsky D.I.
        PUFA: Mediators for the nervous, endocrine, and immune systems.
        in: Mostofsky D.I. Yehuda S. Salem N. Fatty Acids: Physiologic and Behavioral Functions. Humana Press, Totowa, NJ2001: 403-420
        • Marzola E.
        • Nasser J.A.
        • Hashim S.A.
        • Shih P.A.
        • Kaye W.H.
        Nutritional rehabilitation in anorexia nervosa: Review of the literature and implications for treatment.
        BMC Psychiatry. 2013; 13: 290
        • Birmingham C.L.
        • Goldner E.M.
        • Bakan R.
        Controlled trial of zinc supplementation in anorexia nervosa.
        Int J Eat Disord. 1994; 15: 251-255
        • Achamrah N.
        • Coëffier M.
        • Rimbert A.
        • Charles J.
        • Folope V.
        • Petit A.
        • et al.
        Micronutrient status in 153 patients with anorexia nervosa.
        Nutrients. 2017; 9: 225
        • Papillard-Marechal S.
        • Sznajder M.
        • Hurtado-Nedelec M.
        • Alibay Y.
        • Martin-Schmitt C.
        • Dehoux M.
        • et al.
        Iron metabolism in patients with anorexia nervosa: Elevated serum hepcidin concentrations in the absence of inflammation.
        Am J Clin Nutr. 2012; 95: 548-554
        • Stüber C.
        • Morawski M.
        • Schäfer A.
        • Labadie C.
        • Wähnert M.
        • Leuze C.
        • et al.
        Myelin and iron concentration in the human brain: A quantitative study of MRI contrast.
        Neuroimage. 2014; 93: 95-106
        • Jahanshad N.
        • Kohannim O.
        • Hibar D.P.
        • Stein J.L.
        • McMahon K.L.
        • de Zubicaray G.I.
        • et al.
        Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the HFE gene.
        Proc Natl Acad Sci U S A. 2012; 109: E851-E859
        • Jahanshad N.
        • Rajagopalan P.
        • Thompson P.M.
        Neuroimaging, nutrition, and iron-related genes.
        Cell Mol Life Sci. 2013; 70: 4449-4461
        • Kipnis V.
        • Midthune D.
        • Freedman L.
        • Bingham S.
        • Day N.E.
        • Riboli E.
        • et al.
        Bias in dietary-report instruments and its implications for nutritional epidemiology.
        Public Health Nutr. 2002; 5: 915-923
        • Warren M.P.
        Endocrine manifestations of eating disorders.
        J Clin Endocrinol Metab. 2011; 96: 333-343
        • van der Werff S.J.
        • Andela C.D.
        • Nienke Pannekoek J.
        • Meijer O.C.
        • van Buchem M.A.
        • Rombouts S.A.
        • et al.
        Widespread reductions of white matter integrity in patients with long-term remission of Cushing’s disease.
        Neuroimage Clin. 2014; 4: 659-667
        • McCarthy M.M.
        Estradiol and the developing brain.
        Physiol Rev. 2008; 88: 91-124
        • Green P.S.
        • Simpkins J.W.
        Neuroprotective effects of estrogens: Potential mechanisms of action.
        Int J Dev Neurosci. 2000; 18: 347-358
        • Rao M.L.
        • Kölsch H.
        Effects of estrogen on brain development and neuroprotection—implications for negative symptoms in schizophrenia.
        Psychoneuroendocrinology. 2003; 28: 83-96
        • Nogal P.
        • Pniewska-Siark B.
        • Lewinski A.
        Relation of trophic changes in the central nervous system, measured by the width of cortical sulci, to the clinical course of anorexia nervosa (II).
        Neuro Endocrinol Lett. 2008; 29: 879-883
        • Pannacciulli N.
        • Le D.S.
        • Chen K.
        • Reiman E.M.
        • Krakoff J.
        Relationships between plasma leptin concentrations and human brain structure: A voxel-based morphometric study.
        Neurosci Lett. 2007; 412: 248-253
        • Park H.
        • Poo M.
        Neurotrophin regulation of neural circuit development and function.
        Nat Rev Neurosci. 2013; 14: 7-23
        • Waterhouse E.G.
        • Xu B.
        New insights into the role of brain-derived neurotrophic factor in synaptic plasticity.
        Mol Cell Neurosci. 2009; 42: 81-89
        • Kernie S.G.
        • Liebl D.J.
        • Parada L.F.
        BDNF regulates eating behavior and locomotor activity in mice.
        EMBO J. 2000; 19: 1290-1300
        • Ehrlich S.
        • Salbach-Andrae H.
        • Eckart S.
        • Merle J.V.
        • Burghardt R.
        • Pfeiffer E.
        • et al.
        Serum brain-derived neurotrophic factor and peripheral indicators of the serotonin system in underweight and weight-recovered adolescent girls and women with anorexia nervosa.
        J Psychiatry Neurosci. 2009; 34: 323-329
        • Brandys M.K.
        • Kas M.J.H.
        • van Elburg A.A.
        • Campbell I.C.
        • Adan R.A.H.
        A meta-analysis of circulating BDNF concentrations in anorexia nervosa.
        World J Biol Psychiatry. 2011; 12: 444-454
        • Chiang M.C.
        • Barysheva M.
        • Toga A.W.
        • Medland S.E.
        • Hansell N.K.
        • James M.R.
        • et al.
        BDNF gene effects on brain circuitry replicated in 455 twins.
        Neuroimage. 2011; 55: 448-454
        • Szuhany K.L.
        • Bugatti M.
        • Otto M.W.
        A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor.
        J Psychiatr Res. 2015; 60: 56-64
        • Hebebrand J.
        • Exner C.
        • Hebebrand K.
        • Holtkamp C.
        • Casper R.C.
        • Remschmidt H.
        • et al.
        Hyperactivity in patients with anorexia nervosa and in semistarved rats: Evidence for a pivotal role of hypoleptinemia.
        Physiol Behav. 2003; 79: 25-37
        • Diaz-Cintra S.
        • Garcia-Ruiz M.
        • Corkidi G.
        • Cintra L.
        Effects of prenatal malnutrition and postnatal nutritional rehabilitation on CA3 hippocampal pyramidal cells in rats of four ages.
        Brain Res. 1994; 662: 117-126
        • Benítez-Bribiesca L.
        • De la Rosa-Alvarez I.
        • Mansilla-Olivares A.
        Dendritic spine pathology in infants with severe protein-calorie malnutrition.
        Pediatrics. 1999; 104: e21
        • Lerch J.P.
        • Yiu A.P.
        • Martinez-Canabal A.
        • Pekar T.
        • Bohbot V.D.
        • Frankland P.W.
        • et al.
        Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning.
        Neuroimage. 2011; 54: 2086-2095
        • Hall J.F.
        • Smith K.
        • Schnitzer S.B.
        • Hanford P.V.
        Elevation of activity level in the rat following transition from ad libitum to restricted feeding.
        J Comp Physiol Psychol. 1953; 46: 429-433
        • Routtenberg A.
        • Kuznesof A.W.
        Self-starvation of rats living in activity wheels on a restricted feeding schedule.
        J Comp Physiol Psychol. 1967; 64: 414-421
        • Frintrop L.
        • Liesbrock J.
        • Paulukat L.
        • Johann S.
        • Kas M.J.
        • Tolba R.
        • et al.
        Reduced astrocyte density underlying brain volume reduction in activity-based anorexia rats.
        World J Biol Psychiatry. 2017; ([published online ahead of print Jan 30])
        • Reyes-Haro D.
        • Labrada-Moncada F.E.
        • Miledi R.
        • Martínez-Torres A.
        Dehydration-induced anorexia reduces astrocyte density in the rat corpus callosum.
        Neural Plast. 2015; 2015: 474917
        • Elsayed M.
        • Magistretti P.J.
        A new outlook on mental illnesses: Glial involvement beyond the glue.
        Front Cell Neurosci. 2015; 9: 468
        • Sporns O.
        • Tononi G.
        • Kötter R.
        The human connectome: A structural description of the human brain.
        PLoS Comput Biol. 2005; 1: e42
        • Fornito A.
        • Zalesky A.
        • Breakspear M.
        The connectomics of brain disorders.
        Nat Rev Neurosci. 2015; 16: 159-172
        • Tofts P.L.
        Quantitative MRI of the Brain: Measuring Changes.
        Wiley, Hoboken, NJ2005
        • Liu S.
        • Cai W.
        • Liu S.
        • Zhang F.
        • Fulham M.
        • Feng D.
        • et al.
        Multimodal neuroimaging computing: A review of the applications in neuropsychiatric disorders.
        Brain Inform. 2015; 2: 167-180
        • Alexander-Bloch A.
        • Giedd J.N.
        • Bullmore E.
        Imaging structural co-variance between human brain regions.
        Nat Rev Neurosci. 2013; 14: 322-336
        • Geisler D.
        • Borchardt V.
        • Lord A.R.
        • Boehm I.
        • Ritschel F.
        • Zwipp J.
        • et al.
        Abnormal functional global and local brain connectivity in female patients with anorexia nervosa.
        J Psychiatry Neurosci. 2016; 41: 6-15
        • Ehrlich S.
        • Lord A.R.
        • Geisler D.
        • Borchardt V.
        • Boehm I.
        • Seidel M.
        • et al.
        Reduced functional connectivity in the thalamo-insular subnetwork in patients with acute anorexia nervosa.
        Hum Brain Mapp. 2015; 36: 1772-1781
        • Lutti A.
        • Dick F.
        • Sereno M.I.
        • Weiskopf N.
        Using high-resolution quantitative mapping of R1 as an index of cortical myelination.
        Neuroimage. 2014; 93: 176-188
        • Sui J.
        • Adali T.
        • Yu Q.
        • Chen J.
        • Calhoun V.D.
        A review of multivariate methods for multimodal fusion of brain imaging data.
        J Neurosci Methods. 2012; 204: 68-81
        • Godier L.R.
        • Park R.J.
        Compulsivity in anorexia nervosa: A transdiagnostic concept.
        Front Psychol. 2014; 5: 778
        • Thompson P.M.
        • Stein J.L.
        • Medland S.E.
        • Hibar D.P.
        • Vasquez A.A.
        • Renteria M.E.
        • et al.
        The ENIGMA Consortium: Large-scale collaborative analyses of neuroimaging and genetic data.
        Brain Imaging Behav. 2014; 8: 153-182
        • Thompson P.M.
        • Andreassen O.A.
        • Arias-Vasquez A.
        • Bearden C.E.
        • Boedhoe P.S.
        • Brouwer R.M.
        • et al.
        ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide.
        Neuroimage. 2017; 145: 389-408
        • Lee P.H.
        • Baker J.T.
        • Holmes A.J.
        • Jahanshad N.
        • Ge T.
        • Jung J.Y.
        • et al.
        Partitioning heritability analysis reveals a shared genetic basis of brain anatomy and schizophrenia.
        Mol Psychiatry. 2016; 21: 1680-1689
        • Duncan L.
        • Yilmaz Z.
        • Gaspar H.
        • Walters R.
        • Goldstein J.
        • Anttila V.
        • et al.
        Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa.
        Am J Psychiatry. 2017; 174: 850-858
        • Bulik-Sullivan B.
        • Finucane H.K.
        • Anttila V.
        • Gusev A.
        • Day F.R.
        • Loh P.R.
        • et al.
        An atlas of genetic correlations across human diseases and traits.
        Nat Genet. 2015; 47: 1236-1241
        • Bulik C.M.
        • Kleiman S.C.
        • Yilmaz Z.
        Genetic epidemiology of eating disorders.
        Curr Opin Psychiatry. 2016; 29: 383-388