Advertisement

Mitochondrial Targeted Therapies: Where Do We Stand in Mental Disorders?

  • Dorit Ben-Shachar
    Correspondence
    Address correspondence to Dorit Ben-Shachar, Ph.D., Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus and B. Rappaport Faculty of Medicine, Technion–ITT, POB 9649, Haifa 31096, Israel.
    Affiliations
    Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus and B. Rappaport Faculty of Medicine, Rappaport Family Institute for Research in Medical Sciences, Technion–Israel Institute of Technology, Haifa, Israel
    Search for articles by this author
  • Hila M. Ene
    Affiliations
    Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus and B. Rappaport Faculty of Medicine, Rappaport Family Institute for Research in Medical Sciences, Technion–Israel Institute of Technology, Haifa, Israel
    Search for articles by this author

      Abstract

      The neurobiology of psychiatric disorders is still unclear, although changes in multiple neuronal systems, specifically the dopaminergic, glutamatergic, and gamma-aminobutyric acidergic systems as well as abnormalities in synaptic plasticity and neural connectivity, are currently suggested to underlie their pathophysiology. A growing body of evidence suggests multifaceted mitochondrial dysfunction in mental disorders, which is in line with their role in neuronal activity, growth, development, and plasticity. In this review, we describe the main endeavors toward development of treatments that will enhance mitochondrial function and their transition into clinical use in congenital mitochondrial diseases and chronic disorders such as types 1 and 2 diabetes, cardiovascular disorders, and cancer. In addition, we discuss the relevance of mitochondrial targeted treatments to mental disorders and their potential to become a novel therapeutic strategy that will improve the efficiency of the current treatments.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Boengler K.
        • Heusch G.
        • Schulz R.
        Nuclear-encoded mitochondrial proteins and their role in cardioprotection.
        Biochim Biophys Acta. 2011; 1813: 1286-1294
        • Lopez M.F.
        • Kristal B.S.
        • Chernokalskaya E.
        • Lazarev A.
        • Shestopalov A.I.
        • Bogdanova A.
        • Robinson M.
        High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation.
        Electrophoresis. 2000; 21: 3427-3440
        • Calvo S.E.
        • Mootha V.K.
        The mitochondrial proteome and human disease.
        Annu Rev Genomics Hum Genet. 2010; 11: 25-44
        • Bergman O.
        • Ben-Shachar D.
        Mitochondrial oxidative phosphorylation system (OXPHOS) deficits in schizophrenia: Possible interactions with cellular processes.
        Can J Psychiatry. 2016; 61: 457-469
        • Hüttemann M.
        • Lee I.
        • Samavati L.
        • Yu H.
        • Doan J.W.
        Regulation of mitochondrial oxidative phosphorylation through cell signaling.
        Biochim Biophys Acta. 2007; 1773: 1701-1720
        • Papa S.
        • De Rasmo D.
        • Technikova-Dobrova Z.
        • Panelli D.
        • Signorile A.
        • Scacco S.
        • et al.
        Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases.
        FEBS Lett. 2012; 586: 568-577
        • Chandel N.S.
        Evolution of mitochondria as signaling organelles.
        Cell Metab. 2015; 22: 204-206
        • Brenner-Lavie H.
        • Klein E.
        • Ben-Shachar D.
        Mitochondrial complex I as a novel target for intraneuronal DA: Modulation of respiration in intact cells.
        Biochem Pharmacol. 2009; 78: 85-95
        • Chen D.
        • Wilkinson C.R.M.
        • Watt S.
        • Penkett C.J.
        • Toone W.M.
        • Jones N.
        • Bähler J.
        Multiple pathways differentially regulate global oxidative stress responses in fission yeast.
        Mol Biol Cell. 2008; 19: 308-317
        • White R.J.
        • Reynolds I.J.
        Mitochondrial depolarization in glutamate-stimulated neurons: An early signal specific to excitotoxin exposure.
        J Neurosci. 1996; 16: 5688-5697
        • Basu B.
        • Desai R.
        • Balaji J.
        • Chaerkady R.
        • Sriram V.
        • Maiti S.
        • Panicker M.M.
        Serotonin in pre-implantation mouse embryos is localized to the mitochondria and can modulate mitochondrial potential.
        Reproduction. 2008; 135: 657-669
        • Giorgi C.
        • Missiroli S.
        • Patergnani S.
        • Duszynski J.
        • Wieckowski M.R.
        • Pinton P.
        Mitochondria-associated membranes: Composition, molecular mechanisms, and physiopathological implications.
        Antioxid Redox Signal. 2015; 22: 995-1019
        • Koopman W.J.H.
        • Willems P.H.G.M.
        • Smeitink J.A.M.M.
        Monogenic mitochondrial disorders.
        N Engl J Med. 2012; 366: 1132-1141
        • Wallace D.C.
        Mitochondrial DNA mutations in disease and aging.
        Environ Mol Mutagen. 2010; 51: 440-450
        • Picard M.
        • Wallace D.C.
        • Burelle Y.
        The rise of mitochondria in medicine.
        Mitochondrion. 2016; 30: 105-116
        • Ben-Shachar D.
        Mitochondrial multifaceted dysfunction in schizophrenia: Complex I as a possible pathological target.
        Schizophr Res. 2017; 187: 3-10
        • Callaly E.
        • Walder K.
        • Morris G.
        • Maes M.
        • Debnath M.
        • Berk M.
        Mitochondrial dysfunction in the pathophysiology of bipolar disorder: Effects of pharmacotherapy.
        Mini Rev Med Chem. 2015; 15: 355-365
        • Du J.
        • Zhu M.
        • Bao H.
        • Li B.
        • Dong Y.
        • Xiao C.
        • et al.
        The role of nutrients in protecting mitochondrial function and neurotransmitter signaling: Implications for the treatment of depression, PTSD, and suicidal behaviors.
        Crit Rev Food Sci Nutr. 2016; 56: 2560-2578
        • Orth M.
        • Schapira A.H.V.
        Mitochondria and degenerative disorders.
        Am J Med Genet. 2001; 106: 27-36
        • Rogalinska M.
        The role of mitochondria in cancer induction, progression and changes in metabolism.
        Mini Rev Med Chem. 2016; 16: 524-530
        • Leem J.
        • Koh E.H.
        Interaction between mitochondria and the endoplasmic reticulum: Implications for the pathogenesis of type 2 diabetes mellitus.
        Exp Diabetes Res. 2012; 2012: 1-8
        • Shao L.
        • Martin M.V.
        • Watson S.J.
        • Schatzberg A.
        • Akil H.
        • Myers R.M.
        • et al.
        Mitochondrial involvement in psychiatric disorders.
        Ann Med. 2008; 40: 281-295
        • Kang E.
        • Wu J.
        • Gutierrez N.M.
        • Koski A.
        • Tippner-Hedges R.
        • Agaronyan K.
        • et al.
        Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations.
        Nature. 2016; 540: 270-275
        • Gardner A.
        • Boles R.G.
        Beyond the serotonin hypothesis: Mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders.
        Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35: 730-743
        • Robicsek O.
        • Ene H.M.
        • Karry R.
        • Ytzhaki O.
        • Asor E.
        • McPhie D.
        • et al.
        Isolated mitochondria transfer improves neuronal differentiation of schizophrenia-derived induced pluripotent stem cells and rescues deficits in a rat model of the disorder.
        Schizophr Bull. 2018; 44: 432-442
        • Kerr D.S.
        Treatment of mitochondrial electron transport chain disorders: A review of clinical trials over the past decade.
        Mol Genet Metab. 2010; 99: 246-255
        • Marriage B.
        • Clandinin M.T.
        • Glerum D.M.
        Nutritional cofactor treatment in mitochondrial disorders.
        J Am Diet Assoc. 2003; 103: 1029-1038
        • Parikh S.
        • Saneto R.
        • Falk M.J.
        • Anselm I.
        • Cohen B.H.
        • Haas R.
        A modern approach to the treatment of mitochondrial disease.
        Curr Treat Options Neurol. 2009; 11: 414-430
        • Chaturvedi R.K.
        • Flint Beal M.
        Mitochondrial diseases of the brain.
        Free Radic Biol Med. 2013; 63: 1-29
        • Wortmann S.B.
        • Van Essen H.Z.
        • Rodenburg R.J.T.
        • Van Den Heuvel L.P.
        • De Vries M.C.
        • Rasmussen-Conrad E.
        • et al.
        Mitochondrial energy production correlates with the age-related BMI.
        Pediatr Res. 2009; 65: 103-108
        • Evans W.J.
        • Morley J.E.
        • Argilés J.
        • Bales C.
        • Baracos V.
        • Guttridge D.
        • et al.
        Cachexia: A new definition.
        Clin Nutr. 2008; 27: 793-799
        • Tisdale M.J.
        Metabolic abnormalities in cachexia and anorexia.
        Nutrition. 2000; 16: 1013-1014
        • Caraballo R.H.
        • Flesler S.
        • Armeno M.
        • Fortini S.
        • Agustinho A.
        • Mestre G.
        • et al.
        Ketogenic diet in pediatric patients with refractory focal status epilepticus.
        Epilepsy Res. 2014; 108: 1912-1916
        • Gano L.B.
        • Patel M.
        • Rho J.M.
        Ketogenic diets, mitochondria, and neurological diseases.
        J Lipid Res. 2014; 55: 2211-2228
        • Le Guen M.
        • Chaté V.
        • Hininger-Favier I.
        • Laillet B.
        • Morio B.
        • Pieroni G.
        • et al.
        A 9-wk docosahexaenoic acid-enriched supplementation improves endurance exercise capacity and skeletal muscle mitochondrial function in adult rats.
        Am J Physiol Endocrinol Metab. 2016; 310: E213-E224
        • Berge R.K.
        • Flatmark T.
        • Christiansen E.N.
        Effect of a high-fat diet with partially hydrogenated fish oil on long-chain fatty acid metabolizing enzymes in subcellular fractions of rat liver.
        Arch Biochem Biophys. 1987; 252: 269-276
        • Marcovina S.M.
        • Sirtori C.
        • Peracino A.
        • Gheorghiade M.
        • Borum P.
        • Remuzzi G.
        • Ardehali H.
        Translating the basic knowledge of mitochondrial functions to metabolic therapy: Role of L-carnitine.
        Transl Res. 2013; 161: 73-84
        • Malaguarnera M.
        • Cammalleri L.
        • Gargante M.P.
        • Vacante M.
        • Colonna V.
        • Motta M.
        L-Carnitine treatment reduces severity of physical and mental fatigue and increases cognitive functions in centenarians: A randomized and controlled clinical trial.
        Am J Clin Nutr. 2007; 86: 1738-1744
        • Nicolson G.L.
        Mitochondrial dysfunction and chronic disease: Treatment with natural supplements.
        Integr Med (Encinitas). 2014; 13: 35-43
        • Penn A.M.
        • Lee J.W.
        • Thuillier P.
        • Wagner M.
        • Maclure K.M.
        • Menard M.R.
        • et al.
        MELAS syndrome with mitochondrial tRNA(Leu)(UUR) mutation: Correlation of clinical state, nerve conduction, and muscle 31P magnetic resonance spectroscopy during treatment with nicotinamide and riboflavin.
        Neurology. 1992; 42: 2147-2152
        • Garrido-Maraver J.
        • Cordero M.D.
        • Oropesa-Avila M.
        • Vega A.F.
        • de la Mata M.
        • Pavon A.D.
        • et al.
        Clinical applications of coenzyme Q10.
        Front Biosci (Landmark Ed). 2014; 19: 619-633
        • Arts W.F.
        • Scholte H.R.
        • Bogaard J.M.
        • Kerrebijn K.F.
        • Luyt-Houwen I.E.
        NADH-CoQ reductase deficient myopathy: Successful treatment with riboflavin.
        Lancet (London). 1983; 2: 581-582
        • Asplund K.
        Antioxidant vitamins in the prevention of cardiovascular disease: A systematic review.
        J Intern Med. 2002; 251: 372-392
        • Koopman W.J.H.
        • Verkaart S.
        • van Emst-de Vries S.E.
        • Grefte S.
        • Smeitink J.A.M.
        • Nijtmans L.G.J.
        • Willems P.H.G.M.
        Mitigation of NADH: Ubiquinone oxidoreductase deficiency by chronic Trolox treatment.
        Biochim Biophys Acta. 2008; 1777: 853-859
        • Marriage B.J.
        • Clandinin M.T.
        • Macdonald I.M.
        • Glerum D.M.
        Cofactor treatment improves ATP synthetic capacity in patients with oxidative phosphorylation disorders.
        Mol Genet Metab. 2004; 81: 263-272
        • Grad L.I.
        • Lemire B.D.
        Riboflavin enhances the assembly of mitochondrial cytochrome c oxidase in C. elegans NADH-ubiquinone oxidoreductase mutants.
        Biochim Biophys Acta. 2006; 1757: 115-122
        • Young S.N.
        Clinical nutrition: 3. The fuzzy boundary between nutrition and psychopharmacology.
        CMAJ. 2002; 166: 205-209
        • Lakhan S.E.
        • Vieira K.F.
        Nutritional therapies for mental disorders.
        Nutr J. 2008; 7: 2
        • Sathyanarayana Rao T.
        • Asha M.
        • Ramesh B.
        • Jagannatha Rao K.
        Understanding nutrition, depression and mental illnesses.
        Indian J Psychiatry. 2008; 50: 77-82
        • Knöchel C.
        • Voss M.
        • Grüter F.
        • Alves G.S.
        • Matura S.
        • Sepanski B.
        • et al.
        Omega 3 fatty acids: Novel neurotherapeutic targets for cognitive dysfunction in mood disorders and schizophrenia?.
        Curr Neuropharmacol. 2015; 13: 663-680
        • Zimmer R.
        • Riemer T.
        • Rauch B.
        • Schneider S.
        • Schiele R.
        • Gohlke H.
        • et al.
        Effects of 1-year treatment with highly purified omega-3 fatty acids on depression after myocardial infarction: Results from the OMEGA trial.
        J Clin Psychiatry. 2013; 74: e1037-e1045
        • Herbst E.A.F.
        • Paglialunga S.
        • Gerling C.
        • Whitfield J.
        • Mukai K.
        • Chabowski A.
        • et al.
        Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle.
        J Physiol. 2014; 592: 1341-1352
        • Afshordel S.
        • Hagl S.
        • Werner D.
        • Röhner N.
        • Kögel D.
        • Bazan N.G.
        • Eckert G.P.
        Omega-3 polyunsaturated fatty acids improve mitochondrial dysfunction in brain aging—Impact of Bcl-2 and NPD-1 like metabolites.
        Prostaglandins Leukot Essent Fatty Acids. 2015; 92: 23-31
        • White D.
        • Cox K.
        • Peters R.
        • Pipingas A.
        • Scholey A.
        Effects of four-week supplementation with a multi-vitamin/mineral preparation on mood and blood biomarkers in young adults: A randomised, double-blind, placebo-controlled trial.
        Nutrients. 2015; 7: 9005-9017
        • Depeint F.
        • Bruce W.R.
        • Shangari N.
        • Mehta R.
        • O’Brien P.J.
        Mitochondrial function and toxicity: Role of B vitamins on the one-carbon transfer pathways.
        Chem Biol Interact. 2006; 163: 113-132
        • Forester B.P.
        • Zuo C.S.
        • Ravichandran C.
        • Harper D.G.
        • Du F.
        • Kim S.
        • et al.
        Coenzyme Q10 effects on creatine kinase activity and mood in geriatric bipolar depression.
        J Geriatr Psychiatry Neurol. 2012; 25: 43-50
        • Morris G.
        • Anderson G.
        • Berk M.
        • Maes M.
        Coenzyme Q10 depletion in medical and neuropsychiatric disorders: Potential repercussions and therapeutic implications.
        Mol Neurobiol. 2013; 48: 883-903
        • Maes M.
        • Mihaylova I.
        • Kubera M.
        • Uytterhoeven M.
        • Vrydags N.
        • Bosmans E.
        Lower plasma coenzyme Q10 in depression: A marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness.
        Neuroendocrinol Lett. 2009; 30: 462-469
        • Taivassalo T.
        • Haller R.G.
        Exercise and training in mitochondrial myopathies.
        Med Sci Sports Exerc. 2005; 37: 2094-2101
        • Jeppesen T.D.
        • Schwartz M.
        • Olsen D.B.
        • Wibrand F.
        • Krag T.
        • Dunø M.
        • et al.
        Aerobic training is safe and improves exercise capacity in patients with mitochondrial myopathy.
        Brain. 2006; 129: 3402-3412
        • Rudofsky G.
        Commentary on “Effects of long-term exercise interventions on glycaemic control in type 1 and type 2 diabetes: A systematic review.”.
        Exp Clin Endocrinol Diabetes. 2016; 124: 495-496
        • Curtis G.L.
        • Chughtai M.
        • Khlopas A.
        • Newman J.M.
        • Khan R.
        • Shaffiy S.
        • et al.
        Impact of physical activity in cardiovascular and musculoskeletal health: Can motion be medicine?.
        J Clin Med Res. 2017; 9: 375-381
        • Buffart L.M.
        • Kalter J.
        • Sweegers M.G.
        • Courneya K.S.
        • Newton R.U.
        • Aaronson N.K.
        • et al.
        Effects and moderators of exercise on quality of life and physical function in patients with cancer: An individual patient data meta-analysis of 34 RCTs.
        Cancer Treat Rev. 2017; 52: 91-104
        • Cass S.P.
        Alzheimer’s disease and exercise: A literature review.
        Curr Sport Med Rep. 2017; 16: 19-22
        • Cusso M.E.
        • Donald K.J.
        • Khoo T.K.
        • Gray W.K.
        The impact of physical activity on non-motor symptoms in Parkinson’s disease: A systematic review.
        Front Med (Lausanne). 2016; 3: 35
        • Holloszy J.O.
        Biochemical adaptations in muscle: Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle.
        J Biol Chem. 1967; 242: 2278-2282
        • Holloway G.P.
        Nutrition and training influences on the regulation of mitochondrial adenosine diphosphate sensitivity and bioenergetics.
        Sport Med. 2017; 47: 13-21
        • Wang L.
        • Mascher H.
        • Psilander N.
        • Blomstrand E.
        • Sahlin K.
        Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle.
        J Appl Physiol. 2011; 111: 1335-1344
        • Helmich I.
        Draft for clinical practice and epidemiology in mental health neurobiological alterations induced by exercise and their impact on depressive disorders.
        Clin Pract Epidemiol Ment Health. 2010; 6: 115-125
        • Zschucke E.
        • Gaudlitz K.
        • Ströhle A.
        Exercise and physical activity in mental disorders: Clinical and experimental evidence.
        J Prev Med Public Health. 2013; 46: S12-S21
        • Hearing C.M.
        • Chang W.C.
        • Szuhany K.L.
        • Deckersbach T.
        • Nierenberg A.A.
        • Sylvia L.G.
        Physical exercise for treatment of mood disorders: A critical review.
        Curr Behav Neurosci Rep. 2016; 3: 350-359
        • Brand M.D.
        The sites and topology of mitochondrial superoxide production.
        Exp Gerontol. 2010; 45: 466-472
        • Winterbourn C.C.
        Reconciling the chemistry and biology of reactive oxygen species.
        Nat Chem Biol. 2008; 4: 278-286
        • Kroemer G.
        • Galluzzi L.
        • Brenner C.
        Mitochondrial membrane permeabilization in cell death.
        Physiol Rev. 2007; 87: 99-163
        • Nemoto S.
        • Takeda K.
        • Yu Z.X.
        • Ferrans V.J.
        • Finkel T.
        Role for mitochondrial oxidants as regulators of cellular metabolism.
        Mol Cell Biol. 2000; 20: 7311-7318
        • Finkel T.
        Signal transduction by reactive oxygen species.
        J Cell Biol. 2011; 194: 7-15
        • Bratic A.
        • Larsson N.G.
        The role of mitochondria in aging.
        J Clin Invest. 2013; 123: 951-957
        • Manfredi G.
        • Beal F.
        The role of mitochondria in the pathogenesis of neurodegenerative diseases.
        Brain Pathol. 2000; 10: 462-472
        • Stefano G.B.
        • Challenger S.
        • Kream R.M.
        Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders.
        Eur J Nutr. 2016; 55: 2339-2345
        • Yang Y.
        • Karakhanova S.
        • Hartwig W.
        • D’Haese J.G.
        • Philippov P.P.
        • Werner J.
        • Bazhin A.V.
        Mitochondria and mitochondrial ROS in cancer: Novel targets for anticancer therapy.
        J Cell Physiol. 2016; 231: 2570-2581
        • Soule B.P.
        • Hyodo F.
        • Matsumoto K.
        • Simone N.L.
        • Cook J.A.
        • Krishna M.C.
        • Mitchell J.B.
        Therapeutic and clinical applications of nitroxide compounds.
        Antioxid Redox Signal. 2007; 9: 1731-1744
        • Zarling J.A.
        • Brunt V.E.
        • Vallerga A.K.
        • Li W.
        • Tao A.
        • Zarling D.A.
        • Minson C.T.
        Nitroxide pharmaceutical development for age-related degeneration and disease.
        Front Genet. 2015; 6: 325
        • Murphy M.P.
        Targeting antioxidants to mitochondria by conjugation to lipophilic cations.
        in: Dykens J.A. Will Y. Drug-Induced Mitochondrial Dysfunction. John Wiley, Hoboken, NJ2008: 575-587
        • Hockenbery D.M.
        Targeting mitochondria for cancer therapy.
        Environ Mol Mutagen. 2010; 51: 476-489
        • Skulachev V.P.
        Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases.
        J Alzheimer’s Dis. 2012; 28: 283-289
        • Frantz M.-C.
        • Wipf P.
        Mitochondria as a target in treatment.
        Environ Mol Mutagen. 2010; 51: 462-475
        • Burns R.J.
        • Smith R.A.
        • Murphy M.P.
        Synthesis and characterization of thiobutyltriphenylphosphonium bromide, a novel thiol reagent targeted to the mitochondrial matrix.
        Arch Biochem Biophys. 1995; 322: 60-68
        • Skulachev M.V.
        • Antonenko Y.N.
        • Anisimov V.N.
        • Chernyak B.V.
        • Cherepanov D.A.
        • Chistyakov V.A.
        • et al.
        Mitochondrial-targeted plastoquinone derivatives: Effect on senescence and acute age-related pathologies.
        Curr Drug Targets. 2011; 12: 800-826
        • Kezic A.
        • Spasojevic I.
        • Lezaic V.
        • Bajcetic M.
        Mitochondria-targeted antioxidants: Future perspectives in kidney ischemia reperfusion injury.
        Oxid Med Cell Longev. 2016; ([published online ahead of print May 24])
        • Smith R.A.J.
        • Murphy M.P.
        Animal and human studies with the mitochondria-targeted antioxidant MitoQ.
        Ann N Y Acad Sci. 2010; 1201: 96-103
        • Lim S.
        • Rashid M.A.
        • Jang M.
        • Kim Y.
        • Won H.
        • Lee J.
        • et al.
        Mitochondria-targeted antioxidants protect pancreatic β-cells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity.
        Cell Physiol Biochem. 2011; 28: 873-886
        • Liang H.L.
        • Sedlic F.
        • Bosnjak Z.
        • Nilakantan V.
        SOD1 and MitoTEMPO partially prevent mitochondrial permeability transition pore opening, necrosis, and mitochondrial apoptosis after ATP depletion recovery.
        Free Radic Biol Med. 2010; 49: 1550-1560
        • Dikalova A.E.
        • Bikineyeva A.T.
        • Budzyn K.
        • Nazarewicz R.R.
        • McCann L.
        • Lewis W.
        • et al.
        Therapeutic targeting of mitochondrial superoxide in hypertension.
        Circ Res. 2010; 107: 106-116
        • Skulachev V.P.
        • Anisimov V.N.
        • Antonenko Y.N.
        • Bakeeva L.E.
        • Chernyak B.V.
        • Erichev V.P.
        • et al.
        An attempt to prevent senescence: A mitochondrial approach.
        Biochim Biophys Acta. 2009; 1787: 437-461
        • Torres V.E.
        • Higashihara E.
        • Devuyst O.
        • Chapman A.B.
        • Gansevoort R.T.
        • Grantham J.J.
        • et al.
        Effect of tolvaptan in autosomal dominant polycystic kidney disease by CKD stage: Results from the TEMPO 3:4 trial.
        Clin J Am Soc Nephrol. 2016; 11: 803-811
        • Coutts S.B.
        • Dubuc V.
        • Mandzia J.
        • Kenney C.
        • Demchuk A.M.
        • Smith E.E.
        • et al.
        Tenecteplase-tissue-type plasminogen activator evaluation for minor ischemic stroke with proven occlusion.
        Stroke. 2015; 46: 769-774
        • Zhao K.
        • Zhao G.M.
        • Wu D.
        • Soong Y.
        • Birk A.V.
        • Schiller P.W.
        • Szeto H.H.
        Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury.
        J Biol Chem. 2004; 279: 34682-34690
        • Dai D.F.
        • Chen T.
        • Szeto H.
        • Nieves-Cintrón M.
        • Kutyavin V.
        • Santana L.F.
        • Rabinovitch P.S.
        Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy.
        J Am Coll Cardiol. 2011; 58: 73-82
        • Shi J.
        • Dai W.
        • Hale S.L.
        • Brown D.A.
        • Wang M.
        • Han X.
        • Kloner R.A.
        Bendavia restores mitochondrial energy metabolism gene expression and suppresses cardiac fibrosis in the border zone of the infarcted heart.
        Life Sci. 2015; 141: 170-178
        • Imai T.
        • Mishiro K.
        • Takagi T.
        • Isono A.
        • Nagasawa H.
        • Tsuruma K.
        • et al.
        Protective effect of bendavia (SS-31) against oxygen/glucose-deprivation stress-induced mitochondrial damage in human brain microvascular endothelial cells.
        Curr Neurovasc Res. 2017; 14: 53-59
        • Szeto H.H.
        First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics.
        Br J Pharmacol. 2014; 171: 2029-2050
        • Hardingham G.E.
        • Do K.Q.
        Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis.
        Nat Rev Neurosci. 2016; 17: 125-134
        • Smaga I.
        • Niedzielska E.
        • Gawlik M.
        • Moniczewski A.
        • Krzek J.
        • Przegaliński E.
        • et al.
        Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders: 2. Depression, anxiety, schizophrenia and autism.
        Pharmacol Rep. 2015; 67: 569-580
        • Griffiths K.K.
        • Levy R.J.
        Evidence of mitochondrial dysfunction in autism: Biochemical links, genetic-based associations, and non-energy-related mechanisms.
        Oxid Med Cell Longev. 2017; 2017: 4314025
        • Magalhães P.V.S.
        • Dean O.
        • Andreazza A.C.
        • Berk M.
        • Kapczinski F.
        Antioxidant treatments for schizophrenia.
        in: Magalhães P.V.S. Cochrane Database of Systematic Reviews. John Wiley, Chichester, UK2016
        • Jornayvaz F.R.
        • Shulman G.I.
        Regulation of mitochondrial biogenesis.
        Essays Biochem. 2010; 47: 69-84
        • Spiegelman B.M.
        Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators.
        Novartis Found Symp. 2007; 287: 60-69
        • Wright D.C.
        • Geiger P.C.
        • Han D.-H.
        • Jones T.E.
        • Holloszy J.O.
        Calcium induces increases in peroxisome proliferator-activated receptor coactivator-1 and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation.
        J Biol Chem. 2007; 282: 18793-18799
        • Fernandez-Marcos P.J.
        • Auwerx J.
        Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis.
        Am J Clin Nutr. 2011; 93: 884S-890S
        • Tischner C.
        • Wenz T.
        Keep the fire burning: Current avenues in the quest of treating mitochondrial disorders.
        Mitochondrion. 2015; 24: 32-49
        • Viscomi C.
        • Bottani E.
        • Zeviani M.
        Emerging concepts in the therapy of mitochondrial disease.
        Biochim Biophys Acta. 2015; 1847: 544-557
        • Cantó C.
        • Gerhart-Hines Z.
        • Feige J.N.
        • Lagouge M.
        • Noriega L.
        • Milne J.C.
        • et al.
        AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity.
        Nature. 2009; 458: 1056-1060
        • Golubitzky A.
        • Dan P.
        • Weissman S.
        • Link G.
        • Wikstrom J.D.
        • Saada A.
        Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts reveals AICAR as the most beneficial compound.
        PLoS One. 2011; 6: e26883
        • Boon H.
        • Bosselaar M.
        • Praet S.F.E.
        • Blaak E.E.
        • Saris W.H.M.
        • Wagenmakers A.J.M.
        • et al.
        Intravenous AICAR administration reduces hepatic glucose output and inhibits whole body lipolysis in type 2 diabetic patients.
        Diabetologia. 2008; 51: 1893-1900
        • Babraj J.A.
        • Mustard K.
        • Sutherland C.
        • Towler M.C.
        • Chen S.
        • Smith K.
        • et al.
        Blunting of AICAR-induced human skeletal muscle glucose uptake in type 2 diabetes is dependent on age rather than diabetic status.
        AJP Endocrinol Metab. 2009; 296: E1042-E1048
        • Inzucchi S.E.
        • Bergenstal R.M.
        • Buse J.B.
        • Diamant M.
        • Ferrannini E.
        • Nauck M.
        • et al.
        Management of hyperglycemia in type 2 diabetes: A patient-centered approach: Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD).
        Diabetes Care. 2012; 35: 1364-1379
        • Hur K.Y.
        • Lee M.-S.
        New mechanisms of metformin action: Focusing on mitochondria and the gut.
        J Diabetes Investig. 2015; 6: 600-609
        • Owen M.R.
        • Doran E.
        • Halestrap A.P.
        Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain.
        Biochem J. 2000; 348: 607-614
        • Schapira A.H.V.
        Mitochondrial diseases.
        Lancet (London). 2012; 379: 1825-1834
        • Gold P.W.
        • Licinio J.
        • Pavlatou M.G.
        Pathological parainflammation and endoplasmic reticulum stress in depression: Potential translational targets through the CNS insulin, klotho and PPAR-γ systems.
        Mol Psychiatry. 2013; 18: 154-165
        • Ben-Hail D.
        • Begas-Shvartz R.
        • Shalev M.
        • Shteinfer-Kuzmine A.
        • Gruzman A.
        • Reina S.
        • et al.
        Novel compounds targeting the mitochondrial protein VDAC1 inhibit apoptosis and protect against mitochondrial dysfunction.
        J Biol Chem. 2016; 291: 24986-25003
        • Shoshan-Barmatz V.
        • De Pinto V.
        • Zweckstetter M.
        • Raviv Z.
        • Keinan N.
        • Arbel N.
        VDAC, a multi-functional mitochondrial protein regulating cell life and death.
        Mol Aspects Med. 2010; 31: 227-285
        • Gatliff J.
        • East D.A.
        • Singh A.
        • Alvarez M.S.
        • Frison M.
        • Matic I.
        • et al.
        A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling.
        Cell Death Dis. 2017; 8: e2896
        • Rupprecht R.
        • Papadopoulos V.
        • Rammes G.
        • Baghai T.C.
        • Fan J.
        • Akula N.
        • et al.
        Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders.
        Nat Rev Drug Discov. 2010; 9: 971-988
        • Spees J.L.
        • Olson S.D.
        • Whitney M.J.
        • Prockop D.J.
        Mitochondrial transfer between cells can rescue aerobic respiration.
        Proc Natl Acad Sci U S A. 2006; 103: 1283-1288
        • Gerdes H.-H.
        • Bukoreshtliev N.V.
        • Barroso J.F.V.
        Tunneling nanotubes: A new route for the exchange of components between animal cells.
        FEBS Lett. 2007; 581: 2194-2201
        • Tan A.S.
        • Baty J.W.
        • Dong L.F.
        • Bezawork-Geleta A.
        • Endaya B.
        • Goodwin J.
        • et al.
        Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA.
        Cell Metab. 2015; 21: 81-94
        • Wang X.
        • Gerdes H.H.
        Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells.
        Cell Death Differ. 2015; 22: 1181-1191
        • Lin H.Y.
        • Liou C.W.
        • Chen S.
        • Hsu T.Y.
        • Chuang J.H.
        • Wang P.W.
        • et al.
        Mitochondrial transfer from Wharton’s jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function.
        Mitochondrion. 2015; 22: 31-44
        • Ma Z.
        • Yang H.
        • Liu H.
        • Xu M.
        • Runyan R.B.
        • Eisenberg C.A.
        • et al.
        Mesenchymal stem cell–cardiomyocyte interactions under defined contact modes on laser-patterned biochips.
        PLoS One. 2013; 8: e56554
        • Cselenyák A.
        • Pankotai E.
        • Horváth E.M.
        • Kiss L.
        • Lacza Z.
        Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections.
        BMC Cell Biol. 2010; 11: 29
        • Hayakawa K.
        • Esposito E.
        • Wang X.
        • Terasaki Y.
        • Liu Y.
        • Xing C.
        • et al.
        Corrigendum: Transfer of mitochondria from astrocytes to neurons after stroke.
        Nature. 2016; 535: 551-555
        • Islam M.N.
        • Das S.R.
        • Emin M.T.
        • Wei M.
        • Sun L.
        • Westphalen K.
        • et al.
        Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury.
        Nat Med. 2012; 18: 759-765
        • McCully J.D.
        • Levitsky S.
        • Del Nido P.J.
        • Cowan D.B.
        Mitochondrial transplantation for therapeutic use.
        Clin Transl Med. 2016; 5: 16
        • Katrangi E.
        • D’Souza G.
        • Boddapati S.V.
        • Kulawiec M.
        • Singh K.K.
        • Bigger B.
        • Weissig V.
        Xenogenic transfer of isolated murine mitochondria into human rho0 cells can improve respiratory function.
        Rejuvenation Res. 2007; 10: 561-570
        • Clark M.A.
        • Shay J.W.
        Mitochondrial transformation of mammalian cells.
        Nature. 1982; 295: 605-607
        • Kesner E.E.
        • Saada-Reich A.
        • Lorberboum-Galski H.
        Characteristics of mitochondrial transformation into human cells.
        Sci Rep. 2016; 6: 26057
        • Kitani T.
        • Kami D.
        • Matoba S.
        • Gojo S.
        Internalization of isolated functional mitochondria: Involvement of macropinocytosis.
        J Cell Mol Med. 2014; 18: 1694-1703
        • Masuzawa A.
        • Black K.M.
        • Pacak C.A.
        • Ericsson M.
        • Barnett R.J.
        • Drumm C.
        • et al.
        Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury.
        Am J Physiol Heart Circ Physiol. 2013; 304: H966-H982
        • Pacak C.A.
        • Preble J.M.
        • Kondo H.
        • Seibel P.
        • Levitsky S.
        • Del Nido P.J.
        • et al.
        Actin-dependent mitochondrial internalization in cardiomyocytes: Evidence for rescue of mitochondrial function.
        Biol Open. 2015; 4: 622-626
        • Chang J.C.
        • Wu S.L.
        • Liu K.H.
        • Chen Y.H.
        • Chuang C.S.
        • Cheng F.C.
        • et al.
        Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: Restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity.
        Transl Res. 2016; 170: 40-43
        • Robicsek O.
        • Karry R.
        • Petit I.
        • Salman-Kesner N.
        • Muller F.J.
        • Klein E.
        • et al.
        Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients.
        Mol Psychiatry. 2013; 18: 1067-1076
        • Piontkewitz Y.
        • Arad M.
        • Weiner I.
        Abnormal trajectories of neurodevelopment and behavior following in utero insult in the rat.
        Biol Psychiatry. 2011; 70: 842-851
        • Meyer U.
        Prenatal Poly(I:C) exposure and other developmental immune activation models in rodent systems.
        Biol Psychiatry. 2014; 75: 307-315
        • Ben-Shachar D.
        • Karry R.
        Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression.
        PLoS One. 2008; 3: e3676
        • Manji H.
        • Kato T.
        • Di Prospero N.A.
        • Ness S.
        • Beal M.F.
        • Krams M.
        • Chen G.
        Impaired mitochondrial function in psychiatric disorders.
        Nat Rev Neurosci. 2012; 13: 293-307
        • Nahon E.
        • Israelson A.
        • Abu-Hamad S.
        • Varda S.B.
        Fluoxetine (Prozac) interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death.
        FEBS Lett. 2005; 579: 5105-5110
        • Sethi S.
        • Brietzke E.
        Omics-based biomarkers: Application of metabolomics in neuropsychiatric disorders.
        Int J Neuropsychopharmacol. 2015; 19: pyv096