Advertisement

Modulation of γ- and β-Secretases as Early Prevention Against Alzheimer’s Disease

  • Iryna Voytyuk
    Affiliations
    KU Leuven Department for Neurosciences, Leuven, Belgium

    VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
    Search for articles by this author
  • Bart De Strooper
    Correspondence
    Address correspondence to Bart De Strooper, Ph.D., M.D., VIB-KU Leuven Center for Brain and Disease Research, Laboratory for the Research of Neurodegenerative Diseases, K.U. Leuven, 0&N4, Campus Gasthuisberg, Herestraat 49, bus 602, Leuven 3000, Belgium.
    Affiliations
    KU Leuven Department for Neurosciences, Leuven, Belgium

    VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium

    UK Dementia Research Institute, University College, London, United Kingdom
    Search for articles by this author
  • Lucía Chávez-Gutiérrez
    Affiliations
    KU Leuven Department for Neurosciences, Leuven, Belgium

    VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
    Search for articles by this author

      Abstract

      The genetic evidence implicating amyloid-β in the initial stage of Alzheimer’s disease is unequivocal. However, the long biochemical and cellular prodromal phases of the disease suggest that dementia is the result of a series of molecular and cellular cascades whose nature and connections remain unknown. Therefore, it is unlikely that treatments directed at amyloid-β will have major clinical effects in the later stages of the disease. We discuss the two major candidate therapeutic targets to lower amyloid-β in a preventive mode, i.e., γ- and β-secretase; the rationale behind these two targets; and the current state of the field.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Selkoe D.J.
        • Hardy J.
        The amyloid hypothesis of Alzheimer’s disease at 25 years.
        EMBO Mol Med. 2016; 8: 1-14
        • Himmelstein D.M.
        • Ward S.M.
        • Lancia J.K.
        • Patterson K.R.
        • Binder L.I.
        Tau as a therapeutic target in neurodegenerative disease.
        Pharmacol Ther. 2012; 136: 8-22
        • Liu J.
        • Yang B.
        • Ke J.
        • Li W.
        • Suen W.-C.
        Antibody-based drugs and approaches against amyloid-β species for Alzheimer’s disease immunotherapy.
        Drugs Aging. 2016; 33: 685-697
        • Rinne J.O.
        • Brooks D.J.
        • Rossor M.N.
        • Fox N.C.
        • Bullock R.
        • Klunk W.E.
        • et al.
        11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: A phase 2, double-blind, placebo-controlled, ascending-dose study.
        Lancet Neurol. 2010; 9: 363-372
        • Sevigny J.
        • Chiao P.
        • Bussière T.
        • Weinreb P.H.
        • Williams L.
        • Maier M.
        • et al.
        The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease.
        Nature. 2016; 537: 50-56
        • De Strooper B.
        • Karran E.
        The cellular phase of Alzheimer’s disease.
        Cell. 2016; 164: 603-615
        • Andrieu S.
        • Coley N.
        • Lovestone S.
        • Aisen P.S.
        • Vellas B.
        Prevention of sporadic Alzheimer’s disease: Lessons learned from clinical trials and future directions.
        Lancet Neurol. 2015; 14: 926-944
        • Ryan N.S.
        • Rossor M.N.
        Correlating familial Alzheimer’s disease gene mutations with clinical phenotype.
        Biomark Med. 2010; 4: 99-112
        • De Strooper B.
        Lessons from a failed γ-secretase Alzheimer trial.
        Cell. 2014; 159: 721-726
        • Barão S.
        • Moechars D.
        • Lichtenthaler S.F.
        • De Strooper B.
        BACE1 physiological functions may limit its use as therapeutic target for Alzheimer’s disease.
        Trends Neurosci. 2016; 39: 158-169
        • Karran E.
        • Mercken M.
        • De Strooper B.
        The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics.
        Nat Rev Drug Discov. 2011; 10: 698-712
        • Chávez-Gutiérrez L.
        • Bammens L.
        • Benilova I.
        • Vandersteen A.
        • Benurwar M.
        • Borgers M.
        • et al.
        The mechanism of γ-secretase dysfunction in familial Alzheimer disease.
        EMBO J. 2012; 31: 2261-2274
        • Szaruga M.
        • Veugelen S.
        • Benurwar M.
        • Lismont S.
        • Sepulveda-Falla D.
        • Lleo A.
        • et al.
        Qualitative changes in human γ-secretase underlie familial Alzheimer’s disease.
        J Exp Med. 2015; 212: 2003-2013
        • Veugelen S.
        • Saito T.
        • Saido T.C.
        • Chávez-Gutiérrez L.
        • De Strooper B.
        Familial Alzheimer’s disease mutations in presenilin generate amyloidogenic Aβ peptide seeds.
        Neuron. 2016; 90: 410-416
        • Lai M.T.
        • Chen E.
        • Crouthamel M.C.
        • DiMuzio-Mower J.
        • Xu M.
        • Huang Q.
        • et al.
        Presenilin-1 and presenilin-2 exhibit distinct yet overlapping γ-secretase activities.
        J Biol Chem. 2003; 278: 22475-22481
        • Shirotani K.
        • Edbauer D.
        • Prokop S.
        • Haass C.
        • Steiner H.
        Identification of distinct γ-secretase complexes with different APH-1 variants.
        J Biol Chem. 2004; 279: 41340-41345
        • Shirotani K.
        • Tomioka M.
        • Kremmer E.
        • Haass C.
        • Steiner H.
        Pathological activity of familial Alzheimer’s disease-associated mutant presenilin can be executed by six different γ-secretase complexes.
        Neurobiol Dis. 2007; 27: 102-107
        • Acx H.
        • Chávez-Gutiérrez L.
        • Serneels L.
        • Lismont S.
        • Benurwar M.
        • Elad N.
        • et al.
        Signature amyloid beta profiles are produced by different gamma-secretase complexes.
        J Biol Chem. 2014; 289: 4346-4355
        • Serneels L.
        • Van Biervliet J.
        • Craessaerts K.
        • Dejaegere T.
        • Horré K.
        • Houtvin T Van
        • et al.
        Gamma-secretase heterogeneity in the Aph1 subunit: Relevance for Alzheimer’s disease.
        Science. 2009; 324: 639-642
        • Frånberg J.
        • Svensson A.I.
        • Winblad B.
        • Karlström H.
        • Frykman S.
        Minor contribution of presenilin 2 for γ-secretase activity in mouse embryonic fibroblasts and adult mouse brain.
        Biochem Biophys Res Commun. 2011; 404: 564-568
        • Sannerud R.
        • Esselens C.
        • Ejsmont P.
        • Mattera R.
        • Rochin L.
        • Tharkeshwar A.
        • et al.
        Restricted location of PSEN2 γ-secretase determines substrate specificity and generates an intracellular Aβ pool.
        Cell. 2016; 166: 193-208
        • Meckler X.
        • Checler F.
        Presenilin 1 and presenilin 2 target γ-secretase complexes to distinct cellular compartments.
        J Biol Chem. 2016; 291: 12821-12837
        • Hebert S.S.
        • Serneels L.
        • Dejaegere T.
        • Horre K.
        • Dabrowski M.
        • Baert V.
        • et al.
        Coordinated and widespread expression of gamma-secretase in vivo: Evidence for size and molecular heterogeneity.
        Neurobiol Dis. 2004; 17: 260-272
        • Kumar A.
        • Thakur M.K.
        Presenilin 1 and 2 are expressed differentially in the cerebral cortex of mice during development.
        Neurochem Int. 2012; 61: 778-782
        • Dejaegere T.
        • Serneels L.
        • Schäfer M.K.
        • Van Biervliet J.
        • Horre K.
        • Depboylu C.
        • et al.
        Cleavage and sensorimotor gating that can be reversed with antipsychotic treatment.
        Proc Natl Acad Sci U S A. 2008; 105: 9775-9780
        • Fazzari P.
        • Snellinx A.
        • Sabanov V.
        • Ahmed T.
        • Serneels L.
        • Gartner A.
        • et al.
        Cell autonomous regulation of cortical excitatory circuitry via Aph1B-γ-secretase/neuregulin 1 signalling.
        Elife. 2014; 3: e02196
        • Barão S.
        • Gärtner A.
        • Leyva-Díaz E.
        • Demyanenko G.
        • Munck S.
        • Vanhoutvin T.
        • et al.
        Antagonistic effects of BACE1 and APH1B-γ-secretase control axonal guidance by regulating growth cone collapse.
        Cell Rep. 2015; 12: 1367-1376
        • Bai X.
        • Yan C.
        • Yang G.
        • Lu P.
        • Ma D.
        • Sun L.
        • et al.
        An atomic structure of human γ-secretase.
        Nature. 2015; 525: 212-217
        • Bai X.C.
        • Rajendra E.
        • Yang G.
        • Shi Y.
        • Scheres S.H.
        Sampling the conformational space of the catalytic subunit of human gamma-secretase.
        Elife. 2015; 4: e11182
        • Lleó A.
        • Berezovska O.
        • Growdon J.H.
        • Hyman B.T.
        Clinical, pathological and biochemical spectrum of Alzheimer disease associated with PS-1 mutations.
        Am J Geriatr Psychiatry. 2004; 12: 146-156
        • Uemura K.
        • Lill C.M.
        • Li X.
        • Peters J.A.
        • Ivanov A.
        • Fan Z.
        • et al.
        Allosteric modulation of PS1/γ-secretase conformation correlates with amyloid β42/40 ratio.
        PLoS One. 2009; 4: e7893
        • Uemura K.
        • Farner K.C.
        • Hashimoto T.
        • Nasser-Ghodsi N.
        • Wolfe M.S.
        • Koo E.H.
        • et al.
        Substrate docking to γ-secretase allows access of γ-secretase modulators to an allosteric site.
        Nat Commun. 2010; 1: 130
        • Wahlster L.
        • Arimon M.
        • Nasser-Ghodsi N.
        • Post K.L.
        • Serrano-Pozo A.
        • Uemura K.
        • Berezovska O.
        Presenilin-1 adopts pathogenic conformation in normal aging and in sporadic Alzheimer’s disease.
        Acta Neuropathol. 2013; 125: 187-199
        • Elad N.
        • De Strooper B.
        • Lismont S.
        • Hagen W.
        • Veugelen S.
        • Arimon M.
        • et al.
        The dynamic conformational landscape of γ-secretase.
        J Cell Sci. 2015; 128: 589-598
        • Li Y.
        • Lu S.H.
        • Tsai C.J.
        • Bohm C.
        • Qamar S.
        • Dodd R.B.
        • et al.
        Structural interactions between inhibitor and substrate docking sites give insight into mechanisms of human PS1 complexes.
        Structure. 2014; 22: 125-135
        • Jurisch-Yaksi N.
        • Sannerud R.
        • Annaert W.
        A fast growing spectrum of biological functions of gamma-secretase in development and disease.
        Biochim Biophys Acta. 2013; 1828: 2815-2827
        • Hemming M.L.
        • Elias J.E.
        • Gygi S.P.
        • Selkoe D.J.
        Proteomic profiling of γ-secretase substrates and mapping of substrate requirements.
        PLoS Biol. 2008; 6: 2314-2328
        • Almén M.
        • Nordström K.J.
        • Fredriksson R.
        • Schiöth H.B.
        Mapping the human membrane proteome: A majority of the human membrane proteins can be classified according to function and evolutionary origin.
        BMC Biol. 2009; 7: 50
        • Langosch D.
        • Scharnagl C.
        • Steiner H.
        • Lemberg M.K.
        Understanding intramembrane proteolysis: From protein dynamics to reaction kinetics.
        Trends Biochem Sci. 2015; 40: 318-327
        • Strisovsky K.
        Why cells need intramembrane proteases—a mechanistic perspective.
        FEBS J. 2015; 283: 1837-1845
        • Takami M.
        • Nagashima Y.
        • Sano Y.
        • Ishihara S.
        • Morishima-Kawashima M.
        • Funamoto S.
        • Ihara Y.
        Gamma-secretase: Successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment.
        J Neurosci. 2009; 29: 13042-13052
        • Matsumura N.
        • Takami M.
        • Okochi M.
        • Wada-Kakuda S.
        • Fujiwara H.
        • Tagami S.
        • et al.
        γ-Secretase associated with lipid rafts: Multiple interactive pathways in the stepwise processing of β-carboxylterminal fragment.
        J Biol Chem. 2014; 289: 5109-5121
        • Lal M.
        • Caplan M.
        Regulated intramembrane proteolysis: Signaling pathways and biological functions.
        Physiology (Bethesda). 2011; 26: 34-44
        • Szaruga M.
        • Munteanu B.
        • Lismont S.
        • Veugelen S.
        • Horré K.
        • Mercken M.
        • et al.
        Alzheimer’s-causing mutations shift Aβ length by destabilizing γ-secretase-Aβn interactions.
        Cell. 2017; 170: 443-456
        • Okochi M.
        • Tagami S.
        • Yanagida K.
        • Takami M.
        • Kodama T.S.
        • Mori K.
        • et al.
        γ-Secretase modulators and presenilin 1 mutants act differently on presenilin/γ-secretase function to cleave Aβ42 and Aβ43.
        Cell Rep. 2013; 3: 42-51
        • Xia D.
        • Watanabe H.
        • Wu B.
        • Lee S.H.
        • Li Y.
        • Tsvetkov E.
        • et al.
        Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer’s disease.
        Neuron. 2015; 85: 967-981
        • Shen J.
        • Kelleher R.J.
        The presenilin hypothesis of Alzheimer’s disease: Evidence for a loss-of-function pathogenic mechanism.
        Proc Natl Acad Sci U S A. 2007; 104: 403-409
        • Saura C.A.
        • Choi S.Y.
        • Beglopoulos V.
        • Malkani S.
        • Zhang D.
        • Rao B.S.S.
        • et al.
        Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration.
        Neuron. 2004; 42: 23-36
        • Acx H.
        • Serneels L.
        • Radaelli E.
        • Muyldermans S.
        • Vincke C.
        • Pepermans E.
        • et al.
        Inactivation of γ-secretases leads to accumulation of substrates and non-Alzheimer neurodegeneration.
        EMBO Mol Med. 2017; 9: 1088-1099
        • Sun L.
        • Zhou R.
        • Yang G.
        • Shi Y.
        Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase.
        Proc Natl Acad Sci U S A. 2016; 114: E476-E485
        • Kretner B.
        • Trambauer J.
        • Fukumori A.
        • Mielke J.
        • Kuhn P.-H.
        • Kremmer E.
        • et al.
        Generation and deposition of Aβ43 by the virtually inactive presenilin-1 L435F mutant contradicts the presenilin loss-of-function hypothesis of Alzheimer’s disease.
        EMBO Mol Med. 2016; 8: 458-465
        • Potter R.
        • Patterson B.W.
        • Elbert D.L.
        • Ovod V.
        • Kasten T.
        • Sigurdson W.
        • et al.
        Increased in vivo amyloid-42 production, exchange, and loss in presenilin mutation carriers.
        Sci Transl Med. 2013; 5: 189ra77
        • Saito T.
        • Suemoto T.
        • Brouwers N.
        • Sleegers K.
        • Funamoto S.
        • Mihira N.
        • et al.
        Potent amyloidogenicity and pathogenicity of Aβ43.
        Nat Neurosci. 2011; 14: 1023-1032
        • Fernandez M.A.
        • Klutkowski J.A.
        • Freret T.
        • Wolfe M.S.
        Alzheimer presenilin-1 mutations dramatically reduce trimming of long amyloid β-peptides (Aβ) by γ-secretase to increase 42-to-40-residue Aβ.
        J Biol Chem. 2014; 289: 31043-31052
        • Moore S.
        • Evans L.D.B.
        • Andersson T.
        • Portelius E.
        • Smith J.
        • Dias T.B.
        • et al.
        APP metabolism regulates tau proteostasis in human cerebral cortex neurons.
        Cell Rep. 2015; 11: 689-696
        • Fukumori A.
        • Steiner H.
        Substrate recruitment of γ-secretase and mechanism of clinical presenilin mutations revealed by photoaffinity mapping.
        EMBO J. 2016; 35: 1628-1643
        • Borgegård T.
        • Gustavsson S.
        • Nilsson C.
        • Parpal S.
        • Klintenberg R.
        • Berg A.-L.
        • et al.
        Alzheimer’s disease: Presenilin 2-sparing γ-secretase inhibition is a tolerable Aβ peptide-lowering strategy.
        J Neurosci. 2012; 32: 17297-17305
        • Weggen S.
        • Eriksen J.L.
        • Das P.
        • Sagi S.A.
        • Wang R.
        • Pietrzik C.U.
        • et al.
        A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity.
        Nature. 2001; 414: 212-216
        • Kounnas M.Z.
        • Danks A.M.
        • Cheng S.
        • Tyree C.
        • Ackerman E.
        • Zhang X.
        • et al.
        Modulation of gamma-secretase reduces beta-amyloid deposition in a transgenic mouse model of Alzheimer’s disease.
        Neuron. 2010; 67: 769-780
        • Vassar R.
        • Bennett B.D.
        • Babu-khan S.
        • Kahn S.
        • Mendiaz E.A.
        • Denis P.
        • et al.
        β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE.
        Science. 1999; 286: 735-741
        • Bennett B.D.
        • Babu-Khan S.
        • Loeloff R.
        • Louis J.C.
        • Curran E.
        • Citron M.
        • Vassar R.
        Expression analysis of BACE2 in brain and peripheral tissues.
        J Biol Chem. 2000; 275: 20647-20651
        • Farzan M.
        • Schnitzler C.E.
        • Vasilieva N.
        • Leung D.
        • Choe H.
        BACE2, a β-secretase homolog, cleaves at the β site and within the amyloid-β region of the amyloid-β precursor protein.
        Proc Natl Acad Sci U S A. 2000; 97: 9712-9717
        • Marcinkiewicz M.
        • Seidah N.G.
        Coordinated expression of beta-amyloid precursor protein and the putative beta-secretase BACE and alpha-secretase ADAM10 in mouse and human brain.
        J Neurochem. 2000; 75: 2133-2143
        • Cole S.L.
        • Vassar R.
        The basic biology of BACE1: A key therapeutic target for Alzheimer’s disease.
        Curr Genomics. 2007; 8: 509-530
        • Cai H.
        • Wang Y.
        • McCarthy D.
        • Wen H.
        • Borchelt D.R.
        • Price D.L.
        • Wong P.C.
        BACE1 is the major beta-secretase for generation of Abeta peptides by neurons.
        Nat Neurosci. 2001; 4: 233-234
        • Luo Y.
        • Bolon B.
        • Kahn S.
        • Bennett B.D.
        • Babu-Khan S.
        • Denis P.
        • et al.
        Mice deficient in BACE1, the Alzheimer’s β-secretase, have normal phenotype and abolished β-amyloid generation.
        Nat Neurosci. 2001; 4: 231-232
        • Roberds S.L.
        • Anderson J.
        • Basi G.
        • Bienkowski M.J.
        • Branstetter D.G.
        • Chen K.S.
        • et al.
        BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: Implications for Alzheimer’s disease therapeutics.
        Hum Mol Genet. 2001; 10: 1317-1324
        • Harrison S.M.
        • Harper A.J.
        • Hawkins J.
        • Duddy G.
        • Grau E.
        • Pugh P.L.
        • et al.
        BACE1 (β-secretase) transgenic and knockout mice: Identification of neurochemical deficits and behavioral changes.
        Mol Cell Neurosci. 2003; 24: 646-655
        • Dominguez D.
        • Tournoy J.
        • Hartmann D.
        • Huth T.
        • Cryns K.
        • Deforce S.
        • et al.
        Phenotypic and biochemical analyses of BACE1- and BACE2-deficient mice.
        J Biol Chem. 2005; 280: 30797-30806
        • Kennedy M.E.
        • Stamford A.W.
        • Chen X.
        • Cox K.
        • Cumming J.N.
        • Dockendorf M.F.
        • et al.
        The BACE1 inhibitor verubecestat (MK-8931) reduces CNS β-amyloid in animal models and in Alzheimer’s disease patients.
        Sci Transl Med. 2016; 8: 363ra150
        • May P.C.
        • Willis B.A.
        • Lowe S.L.
        • Dean R.A.
        • Monk S.A.
        • Cocke P.J.
        • et al.
        The potent BACE1 inhibitor LY2886721 elicits robust central A pharmacodynamic responses in mice, dogs, and humans.
        J Neurosci. 2015; 35: 1199-1210
        • Jonsson T.
        • Atwal J.K.
        • Steinberg S.
        • Snaedal J.
        • Jonsson P.V.
        • Bjornsson S.
        • et al.
        A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline.
        Nature. 2012; 488: 96-99
        • Martiskainen H.
        • Herukka S.-K.
        • Stančáková A.
        • Paananen J.
        • Soininen H.
        • Kuusisto J.
        • et al.
        Decreased plasma β-amyloid in the Alzheimer’s disease APP A673T variant carriers.
        Ann Neurol. 2017; 82: 128-132
        • Benilova I.
        • Gallardo R.
        • Ungureanu A.A.
        • Cano V.C.
        • Snellinx A.
        • Ramakers M.
        • et al.
        The Alzheimer disease protective mutation A2T modulates kinetic and thermodynamic properties of amyloid-β (Aβ) aggregation.
        J Biol Chem. 2014; 289: 30977-30989
        • Maloney J.A.
        • Bainbridge T.
        • Gustafson A.
        • Zhang S.
        • Kyauk R.
        • Steiner P.
        • et al.
        Molecular mechanisms of Alzheimer disease protection by the A673T allele of amyloid precursor protein.
        J Biol Chem. 2014; 289: 30990-31000
        • Kimura A.
        • Hata S.
        • Suzuki T.
        Alternative selection of site APP-cleaving enzyme 1 (BACE1) cleavage sites in amyloid β-protein precursor (APP) harboring protective and pathogenic mutations within the Aβ sequence.
        J Biol Chem. 2016; 291: 24041-24053
        • Streltsov V.A.
        • Varghese J.N.
        • Masters C.L.
        • Nuttall S.D.
        Crystal structure of the amyloid-β p3 fragment provides a model for oligomer formation in Alzheimer’s disease.
        J Neurosci. 2011; 31: 1419-1426
        • Willem M.
        • Tahirovic S.
        • Busche M.A.
        • Ovsepian S.V.
        • Chafai M.
        • Kootar S.
        • et al.
        η-Secretase processing of APP inhibits neuronal activity in the hippocampus.
        Nature. 2015; 526: 443-447
        • Hu X.
        • Hicks C.W.
        • He W.
        • Wong P.
        • Macklin W.B.
        • Trapp B.D.
        • Yan R.
        Bace1 modulates myelination in the central and peripheral nervous system.
        Nat Neurosci. 2006; 9: 1520-1525
        • Willem M.
        • Garratt A.N.
        • Novak B.
        • Citron M.
        • Kaufmann S.
        • Rittger A.
        • et al.
        Control of peripheral nerve myelination by the β-secretase BACE1.
        Science. 2006; 314: 664-666
        • Li Q.
        • Südhof T.C.
        Cleavage of amyloid-β precursor protein and amyloid-β precursor-like protein by BACE 1.
        J Biol Chem. 2004; 279: 10542-10550
        • Pastorino L.
        • Ikin A.F.
        • Lamprianou S.
        • Vacaresse N.
        • Revelli J.P.
        • Platt K.
        • et al.
        BACE (β-secretase) modulates the processing of APLP2 in vivo.
        Mol Cell Neurosci. 2004; 25: 642-649
        • Fleck D.
        • van Bebber F.
        • Colombo A.
        • Galante C.
        • Schwenk B.M.
        • Rabe L.
        • et al.
        Dual cleavage of neuregulin 1 type III by BACE1 and ADAM17 liberates its EGF-like domain and allows paracrine signaling.
        J Neurosci. 2013; 33: 7856-7869
        • Cheret C.
        • Willem M.
        • Fricker F.R.
        • Wende H.
        • Wulf-Goldenberg A.
        • Tahirovic S.
        • et al.
        Bace1 and Neuregulin-1 cooperate to control formation and maintenance of muscle spindles.
        EMBO J. 2013; 32: 2015-2028
        • Kuhn P.-H.
        • Koroniak K.
        • Hogl S.
        • Colombo A.
        • Zeitschel U.
        • Willem M.
        • et al.
        Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons.
        EMBO J. 2012; 31: 3157-3168
        • Zhou L.
        • Barão S.
        • Laga M.
        • Bockstael K.
        • Borgers M.
        • Gijsen H.
        • et al.
        The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo.
        J Biol Chem. 2012; 287: 25927-25940
        • Dislich B.
        • Wohlrab F.
        • Bachhuber T.
        • Müller S.
        Label-free quantitative proteomics of mouse cerebrospinal fluid detects BACE1 protease substrates in vivo.
        Mol Cell Proteomics. 2015; 14: 2550-2563
        • Gunnersen J.M.
        • Kim M.H.
        • Fuller S.J.
        • De Silva M.
        • Britto J.M.
        • Hammond V.E.
        • et al.
        Sez-6 proteins affect dendritic arborization patterns and excitability of cortical pyramidal neurons.
        Neuron. 2007; 56: 621-639
        • Pigoni M.
        • Wanngren J.
        • Kuhn P.-H.
        • Munro K.M.
        • Gunnersen J.M.
        • Takeshima H.
        • et al.
        Seizure protein 6 and its homolog seizure 6-like protein are physiological substrates of BACE1 in neurons.
        Mol Neurodegener. 2016; 11: 67
        • Zhu K.
        • Xiang X.
        • Filser S.
        • Marinković P.
        • Dorostkar M.M.
        • Crux S.
        • et al.
        Beta-site amyloid precursor protein cleaving enzyme 1 inhibition impairs synaptic plasticity via seizure protein 6.
        Biol Psychiatry. 2017; ([published online ahead of print Dec 26])
        • Rajapaksha T.W.
        • Eimer W.A.
        • Bozza T.C.
        • Vassar R.
        The Alzheimer’s β-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb.
        Mol Neurodegener. 2011; 6: 88
        • Cao L.
        • Rickenbacher G.T.
        • Rodriguez S.
        • Moulia T.W.
        • Albers M.W.
        The precision of axon targeting of mouse olfactory sensory neurons requires the BACE1 protease.
        Sci Rep. 2012; 2: 231
        • Hitt B.
        • Riordan S.M.
        • Kukreja L.
        • Eimer W.A.
        • Rajapaksha T.W.
        • Vassar R.
        β-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)-deficient mice exhibit a close homolog of L1 (CHL1) loss-of-function phenotype involving axon guidance defects.
        J Biol Chem. 2012; 287: 38408-38425
        • Cai J.
        • Qi X.
        • Kociok N.
        • Skosyrski S.
        • Emilio A.
        • Ruan Q.
        • et al.
        β-Secretase (BACE1) inhibition causes retinal pathology by vascular dysregulation and accumulation of age pigment.
        EMBO Mol Med. 2012; 4: 980-991
        • Kobayashi D.
        • Zeller M.
        • Cole T.
        • Buttini M.
        • McConlogue L.
        • Sinha S.
        • et al.
        BACE1 gene deletion: Impact on behavioral function in a model of Alzheimer’s disease.
        Neurobiol Aging. 2008; 29: 861-873
        • Savonenko A.V.
        • Melnikova T.
        • Laird F.M.
        • Stewart K.
        • Price D.L.
        • Wong P.C.
        Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice.
        Proc Natl Acad Sci U S A. 2008; 105: 5585-5590
        • Rochin L.
        • Hurbain I.
        • Serneels L.
        • Fort C.
        • Watt B.
        • Leblanc P.
        • et al.
        BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells.
        Proc Natl Acad Sci U S A. 2013; 110: 10658-10663
        • Shimshek D.R.
        • Jacobson L.H.
        • Kolly C.
        • Zamurovic N.
        • Balavenkatraman K.K.
        • Morawiec L.
        • et al.
        Pharmacological BACE1 and BACE2 inhibition induces hair depigmentation by inhibiting PMEL17 processing in mice.
        Sci Rep. 2016; 6: 21917
        • Cebers G.
        • Lejeune T.
        • Attalla B.
        • Soderberg M.
        • Alexander S.R.C.
        • Haeberlein S.B.
        • et al.
        Reversible and species-specific depigmentation effects of AZD3293, a BACE inhibitor for the treatment of Alzheimer’s disease, are related to BACE2 inhibition and confined to epidermis and hair.
        J Prev Alzheimers Dis. 2016; 3: 202-218
        • Esterházy D.
        • Stützer I.
        • Wang H.
        • Rechsteiner M.P.
        • Beauchamp J.
        • Döbeli H.
        • et al.
        Bace2 is a β cell-enriched protease that regulates pancreatic β cell function and mass.
        Cell Metab. 2011; 14: 365-377
        • Ghosh A.
        • Bhavanam S.
        • Yen Y.-C.
        • Cardenas E.
        • Rao K.
        • Downs D.
        • et al.
        Design of potent and highly selective inhibitors for human B-secretase 2 (memapsin 1), a target for type 2 diabetes.
        Chem Sci. 2016; 7: 3117-3122
        • Forman M.
        • Palcza J.
        • Tseng J.
        • Leempoels J.
        • Ramael S.
        • Han D.
        • et al.
        The novel BACE inhibitor MK-8931 dramatically lowers cerebrospinal fluid Aβ peptides in healthy subjects following single- and multiple-dose administration.
        Alzheimer’s Dement. 2012; 8: P704
        • Eketjäll S.
        • Janson J.
        • Kaspersson K.
        • Bogstedt A.
        • Jeppsson F.
        • Fälting J.
        • et al.
        AZD3293: A novel, orally active BACE1 inhibitor with high potency and permeability and markedly slow off-rate kinetics.
        J Alzheimers Dis. 2016; 50: 1109-1123
        • Cebers G.
        • Alexander R.C.
        • Haeberlein S.B.
        • Han D.
        • Goldwater R.
        • Ereshefsky L.
        • et al.
        AZD3293: Pharmacokinetic and pharmacodynamic effects in healthy subjects and patients with Alzheimer’s disease.
        J Alzheimers Dis. 2016; 55: 1039-1053
        • Zuhl A.M.
        • Nolan C.E.
        • Brodney M.A.
        • Niessen S.
        • Atchison K.
        • Houle C.
        • et al.
        Chemoproteomic profiling reveals that cathepsin D off-target activity drives ocular toxicity of β-secretase inhibitors.
        Nat Commun. 2016; 7: 13042
        • Zhou L.
        • Chávez-Gutiérrez L.
        • Bockstael K.
        • Sannerud R.
        • Annaert W.
        • May P.C.
        • et al.
        Inhibition of β-secretase in vivo via antibody binding to unique loops (D and F) of BACE1.
        J Biol Chem. 2011; 286: 8677-8687
        • Atwal J.K.
        • Chen Y.
        • Chiu C.
        • Mortensen D.L.
        • Meilandt W.J.
        • Liu Y.
        • et al.
        A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo.
        Sci Transl Med. 2011; 3: 84ra43
        • Hawkes N.
        Merck ends trial of potential Alzheimer’s drug verubecestat.
        BMJ. 2017; 356: j845
        • The Lancet Neurology
        Solanezumab: too late in mild Alzheimer’s disease?.
        Lancet Neurol. 2017; 16: 97
        • Jacobsen H.
        • Ozmen L.
        • Caruso A.
        • Narquizian R.
        • Hilpert H.
        • Jacobsen B.
        • et al.
        Combined treatment with a BACE inhibitor and anti-Aβ antibody gantenerumab enhances amyloid reduction in APP(London) mice.
        J Neurosci. 2014; 34: 11621-11630