Advertisement

Infant Gut Microbiome Associated With Cognitive Development

      Abstract

      Background

      Studies in rodents provide compelling evidence that microorganisms inhabiting the gut influence neurodevelopment. In particular, experimental manipulations that alter intestinal microbiota impact exploratory and communicative behaviors and cognitive performance. In humans, the first years of life are a dynamic time in gut colonization and brain development, but little is known about the relationship between these two processes.

      Methods

      We tested whether microbial composition at 1 year of age is associated with cognitive outcomes using the Mullen Scales of Early Learning and with global and regional brain volumes using structural magnetic resonance imaging at 1 and 2 years of age. Fecal samples were collected from 89 typically developing 1-year-olds. 16S ribosomal RNA amplicon sequencing was used for identification and relative quantification of bacterial taxa.

      Results

      Cluster analysis identified 3 groups of infants defined by their bacterial composition. Mullen scores at 2 years of age differed significantly between clusters. In addition, higher alpha diversity was associated with lower scores on the overall composite score, visual reception scale, and expressive language scale at 2 years of age. Exploratory analyses of neuroimaging data suggest the gut microbiome has minimal effects on regional brain volumes at 1 and 2 years of age.

      Conclusions

      This is the first study to demonstrate associations between the gut microbiota and cognition in human infants. As such, it represents an essential first step in translating animal data into the clinic.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sampson T.R.
        • Mazmanian S.K.
        Control of brain development, function, and behavior by the microbiome.
        Cell Host Microbe. 2015; 17: 565-576
        • Cryan J.F.
        • Dinan T.G.
        Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour.
        Nat Rev Neurosci. 2012; 13: 701-712
        • De Palma G.
        • Blennerhassett P.
        • Lu J.
        • Deng Y.
        • Park A.J.
        • Green W.
        • et al.
        Microbiota and host determinants of behavioural phenotype in maternally separated mice.
        Nat Commun. 2015; 6: 7735
        • Hsiao E.Y.
        • McBride S.W.
        • Hsien S.
        • Sharon G.
        • Hyde E.R.
        • McCue T.
        • et al.
        Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders.
        Cell. 2013; 155: 1451-1463
        • Diaz Heijtz R.
        • Wang S.
        • Anuar F.
        • Qian Y.
        • Björkholm B.
        • Samuelsson A.
        • et al.
        Normal gut microbiota modulates brain development and behavior.
        PNAS. 2011; 108: 3047-3052
        • Zheng P.
        • Zeng B.
        • Zhou C.
        • Liu M.
        • Fang Z.
        • Xu X.
        • et al.
        Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism.
        Mol Psychiatry. 2016; 21: 786-796
        • Fröhlich E.E.
        • Farzi A.
        • Mayerhofer R.
        • Reichmann F.
        • Jačan A.
        • Wagner B.
        • et al.
        Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication.
        Brain Behav Immun. 2016; 56: 140-155
        • Savignac H.M.
        • Tramullas M.
        • Kiely B.
        • Dinan T.G.
        • Cryan J.F.
        Bifidobacteria modulate cognitive processes in an anxious mouse strain.
        Behav Brain Res. 2015; 287: 59-72
        • Neufeld K.A.M.
        • Kang N.
        • Bienenstock J.
        • Foster J.A.
        Effects of intestinal microbiota on anxiety-like behavior.
        Commun Integr Biol. 2011; 4: 492-494
        • Clarke G.
        • Grenham S.
        • Scully P.
        • Fitzgerald P.
        • Moloney R.D.
        • Shanahan F.
        • et al.
        The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner.
        Mol Psychiatry. 2012; 18: 666-673
        • Desbonnet L.
        • Garrett L.
        • Clarke G.
        • Bienenstock J.
        • Dinan T.G.
        The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat.
        J Psychiatr Res. 2008; 43: 164-174
        • Neufeld K.M.
        • Kang N.
        • Bienenstock J.
        • Foster J.A.
        Reduced anxiety-like behavior and central neurochemical change in germ-free mice.
        Neurogastroenterol Motil. 2011; 23: 255-265
        • Sudo N.
        • Chida Y.
        • Aiba Y.
        • Sonoda J.
        • Oyama N.
        • Yu X.N.
        • et al.
        Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice.
        J Physiol. 2004; 5581: 263-275
        • Bercik P.
        • Denou E.
        • Collins J.
        • Jackson W.
        • Lu J.
        • Jury J.
        • et al.
        The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice.
        Gastroenterology. 2011; 141: 599-609
        • Luczynski P.
        • Whelan S.O.
        • O’Sullivan C.
        • Clarke G.
        • Shanahan F.
        • Dinan T.G.
        • Cryan J.F.
        Adult microbiota-deficient mice have distinct dendritic morphological changes: Differential effects in the amygdala and hippocampus.
        Eur J Neurosci. 2016; 44: 2654-2666
        • Finegold S.M.
        • Dowd S.E.
        • Gontcharova V.
        • Liu C.
        • Henley K.E.
        • Wolcott R.D.
        • et al.
        Pyrosequencing study of fecal microflora of autistic and control children.
        Anaerobe. 2010; 16: 444-453
        • Wang L.
        • Christophersen C.T.
        • Sorich M.J.
        • Gerber J.P.
        • Angley M.T.
        • Conlon M.A.
        Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder.
        Mol Autism. 2013; 4: 42
        • Tomova A.
        • Husarova V.
        • Lakatosova S.
        • Bakos J.
        • Vlkova B.
        • Babinska K.
        • Ostatnikova D.
        Gastrointestinal microbiota in children with autism in Slovakia.
        Physiol Behav. 2015; 138: 179-187
        • Jiang H.
        • Ling Z.
        • Zhang Y.
        • Mao H.
        • Ma Z.
        • Yin Y.
        • et al.
        Altered fecal microbiota composition in patients with major depressive disorder.
        Brain Behav Immun. 2015; 48: 186-194
        • Kleiman S.C.
        • Watson H.J.
        • Bulik-Sullivan E.C.
        • Huh E.Y.
        • Tarantino L.M.
        • Bulik C.M.
        • Carroll I.M.
        The intestinal microbiota in acute anorexia nervosa and during renourishment: Relationship to depression, anxiety, and eating disorder psychopathology.
        Psychosom Med. 2015; 77: 969-981
        • Christian L.M.
        • Galley J.D.
        • Hade E.M.
        • Schoppe-Sullivan S.
        • Kamp Dush C.
        • Bailey M.T.
        Gut microbiome composition is associated with temperament during early childhood.
        Brain Behav Immun. 2015; 45: 118-127
        • Fernandez-Real J.M.
        • Serino M.
        • Blasco G.
        • Puig J.
        • Daunis-I-Estadella J.
        • Ricart W.
        • et al.
        Gut microbiota interacts with brain microstructure and function.
        J Clin Endocrinol Metab. 2015; 100: 4505-4513
        • Madan J.C.
        • Hoen A.G.
        • Lundgren S.N.
        • Farzan S.F.
        • Cottingham K.L.
        • Morrison H.G.
        • et al.
        Association of cesarean delivery and formula supplementation with the intestinal microbiome of 6-week-old infants.
        JAMA Pediatr. 2016; 170: 1-8
        • Bokulich N.A.
        • Chung J.
        • Battaglia T.
        • Henderson N.
        • Jay M.
        • Li H.
        • et al.
        Antibiotics, birth mode, and diet shape microbiome maturation during early life.
        Sci Transl Med. 2016; 8: 1-14
        • Thompson A.L.
        • Monteagudo-Mera A.
        • Cadenas M.B.
        • Lampl M.L.
        • Azcarate-Peril M.A.
        Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome.
        Front Cell Infect Microbiol. 2015; 5: 3
        • Koenig J.E.
        • Spor A.
        • Scalfone N.
        • Fricker A.D.
        • Stombaugh J.
        • Knight R.
        • et al.
        Succession of microbial consortia in the developing infant gut microbiome.
        Proc Natl Acad Sci U S A. 2011; 108: 4578-4585
        • Goodrich J.K.
        • Davenport E.R.
        • Beaumont M.
        • Bell J.T.
        • Clark A.G.
        • Ley R.E.
        Genetic determinants of the gut microbiome in UK twins correspondence.
        Cell Host Microbe. 2016; 19: 731-743
        • Dogra S.
        • Sakwinska O.
        • Soh S.E.
        • Ngom-Bru C.
        • Brück W.M.
        • Berger B.
        • et al.
        Rate of establishing the gut microbiota in infancy has consequences for future health.
        Gut Microbes. 2015; 6: 321-325
        • Stiles J.
        • Jernigan T.L.
        The basics of brain development.
        Neuropsychol Rev. 2010; 20: 327-348
        • Knickmeyer R.C.
        • Gouttard S.
        • Kang C.
        • Evans D.
        • Wilber K.
        • Smith J.K.
        • et al.
        A structural MRI study of human brain development from birth to 2 years.
        J Neurosci. 2008; 28: 12176-12182
        • Gilmore J.H.
        • Shi F.
        • Woolson S.L.
        • Knickmeyer R.C.
        • Short S.J.
        • Lin W.
        • et al.
        Longitudinal development of cortical and subcortical gray matter from birth to 2 years.
        Cereb Cortex. 2012; 22: 2478-2485
        • Bravo J.A.
        • Forsythe P.
        • Chew M.V.
        • Escaravage E.
        • Savignac H.M.
        • Dinan T.G.
        • et al.
        Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve.
        Proc Natl Acad Sci U S A. 2011; 108: 16050-16055
        • Kostic A.D.D.
        • Gevers D.
        • Siljander H.
        • Vatanen T.
        • Hyötyläinen T.
        • Hämäläinen A.M.
        • et al.
        The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes.
        Cell Host Microbe. 2015; 17: 260-273
        • Abrahamsson T.R.
        • Jakobsson H.E.
        • Andersson A.F.
        • Björkstén B.
        • Engstrand L.
        • Jenmalm M.C.
        Low gut microbiota diversity in early infancy precedes asthma at school age.
        Clin Exp Allergy. 2014; 44: 842-850
        • Gilmore J.H.
        • Lin W.
        • Prastawa M.W.
        • Looney C.B.
        • Vetsa Y.S.K.
        • Knickmeyer R.C.
        • et al.
        Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain.
        J Neurosci. 2007; 27: 1255-1260
        • Gilmore J.H.
        • Schmitt J.E.
        • Knickmeyer R.C.
        • Smith J.K.
        • Lin W.
        • Styner M.
        • et al.
        Genetic and environmental contributions to neonatal brain structure: A twin study.
        Hum Brain Mapp. 2010; 31: 1174-1182
        • Edwards U.
        • Rogall T.
        • Blöcker H.
        • Emde M.
        • Böttger E.C.
        Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA.
        Nucleic Acids Res. 1989; 17: 7843-7853
        • Fierer N.
        • Hamady M.
        • Lauber C.L.
        • Knight R.
        The influence of sex, handedness, and washing on the diversity of hand surface bacteria.
        Proc Natl Acad Sci U S A. 2008; 105: 17994-17999
        • Romano-Keeler J.
        • Azcarate-Peril M.A.
        • Weitkamp J.H.
        • Slaughter J.C.
        • McDonald W.H.
        • Meng S.
        • et al.
        Oral colostrum priming shortens hospitalization without changing the immunomicrobial milieu.
        J Perinatol. 2017; 37: 36-41
        • Caporaso J.G.
        • Kuczynski J.
        • Stombaugh J.
        • Bittinger K.
        • Bushman F.D.
        • Costello E.K.
        • et al.
        QIIME allows analysis of high- throughput community sequencing data.
        Nat Methods. 2010; 7: 335-336
        • Lozupone C.
        • Knight R.
        UniFrac: A new phylogenetic method for comparing microbial communities.
        Appl Environ Microbiol. 2005; 71: 8228-8235
        • Lozupone C.
        • Hamady M.
        • Knight R.
        UniFrac-an online tool for comparing microbial community diversity in a phylogenetic context.
        BMC Bioinformatics. 2006; 7: 371
        • Mullen E.M.
        Mullen Scales of Early Learning: AGS Edition.
        Pearson (AGS), Minneapolis, MN1995
        • Yushkevich P.A.
        • Piven J.
        • Hazlett H.C.
        • Smith R.G.
        • Ho S.
        • Gee J.C.
        • Gerig G.
        User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability.
        Neuroimage. 2006; 31: 1116-1128
        • Shi F.
        • Yap P.T.
        • Wu G.
        • Jia H.
        • Gilmore J.H.
        • Lin W.
        • Shen D.
        Infant brain atlases from neonates to 1- and 2-year-olds.
        PLoS One. 2011; 6: e18746
        • Langille M.
        • Zaneveld J.
        • Caporaso J.G.
        • McDonald D.
        • Knights D.
        • Reyes J.
        • et al.
        Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.
        Nat Biotechnol. 2013; 31: 814-821
        • Parks D.H.
        • Tyson G.W.
        • Hugenholtz P.
        • Beiko R.G.
        STAMP: Statistical analysis of taxonomic and functional profiles.
        Bioinformatics. 2014; 30: 3123-3124
        • Yatsunenko T.
        • Rey F.E.
        • Manary M.J.
        • Trehan I.
        • Dominguez-Bello M.G.
        • Contreras M.
        • et al.
        Human gut microbiome viewed across age and geography.
        Nature. 2009; 457: 222-227
        • Bäckhed F.
        • Roswall J.
        • Peng Y.
        • Feng Q.
        • Jia H.
        • Kovatcheva-Datchary P.
        • et al.
        Dynamics and stabilization of the human gut microbiome during the first year of life.
        Cell Host Microbe. 2015; 17: 690-703
        • Arumugam M.
        • Raes J.
        • Pelletier E.
        • Le Paslier D.
        • Yamada T.
        • Mende D.R.
        • et al.
        Enterotypes of the human gut microbiome.
        Nature. 2011; 473: 174-180
        • Falony G.
        • Joossens M.
        • Vieira-Silva S.
        • Wang J.
        • Darzi Y.
        • Faust K.
        • et al.
        Population-level analysis of gut microbiome variation.
        Science. 2016; 352: 560-564
        • Knights D.
        • Ward T.L.
        • McKinlay C.E.
        • Miller H.
        • Gonzalez A.
        • McDonald D.
        • Knight R.
        Rethinking enterotypes.
        Cell Host Microbe. 2014; 16: 433-437
        • Planer J.D.
        • Peng Y.
        • Kau A.L.
        • Blanton L.V.
        • Ndao I.M.
        • Tarr P.I.
        • et al.
        Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice.
        Nature. 2016; 534: 263-266
        • Levin A.
        • Sitarik A.
        • Havstad S.
        • Fujimura K.
        • Wegienka G.
        • Andrea C.B.
        • et al.
        Joint effects of pregnancy, sociocultural, and environmental factors on early life gut microbiome structure and diversity.
        Sci Rep. 2016; 6: 31775
        • Stearns J.C.
        • Zulyniak M.A.
        • de Souza R.J.
        • Campbell N.C.
        • Fontes M.
        • Shaikh M.
        • et al.
        Ethnic and diet-related differences in the healthy infant microbiome.
        Genome Med. 2017; 9: 32
        • Chatzi L.
        • Papadopoulou E.
        • Koutra K.
        • Roumeliotaki T.
        • Georgiou V.
        • Stratakis N.
        • et al.
        Effect of high doses of folic acid supplementation in early pregnancy on child neurodevelopment at 18 months of age: The mother–child cohort “Rhea” study in Crete, Greece.
        Public Health Nutr. 2012; 15: 1728-1736
        • Julvez J.
        • Fortuny J.
        • Mendez M.
        • Torrent M.
        • Ribas-Fito N.
        • Sunyer J.
        Maternal use of folic acid supplements during pregnancy and four-year-old neurodevelopment in a population-based birth cohort.
        Paediatr Perinat Epidemiol. 2009; 23: 199-206
        • Roza S.J.
        • van Batenburg-Eddes T.
        • Steegers E.A.
        • Jaddoe V.W.
        • Mackenbach J.P.
        • Hofman A.
        • et al.
        Maternal folic acid supplement use in early pregnancy and child behavioural problems: The Generation R Study.
        Br J Nutr. 2010; 103: 445-452
        • De Meij T.G.J.
        • Budding A.E.
        • De Groot E.F.J.
        • Jansen F.M.
        • Kneepkens C.M.F.
        • Benninga M.A.
        • et al.
        Composition and stability of intestinal microbiota of healthy children within a Dutch population.
        FASEB J. 2016; 30: 1512-1522