Advertisement

The Roles of Phasic and Tonic Dopamine in Tic Learning and Expression

  • Tiago V. Maia
    Correspondence
    Address correspondence to Tiago V. Maia, Ph.D., Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
    Affiliations
    Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
    Search for articles by this author
  • Vasco A. Conceição
    Affiliations
    Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
    Search for articles by this author

      Abstract

      Tourette syndrome (TS) prominently involves dopaminergic disturbances, but the precise nature of those disturbances has remained elusive. A substantial body of empirical work and recent computational models have characterized the specific roles of phasic and tonic dopamine (DA) in action learning and selection, respectively. Using insights from this work and models, we suggest that TS involves increases in both phasic and tonic DA, which produce increased propensities for tic learning and expression, respectively. We review the evidence from reinforcement-learning and habit-learning studies in TS, which supports the idea that TS involves increased phasic DA responses; we also review the evidence that tics engage the habit-learning circuitry. On the basis of these findings, we suggest that tics are exaggerated, maladaptive, and persistent motor habits reinforced by aberrant, increased phasic DA responses. Increased tonic DA amplifies the tendency to execute learned tics and also provides a fertile ground of motor hyperactivity for tic learning. We review evidence suggesting that antipsychotics may counter both the increased propensity for tic expression, by increasing excitability in the indirect pathway, and the increased propensity for tic learning, by shifting plasticity in the indirect pathway toward long-term potentiation (and possibly also through more complex mechanisms). Finally, we review evidence suggesting that low doses of DA agonists that effectively treat TS decrease both phasic and tonic DA, thereby also reducing the propensity for both tic learning and tic expression, respectively.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Leckman J.F.
        • Cohen D.J.
        Recent advances in Gilles de la Tourette syndrome: Implications for clinical practice and future research.
        Psychiatr Dev. 1983; 1: 301-316
        • Singer H.S.
        • Butler I.J.
        • Tune L.E.
        • Seifert W.E.
        • Coyle J.T.
        Dopaminergic dsyfunction in Tourette syndrome.
        Ann Neurol. 1982; 12: 361-366
        • Buse J.
        • Schoenefeld K.
        • Münchau A.
        • Roessner V.
        Neuromodulation in Tourette syndrome: Dopamine and beyond.
        Neurosci Biobehav Rev. 2013; 37: 1069-1084
        • Singer H.S.
        The neurochemistry of Tourette syndrome.
        in: Martino D. Leckman J.F. Tourette Syndrome. Oxford University Press, New York2013: 276-300
        • Collins A.G.E.
        • Frank M.J.
        Opponent actor learning (OpAL): Modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive.
        Psychol Rev. 2014; 121: 337-366
        • Maia T.V.
        • Frank M.J.
        From reinforcement learning models to psychiatric and neurological disorders.
        Nat Neurosci. 2011; 14: 154-162
        • Maia T.V.
        • Frank M.J.
        An integrative perspective on the role of dopamine in schizophrenia.
        Biol Psychiatry. 2017; 81: 52-66
        • Maia T.V.
        Reinforcement learning, conditioning, and the brain: Successes and challenges.
        Cogn Affect Behav Neurosci. 2009; 9: 343-364
        • Schultz W.
        A neural substrate of prediction and reward.
        Science. 1997; 275: 1593-1599
        • Huys Q.J.M.
        • Tobler P.N.
        • Hasler G.
        • Flagel S.B.
        The role of learning-related dopamine signals in addiction vulnerability.
        Prog Brain Res. 2014; 211: 31-77
        • Dayan P.
        Instrumental vigour in punishment and reward.
        Eur J Neurosci. 2012; 35: 1152-1168
        • Niv Y.
        • Daw N.D.
        • Joel D.
        • Dayan P.
        Tonic dopamine: Opportunity costs and the control of response vigor.
        Psychopharmacology (Berl). 2007; 191: 507-520
        • Salamone J.D.
        • Yohn S.E.
        • López-Cruz L.
        • San Miguel N.
        • Correa M.
        Activational and effort-related aspects of motivation: Neural mechanisms and implications for psychopathology.
        Brain. 2016; 139: 1325-1347
        • Lerner T.N.
        • Kreitzer A.C.
        Neuromodulatory control of striatal plasticity and behavior.
        Curr Opin Neurobiol. 2011; 21: 322-327
        • Shen W.
        • Flajolet M.
        • Greengard P.
        • Surmeier D.J.
        Dichotomous dopaminergic control of striatal synaptic plasticity.
        Science. 2008; 321: 848-851
        • Shen W.
        • Plokin J.L.
        • Zhai S.
        • Surmeier D.J.
        Dopaminergic modulation of glutamatergic signaling in striatal spiny projection neurons.
        in: Steiner H. Tseng K.Y. Handbook of Basal Ganglia Structure and Function, 2nd ed. (Handbook of Behavioral Neuroscience, vol. 24). Elsevier, Amsterdam2017: 179-196
        • Robinson D.L.
        • Wightman R.M.
        Rapid dopamine release in freely moving rats.
        in: Michael A.C. Borland L.M. Electrochemical Methods for Neuroscience. CRC Press, Taylor & Francis Group, Boca Raton, FL2007: 17-34
        • Justice J.B.
        Quantitative microdialysis of neurotransmitters.
        J Neurosci Methods. 1993; 48: 263-276
        • Richfield E.K.
        • Penney J.B.
        • Young A.B.
        Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system.
        Neuroscience. 1989; 30: 767-777
        • Marcellino D.
        • Kehr J.
        • Agnati L.F.
        • Fuxe K.
        Increased affinity of dopamine for D2-like versus D1-like receptors: Relevance for volume transmission in interpreting PET findings.
        Synapse. 2012; 66: 196-203
        • Neve K.A.
        • Neve R.L.
        Molecular biology of dopamine receptors.
        in: Neve K.A. Neve R.L. The Dopamine Receptors. Humana Press, Totowa, NJ1997: 27-76
        • Dreyer J.K.
        • Herrik K.F.
        • Berg R.W.
        • Hounsgaard J.D.
        Influence of phasic and tonic dopamine release on receptor activation.
        J Neurosci. 2010; 30: 14273-14283
        • Surmeier D.J.
        • Carrillo-Reid L.
        • Bargas J.
        Dopaminergic modulation of striatal neurons, circuits, and assemblies.
        Neuroscience. 2011; 198: 3-18
        • Tritsch N.X.
        • Sabatini B.L.
        Dopaminergic modulation of synaptic transmission in cortex and striatum.
        Neuron. 2012; 76: 33-50
        • Palminteri S.
        • Lebreton M.
        • Worbe Y.
        • Grabli D.
        • Hartmann A.
        • Pessiglione M.
        Pharmacological modulation of subliminal learning in Parkinson’s and Tourette’s syndromes.
        Proc Natl Acad Sci U S A. 2009; 106: 19179-19184
        • Wiecki T.V.
        • Frank M.J.
        Neurocomputational models of motor and cognitive deficits in Parkinson’s disease.
        Prog Brain Res. 2010; 183: 275-297
        • Palminteri S.
        • Lebreton M.
        • Worbe Y.
        • Hartmann A.
        • Lehericy S.
        • Vidailhet M.
        • et al.
        Dopamine-dependent reinforcement of motor skill learning: Evidence from Gilles de la Tourette syndrome.
        Brain. 2011; 134: 2287-2301
        • Shephard E.
        • Jackson G.M.
        • Groom M.J.
        Electrophysiological correlates of reinforcement learning in young people with Tourette syndrome with and without co-occurring ADHD symptoms.
        Int J Dev Neurosci. 2016; 51: 17-27
        • Crawford S.
        • Channon S.
        • Robertson M.M.
        Tourette’s syndrome: Performance on tests of behavioural inhibition, working memory and gambling.
        J Child Psychol Psychiatry. 2005; 46: 1327-1336
        • Maia T.V.
        • McClelland J.L.
        A reexamination of the evidence for the somatic marker hypothesis: What participants really know in the Iowa Gambling Task.
        Proc Natl Acad Sci U S A. 2004; 101: 16075-16080
        • Otto A.R.
        • Gershman S.J.
        • Markman A.B.
        • Daw N.D.
        The curse of planning: Dissecting multiple reinforcement-learning systems by taxing the central executive.
        Psychol Sci. 2013; 24: 751-761
        • Wood W.
        • Labrecque J.S.
        • Lin P.-Y.
        • Runger D.
        Habits in dual process models.
        in: Sherman J.W. Gawronski B. Trope Y. Dual-Process Theories of the Social Mind. Guilford, New York2014: 371-385
        • Delorme C.
        • Salvador A.
        • Valabrègue R.
        • Roze E.
        • Palminteri S.
        • Vidailhet M.
        • et al.
        Enhanced habit formation in Gilles de la Tourette syndrome.
        Brain. 2016; 139: 605-615
        • Balleine B.W.
        • O’Doherty J.P.
        Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action.
        Neuropsychopharmacology. 2010; 35: 48-69
        • Horga G.
        • Maia T.V.
        • Marsh R.
        • Hao X.
        • Xu D.
        • Duan Y.
        • et al.
        Changes in corticostriatal connectivity during reinforcement learning in humans.
        Hum Brain Mapp. 2015; 36: 793-803
        • Yin H.H.
        • Knowlton B.J.
        The role of the basal ganglia in habit formation.
        Nat Rev Neurosci. 2006; 7: 464-476
        • Gillan C.M.
        • Papmeyer M.
        • Morein-Zamir S.
        • Sahakian B.J.
        • Fineberg N.A.
        • Robbins T.W.
        • de Wit S.
        Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder.
        Am J Psychiatry. 2011; 168: 718-726
        • Kéri S.
        • Szlobodnyik C.
        • Benedek G.
        • Janka Z.
        • Gádoros J.
        Probabilistic classification learning in Tourette syndrome.
        Neuropsychologia. 2002; 40: 1356-1362
        • Marsh R.
        • Alexander G.M.
        • Packard M.G.
        • Zhu H.
        • Wingard J.C.
        • Quackenbush G.
        • Peterson B.S.
        Habit learning in Tourette syndrome: A translational neuroscience approach to a developmental psychopathology.
        Arch Gen Psychiatry. 2004; 61: 1259-1268
        • Packard M.G.
        • Knowlton B.J.
        Learning and memory functions of the basal ganglia.
        Annu Rev Neurosci. 2002; 25: 563-593
        • Brandt V.C.
        • Beck C.
        • Sajin V.
        • Baaske M.K.
        • Bäumer T.
        • Beste C.
        • et al.
        Temporal relationship between premonitory urges and tics in Gilles de la Tourette syndrome.
        Cortex. 2016; 77: 24-37
        • Capriotti M.R.
        • Brandt B.C.
        • Turkel J.E.
        • Lee H.-J.
        • Woods D.W.
        Negative reinforcement and premonitory urges in youth with Tourette syndrome: An experimental evaluation.
        Behav Modif. 2014; 38: 276-296
        • Maia T.V.
        Two-factor theory, the actor-critic model, and conditioned avoidance.
        Learn Behav. 2010; 38: 50-67
        • Seymour B.
        • O’Doherty J.P.
        • Koltzenburg M.
        • Wiech K.
        • Frackowiak R.
        • Friston K.
        • Dolan R.
        Opponent appetitive-aversive neural processes underlie predictive learning of pain relief.
        Nat Neurosci. 2005; 8: 1234-1240
        • Brischoux F.
        • Chakraborty S.
        • Brierley D.I.
        • Ungless M.A.
        Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli.
        Proc Natl Acad Sci U S A. 2009; 106: 4894-4899
        • Budygin E.A.
        • Park J.
        • Bass C.E.
        • Grinevich V.P.
        • Bonin K.D.
        • Wightman R.M.
        Aversive stimulus differentially triggers subsecond dopamine release in reward regions.
        Neuroscience. 2012; 201: 331-337
        • Navratilova E.
        • Xie J.Y.
        • Okun A.
        • Qu C.
        • Eyde N.
        • Ci S.
        • et al.
        Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry.
        Proc Natl Acad Sci U S A. 2012; 109: 20709-20713
        • Oleson E.B.
        • Gentry R.N.
        • Chioma V.C.
        • Cheer J.F.
        Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance.
        J Neurosci. 2012; 32: 14804-14808
        • Shumake J.
        • Ilango A.
        • Scheich H.
        • Wetzel W.
        • Ohl F.W.
        Differential neuromodulation of acquisition and retrieval of avoidance learning by the lateral habenula and ventral tegmental area.
        J Neurosci. 2010; 30: 5876-5883
        • Felling R.J.
        • Singer H.S.
        Neurobiology of Tourette syndrome: Current status and need for further investigation.
        J Neurosci. 2011; 31: 12387-12395
        • Neuner I.
        • Schneider F.
        • Shah N.J.
        Functional neuroanatomy of tics.
        in: Martino D. Cavanna A.E. Advances in Neurochemistry and Neuropharmacology of Tourette Syndrome (International Review of Neurobiology, vol. 112). Academic Press, London2013: 35-71
        • Worbe Y.
        • Gerardin E.
        • Hartmann A.
        • Valabregue R.
        • Chupin M.
        • Tremblay L.
        • et al.
        Distinct structural changes underpin clinical phenotypes in patients with Gilles de la Tourette syndrome.
        Brain. 2010; 133: 3649-3660
        • Bohlhalter S.
        Neural correlates of tic generation in Tourette syndrome: An event-related functional MRI study.
        Brain. 2006; 129: 2029-2037
        • Lerner A.
        • Bagic A.
        • Boudreau E.A.
        • Hanakawa T.
        • Pagan F.
        • Mari Z.
        • et al.
        Neuroimaging of neuronal circuits involved in tic generation in patients with Tourette syndrome.
        Neurology. 2007; 68: 1979-1987
        • Neuner I.
        • Werner C.J.
        • Arrubla J.
        • Stöcker T.
        • Ehlen C.
        • Wegener H.P.
        • et al.
        Imaging the where and when of tic generation and resting state networks in adult Tourette patients.
        Front Hum Neurosci. 2014; 8: 362
        • Wang Z.
        • Maia T.V.
        • Marsh R.
        • Colibazzi T.
        • Gerber A.
        • Peterson B.S.
        The neural circuits that generate tics in Tourette’s syndrome.
        Am J Psychiatry. 2011; 168: 1326-1337
        • Stern E.
        • Silbersweig D.A.
        • Chee K.-Y.
        • Holmes A.
        • Robertson M.M.
        • Trimble M.
        • et al.
        A functional neuroanatomy of tics in Tourette syndrome.
        Arch Gen Psychiatry. 2000; 57: 741-748
        • Daubner S.C.
        • Le T.
        • Wang S.
        Tyrosine hydroxylase and regulation of dopamine synthesis.
        Arch Biochem Biophys. 2011; 508: 1-12
        • Draganski B.
        • Martino D.
        • Cavanna A.E.
        • Hutton C.
        • Orth M.
        • Robertson M.M.
        • et al.
        Multispectral brain morphometry in Tourette syndrome persisting into adulthood.
        Brain. 2010; 133: 3661-3675
        • Ludolph A.G.
        • Juengling F.D.
        • Libal G.
        • Ludolph A.C.
        • Fegert J.M.
        • Kassubek J.
        Grey-matter abnormalities in boys with Tourette syndrome: Magnetic resonance imaging study using optimised voxel-based morphometry.
        Br J Psychiatry. 2006; 188: 484-485
        • Roessner V.
        • Overlack S.
        • Schmidt-Samoa C.
        • Baudewig J.
        • Dechent P.
        • Rothenberger A.
        • Helms G.
        Increased putamen and callosal motor subregion in treatment-naïve boys with Tourette syndrome indicates changes in the bihemispheric motor network.
        J Child Psychol Psychiatry. 2011; 52: 306-314
        • Wen H.
        • Liu Y.
        • Rekik I.
        • Wang S.
        • Chen Z.
        • Zhang J.
        • et al.
        Multi-modal multiple kernel learning for accurate identification of Tourette syndrome children.
        Pattern Recognit. 2017; 63: 601-611
        • Worbe Y.
        • Marrakchi-Kacem L.
        • Lecomte S.
        • Valabregue R.
        • Poupon F.
        • Guevara P.
        • et al.
        Altered structural connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome.
        Brain. 2015; 138: 472-482
        • Forde N.J.
        • Zwiers M.P.
        • Naaijen J.
        • Akkermans S.E.A.
        • Openneer T.J.C.
        • Visscher F.
        • et al.
        Basal ganglia structure in Tourette’s disorder and/or attention-deficit/hyperactivity disorder.
        Mov Disord. 2017; 32: 601-604
        • Peterson B.S.
        • Thomas P.
        • Kane M.J.
        • Scahill L.
        • Zhang H.
        • Bronen R.
        • et al.
        Basal ganglia volumes in patients with Gilles de la Tourette syndrome.
        Arch Gen Psychiatry. 2003; 60: 415-424
        • Sterling N.W.
        • Lewis M.M.
        • Du G.
        • Huang X.
        Structural imaging and Parkinson’s disease: Moving toward quantitative markers of disease progression.
        J Park Dis. 2016; 6: 557-567
        • Sharman M.
        • Valabregue R.
        • Perlbarg V.
        • Marrakchi-Kacem L.
        • Vidailhet M.
        • Benali H.
        • et al.
        Parkinson’s disease patients show reduced cortical–subcortical sensorimotor connectivity.
        Mov Disord. 2013; 28: 447-454
        • Worbe Y.
        • Malherbe C.
        • Hartmann A.
        • Pelegrini-Issac M.
        • Messe A.
        • Vidailhet M.
        • et al.
        Functional immaturity of cortico-basal ganglia networks in Gilles de la Tourette syndrome.
        Brain. 2012; 135: 1937-1946
        • Baggio H.C.
        • Segura B.
        • Junque C.
        Resting-state functional brain networks in Parkinson’s disease.
        CNS Neurosci Ther. 2015; 21: 793-801
        • Eidelberg D.
        • Moeller J.R.
        • Antonini A.
        • Kazumata K.
        • Dhawan V.
        • Budman C.
        • Feigin A.
        The metabolic anatomy of Tourette’s syndrome.
        Neurology. 1997; 48: 927-933
        • Pourfar M.
        • Feigin A.
        • Tang C.C.
        • Carbon-Correll M.
        • Bussa M.
        • Budman C.
        • et al.
        Abnormal metabolic brain networks in Tourette syndrome.
        Neurology. 2011; 76: 944-952
        • Niethammer M.
        • Feigin A.
        • Eidelberg D.
        Functional neuroimaging in Parkinson’s disease.
        Cold Spring Harb Perspect Med. 2012; 2: a009274
        • Seignot J.N.
        Un cas de maladie des tics de Gilles de la Tourette guéri par le R-1625.
        Ann Méd-Psychol. 1961; 119: 578-579
        • Shapiro A.K.
        • Shapiro E.
        Treatment of Gilles de la Tourette’s syndrome with haloperidol.
        Br J Psychiatry. 1968; 114: 345-350
        • Bruun R.D.
        • Shapiro A.K.
        • Shapiro E.
        • Sweet R.
        • Wayne H.
        • Solomon G.E.
        A follow-up of 78 patients with Gilles de la Tourette’s syndrome.
        Am J Psychiatry. 1976; 133: 944-947
        • George M.S.
        • Trimble M.R.
        • Robertson M.M.
        Fluvoxamine and sulpiride in comorbid obsessive-compulsive disorder and Gilles de la Tourette syndrome.
        Hum Psychopharmacol Clin Exp. 1993; 8: 327-334
        • Ghanizadeh A.
        • Haghighi A.
        Aripiprazole versus risperidone for treating children and adolescents with tic disorder: A randomized double blind clinical trial.
        Child Psychiatry Hum Dev. 2014; 45: 596-603
        • Neuner I.
        • Nordt C.
        • Schneider F.
        • Kawohl W.
        Effectiveness of aripiprazole in the treatment of adult Tourette patients up to 56 months.
        Hum Psychopharmacol Clin Exp. 2012; 27: 364-369
        • Scahill L.
        • Leckman J.F.
        • Schultz R.T.
        • Katsovich L.
        • Peterson B.S.
        A placebo-controlled trial of risperidone in Tourette syndrome.
        Neurology. 2003; 60: 1130-1135
        • Doll B.B.
        • Jacobs W.J.
        • Sanfey A.G.
        • Frank M.J.
        Instructional control of reinforcement learning: A behavioral and neurocomputational investigation.
        Brain Res. 2009; 1299: 74-94
        • Imperato A.
        • Chiara G.D.
        Dopamine release and metabolism in awake rats after systemic neuroleptics as studied by trans-striatal dialysis.
        J Neurosci. 1985; 5: 297-306
        • May L.J.
        • Wightman R.M.
        Effects of D-2 antagonists on frequency-dependent stimulated dopamine overflow in nucleus accumbens and caudate-putamen.
        J Neurochem. 1989; 53: 898-906
        • Rice M.E.
        • Patel J.C.
        • Cragg S.J.
        Dopamine release in the basal ganglia.
        Neuroscience. 2011; 198: 112-137
        • Cho S.
        • Duchemin A.-M.
        • Neff N.H.
        • Hadjiconstantinou M.
        Tyrosine hydroxylase, aromatic L-amino acid decarboxylase and dopamine metabolism after chronic treatment with dopaminergic drugs.
        Brain Res. 1999; 830: 237-245
        • Feasey-Truger K.J.
        • Earl C.D.
        • Alzheimer C.
        • ten Bruggencate G.
        Stimulus-evoked dopamine overflow in the rat nucleus accumbens is decreased following chronic haloperidol administration: An in vivo voltammetric study.
        Neurosci Lett. 1995; 183: 91-95
        • Lane R.F.
        • Blaha C.D.
        Chronic haloperidol decreases dopamine release in striatum and nucleus accumbens in vivo: Depolarization block as a possible mechanism of action.
        Brain Res Bull. 1987; 18: 135-138
        • Grace A.A.
        • Bunney B.S.
        • Moore H.
        • Todd C.L.
        Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs.
        Trends Neurosci. 1997; 20: 31-37
        • Valenti O.
        • Cifelli P.
        • Gill K.M.
        • Grace A.A.
        Antipsychotic drugs rapidly induce dopamine neuron depolarization block in a developmental rat model of schizophrenia.
        J Neurosci. 2011; 31: 12330-12338
        • Shapiro A.K.
        Treatment of Tourette’s syndrome with haloperidol: Review of 34 cases.
        Arch Gen Psychiatry. 1973; 28: 92-97
        • Bloch M.H.
        • Leckman J.F.
        Clinical course of Tourette syndrome.
        J Psychosom Res. 2009; 67: 497-501
        • Stevens J.R.
        • Blachly P.H.
        Successful treatment of the maladie des tics: Gilles de la Tourette’s syndrome.
        Am J Dis Child. 1966; 112: 541-545
        • Gilbert D.L.
        • Batterson J.R.
        • Sethuraman G.
        • Sallee F.R.
        Tic reduction with risperidone versus pimozide in a randomized, double-blind, crossover trial.
        J Am Acad Child Adolesc Psychiatry. 2004; 43: 206-214
        • Tourette Syndrome Study Group
        Short-term versus longer term pimozide therapy in Tourette’s syndrome: A preliminary study.
        Neurology. 1999; 52: 874-877
        • Sebel L.E.
        • Graves S.M.
        • Chan C.S.
        • Surmeier D.J.
        Haloperidol selectively remodels striatal indirect pathway circuits.
        Neuropsychopharmacology. 2017; 42: 963-973
        • Cox S.M.L.
        • Frank M.J.
        • Larcher K.
        • Fellows L.K.
        • Clark C.A.
        • Leyton M.
        • Dagher A.
        Striatal D1 and D2 signaling differentially predict learning from positive and negative outcomes.
        NeuroImage. 2015; 109: 95-101
        • Slagter H.A.
        • Georgopoulou K.
        • Frank M.J.
        Spontaneous eye blink rate predicts learning from negative, but not positive, outcomes.
        Neuropsychologia. 2015; 71: 126-132
        • Wise R.A.
        Dopamine, learning and motivation.
        Nat Rev Neurosci. 2004; 5: 483-494
        • Jocham G.
        • Klein T.A.
        • Ullsperger M.
        Differential modulation of reinforcement learning by D2 dopamine and NMDA glutamate receptor antagonism.
        J Neurosci. 2014; 34: 13151-13162
        • Eisenegger C.
        • Naef M.
        • Linssen A.
        • Clark L.
        • Gandamaneni P.K.
        • Müller U.
        • Robbins T.W.
        Role of dopamine D2 receptors in human reinforcement learning.
        Neuropsychopharmacology. 2014; 39: 2366-2375
        • Worbe Y.
        • Palminteri S.
        • Hartmann A.
        • Vidailhet M.
        • Lehéricy S.
        • Pessiglione M.
        Reinforcement learning and Gilles de la Tourette syndrome.
        Arch Gen Psychiatry. 2011; 68: 1257-1266
        • Wadenberg M.-L.G.
        • Hicks P.B.
        The conditioned avoidance response test re-evaluated: Is it a sensitive test for the detection of potentially atypical antipsychotics?.
        Neurosci Biobehav Rev. 1999; 23: 851-862
        • Bunney B.S.
        • Grace A.A.
        Acute and chronic haloperidol treatment: Comparison of effects on nigral dopaminergic cell activity.
        Life Sci. 1978; 23: 1715-1727
        • Pessiglione M.
        • Seymour B.
        • Flandin G.
        • Dolan R.J.
        • Frith C.D.
        Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans.
        Nature. 2006; 442: 1042-1045
        • Threlfell S.
        • Cragg S.J.
        Dopamine signaling in dorsal versus ventral striatum: The dynamic role of cholinergic interneurons.
        Front Syst Neurosci. 2011; 5: 11
        • Kharkwal G.
        • Brami-Cherrier K.
        • Lizardi-Ortiz J.E.
        • Nelson A.B.
        • Ramos M.
        • Del Barrio D.
        • et al.
        Parkinsonism driven by antipsychotics originates from dopaminergic control of striatal cholinergic interneurons.
        Neuron. 2016; 91: 67-78
        • Gilbert D.L.
        • Dure L.
        • Sethuraman G.
        • Raab D.
        • Lane J.
        • Sallee F.R.
        Tic reduction with pergolide in a randomized controlled trial in children.
        Neurology. 2003; 60: 606-611
        • Gilbert D.L.
        • Sethuraman G.
        • Sine L.
        • Peters S.
        • Sallee F.R.
        Tourette’s syndrome improvement with pergolide in a randomized, double-blind, crossover trial.
        Neurology. 2000; 54: 1310-1315
        • Carlson J.H.
        • Bergstrom D.A.
        • Walters J.R.
        Stimulation of both D1 and D2 dopamine receptors appears necessary for full expression of postsynaptic effects of dopamine agonists: A neurophysiological study.
        Brain Res. 1987; 400: 205-218
        • White F.J.
        • Wang R.Y.
        Pharmacological characterization of dopamine autoreceptors in the rat ventral tegmental area: Microiontophoretic studies.
        J Pharmacol Exp Ther. 1984; 231: 275-280
        • Dethy S.
        • Laute M.A.
        • Luxen A.
        • Hildebrand J.
        • Goldman S.
        Effect of pergolide on endogenous and exogenous L-DOPA metabolism in the rat striatum: A microdialysis study.
        J Neural Transm Gen Sect. 1995; 101: 1-11
        • Swainson R.
        • Rogers R.D.
        • Sahakian B.J.
        • Summers B.A.
        • Polkey C.E.
        • Robbins T.W.
        Probabilistic learning and reversal deficits in patients with Parkinson’s disease or frontal or temporal lobe lesions: Possible adverse effects of dopaminergic medication.
        Neuropsychologia. 2000; 38: 596-612
        • Breitenstein C.
        • Korsukewitz C.
        • Flöel A.
        • Kretzschmar T.
        • Diederich K.
        • Knecht S.
        Tonic dopaminergic stimulation impairs associative learning in healthy subjects.
        Neuropsychopharmacology. 2006; 31: 2552-2564
        • Millan M.J.
        • Maiofiss L.
        • Cussac D.
        • Audinot V.
        • Boutin J.-A.
        • Newman-Tancredi A.
        Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor: I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes.
        J Pharmacol Exp Ther. 2002; 303: 791-804
        • Frank M.J.
        • O’Reilly R.C.
        A mechanistic account of striatal dopamine function in human cognition: Psychopharmacological studies with cabergoline and haloperidol.
        Behav Neurosci. 2006; 120: 497-517
        • Kellett M.W.
        • Steiger M.J.
        Deterioration in parkinsonism with low-dose pergolide.
        J Neurol. 1999; 246: 309-311
        • Chernoloz O.
        • El Mansari M.
        • Blier P.
        Sustained administration of pramipexole modifies the spontaneous firing of dopamine, norepinephrine, and serotonin neurons in the rat brain.
        Neuropsychopharmacology. 2009; 34: 651-661
        • Piercey M.F.
        • Hoffmann W.E.
        • Smith M.W.
        • Hyslop D.K.
        Inhibition of dopamine neuron firing by pramipexole, a dopamine D3 receptor-preferring agonist: Comparison to other dopamine receptor agonists.
        Eur J Pharmacol. 1996; 312: 35-44
        • Pizzagalli D.A.
        • Evins A.E.
        • Schetter E.C.
        • Frank M.J.
        • Pajtas P.E.
        • Santesso D.L.
        • Culhane M.
        Single dose of a dopamine agonist impairs reinforcement learning in humans: Behavioral evidence from a laboratory-based measure of reward responsiveness.
        Psychopharmacology (Berl). 2008; 196: 221-232
        • Santesso D.L.
        • Evins A.E.
        • Frank M.J.
        • Schetter E.C.
        • Bogdan R.
        • Pizzagalli D.A.
        Single dose of a dopamine agonist impairs reinforcement learning in humans: Evidence from event-related potentials and computational modeling of striatal-cortical function.
        Hum Brain Mapp. 2009; 30: 1963-1976
        • Kurlan R.
        • Crespi G.
        • Coffey B.
        • Mueller-Vahl K.
        • Koval S.
        • Wunderlich G.
        • Pramipexole for TS Trial Investigators
        A multicenter randomized placebo-controlled clinical trial of pramipexole for Tourette’s syndrome.
        Mov Disord. 2012; 27: 775-778
        • Castro-Hernández J.
        • Afonso-Oramas D.
        • Cruz-Muros I.
        • Salas-Hernández J.
        • Barroso-Chinea P.
        • Moratalla R.
        • et al.
        Prolonged treatment with pramipexole promotes physical interaction of striatal dopamine D3 autoreceptors with dopamine transporters to reduce dopamine uptake.
        Neurobiol Dis. 2015; 74: 325-335
        • Joyce J.N.
        • Woolsey C.
        • Ryoo H.
        • Borwege S.
        • Hagner D.
        Low dose pramipexole is neuroprotective in the MPTP mouse model of Parkinson’s disease, and downregulates the dopamine transporter via the D3 receptor.
        BMC Biol. 2004; 2: 22
        • Chernoloz O.
        • El Mansari M.
        • Blier P.
        Long-term administration of the dopamine D3/2 receptor agonist pramipexole increases dopamine and serotonin neurotransmission in the male rat forebrain.
        J Psychiatry Neurosci. 2012; 37: 113-121
        • Gallant H.
        • Vo A.
        • Seergobin K.N.
        • MacDonald P.A.
        Pramipexole impairs stimulus–response learning in healthy young adults.
        Front Neurosci. 2016; 10: 374
        • Kieburtz K.
        • Parkinson Study Group PramiBID Investigators
        Twice-daily, low-dose pramipexole in early Parkinson’s disease: A randomized, placebo-controlled trial.
        Mov Disord. 2011; 26: 37-44
        • Voon V.
        • Pessiglione M.
        • Brezing C.
        • Gallea C.
        • Fernandez H.H.
        • Dolan R.J.
        • Hallett M.
        Mechanisms underlying dopamine-mediated reward bias in compulsive behaviors.
        Neuron. 2010; 65: 135-142
        • Thenganatt M.A.
        • Jankovic J.
        Recent advances in understanding and managing Tourette syndrome.
        F1000Res. 2016; 5
        • Andersson D.R.
        • Nissbrandt H.
        • Bergquist F.
        Partial depletion of dopamine in substantia nigra impairs motor performance without altering striatal dopamine neurotransmission.
        Eur J Neurosci. 2006; 24: 617-624
        • Nunes E.J.
        • Randall P.A.
        • Hart E.E.
        • Freeland C.
        • Yohn S.E.
        • Baqi Y.
        • et al.
        Effort-related motivational effects of the VMAT-2 inhibitor tetrabenazine: Implications for animal models of the motivational symptoms of depression.
        J Neurosci. 2013; 33: 19120-19130
        • Owesson-White C.A.
        • Roitman M.F.
        • Sombers L.A.
        • Belle A.M.
        • Keithley R.B.
        • Peele J.L.
        • et al.
        Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens.
        J Neurochem. 2012; 121: 252-262
        • Hirschtritt M.E.
        • Lee P.C.
        • Pauls D.L.
        • Dion Y.
        • Grados M.A.
        • Illmann C.
        • et al.
        Lifetime prevalence, age of risk, and genetic relationships of comorbid psychiatric disorders in Tourette syndrome.
        JAMA Psychiatry. 2015; 72: 325-333
        • Grados M.A.
        • Mathews C.A.
        Latent class analysis of Gilles de la Tourette syndrome using comorbidities: Clinical and genetic implications.
        Biol Psychiatry. 2008; 64: 219-225
        • Khalifa N.
        • von Knorring A.-L.
        Psychopathology in a Swedish population of school children with tic disorders.
        J Am Acad Child Adolesc Psychiatry. 2006; 45: 1346-1353
        • Willcutt E.G.
        • Nigg J.T.
        • Pennington B.F.
        • Solanto M.V.
        • Rohde L.A.
        • Tannock R.
        • et al.
        Validity of DSM-IV attention deficit/hyperactivity disorder symptom dimensions and subtypes.
        J Abnorm Psychol. 2012; 121: 991-1010
        • Heym N.
        • Kantini E.
        • Checkley H.L.R.
        • Cassaday H.J.
        Tourette-like behaviors in the normal population are associated with hyperactive/impulsive ADHD-like behaviors but do not relate to deficits in conditioned inhibition or response inhibition.
        Front Psychol. 2014; 5: 946
        • Leckman J.F.
        • Zhang H.
        • Vitale A.
        • Lahnin F.
        • Lynch K.
        • Bondi C.
        • et al.
        Course of tic severity in Tourette syndrome: The first two decades.
        Pediatrics. 1998; 102: 14-19
        • Wahlstrom D.
        • White T.
        • Luciana M.
        Neurobehavioral evidence for changes in dopamine system activity during adolescence.
        Neurosci Biobehav Rev. 2010; 34: 631-648
        • Andersen S.L.
        • Rutstein M.
        • Benzo J.M.
        • Hostetter J.C.
        • Teicher M.H.
        Sex differences in dopamine receptor overproduction and elimination.
        NeuroReport. 1997; 8: 1495-1498
        • McGeer P.L.
        • McGeer E.G.
        Enzymes associated with the metabolism of catecholamines, acetylcholine and GABA in human controls and patients with Parkinson’s disease and Huntington’s chorea.
        J Neurochem. 1976; 26: 65-76
        • Montague D.M.
        • Lawler C.P.
        • Mailman R.B.
        • Gilmore J.H.
        Developmental regulation of the dopamine D1 receptor in human caudate and putamen.
        Neuropsychopharmacology. 1999; 21: 641-649
        • Seeman P.
        • Bzowej N.H.
        • Guan H.C.
        • Bergeron C.
        • Becker L.E.
        • Reynolds G.P.
        • et al.
        Human brain dopamine receptors in children and aging adults.
        Synapse. 1987; 1: 399-404
        • Singer H.S.
        • Szymanski S.
        • Giuliano J.
        • Yokoi F.
        • Dogan A.S.
        • Brasic J.R.
        • et al.
        Elevated intrasynaptic dopamine release in Tourette’s syndrome measured by PET.
        Am J Psychiatry. 2002; 159: 1329-1336
        • Barto A.G.
        Adaptive critics and the basal ganglia.
        in: Houk J.C. Davis J.L. Beiser D.G. Models of Information Processing in the Basal Ganglia. MIT Press, Cambridge, MA1995: 215-232
        • O’Doherty J.
        • Dayan P.
        • Schultz J.
        • Deichmann R.
        • Friston K.
        • Dolan R.J.
        Dissociable role of ventral and dorsal striatum in instrumental conditioning.
        Science. 2004; 304: 452-454
        • Gerfen C.R.
        • Surmeier D.J.
        Modulation of striatal projection systems by dopamine.
        Annu Rev Neurosci. 2011; 34: 441-466
        • Sutton R.S.
        • Barto A.G.
        Reinforcement Learning: An Introduction.
        MIT Press, Cambridge, MA1998
        • Frank M.J.
        Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated parkinsonism.
        J Cogn Neurosci. 2005; 17: 51-72
        • Leckman J.F.
        • Bloch M.H.
        • Sukhodolsky D.G.
        • Scahill L.
        • King R.A.
        Phenomenology of tics and sensory urges: The self under siege.
        in: Martino D. Leckman J.F. Tourette Syndrome. Oxford University Press, New York2013: 3-25
        • Himle M.B.
        • Capriotti M.R.
        • Hayes L.P.
        • Ramanujam K.
        • Scahill L.
        • Sukhodolsky D.G.
        • et al.
        Variables associated with tic exacerbation in children with chronic tic disorders.
        Behav Modif. 2014; 38: 163-183