Advertisement

Prion-like Spreading in Tauopathies

  • Jacob I. Ayers
    Affiliations
    Department of Neuroscience, University of Florida, Gainesville, Florida

    Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida

    McKnight Brain Institute, University of Florida, Gainesville, Florida
    Search for articles by this author
  • Benoit I. Giasson
    Affiliations
    Department of Neuroscience, University of Florida, Gainesville, Florida

    Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida

    McKnight Brain Institute, University of Florida, Gainesville, Florida
    Search for articles by this author
  • David R. Borchelt
    Correspondence
    Address correspondence to David R. Borchelt, Ph.D., 1275 Center Drive BMS J-491, Department of Neuroscience, University of Florida, Gainesville, FL 32610.
    Affiliations
    Department of Neuroscience, University of Florida, Gainesville, Florida

    Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida

    McKnight Brain Institute, University of Florida, Gainesville, Florida
    Search for articles by this author

      Abstract

      Tau is a microtubule-associated protein that functions in regulating cytoskeleton dynamics, especially in neurons. Misfolded and aggregated forms of tau produce pathological structures in a number of neurodegenerative diseases, including Alzheimer’s disease (AD) and tauopathy dementias. These disorders can present with a sporadic etiology, such as in AD, or a familial etiology, such as in some cases of frontotemporal dementia with parkinsonism. Notably, the pathological features of tau pathology in these diseases can be very distinct. For example, the tau pathology in corticobasal degeneration is distinct from that of an AD patient. A wealth of evidence has emerged within the last decade to suggest that the misfolded tau in tauopathies possesses prion-like features and that such features may explain the diverse characteristics of tauopathies. The prion-like concept for tauopathies arose initially from the observation that the progressive accumulation of tau pathology as the symptoms of AD progress seemed to follow anatomically linked pathways. Subsequent studies in cell and animal models revealed that misfolded tau can propagate from cell to cell and from region to region in the brain through direct neuroanatomical connections. Studies in these cell and mouse models have demonstrated that experimentally propagated forms of misfolded tau can exist as conformationally distinct “strains” with unique biochemical, morphological, and neuropathological characteristics. This review discusses the clinical, pathological, and genetic diversity of tauopathies and the discoveries underlying the emerging view that the unique features of clinically distinct tauopathies may be a reflection of the strain of misfolded tau that propagates in each disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wang Y.
        • Mandelkow E.
        Tau in physiology and pathology.
        Nat Rev Neurosci. 2016; 17: 5-21
        • Iqbal K.
        • Liu F.
        • Gong C.X.
        Tau and neurodegenerative disease: The story so far.
        Nat Rev Neurol. 2016; 12: 15-27
        • Lee V.M.-Y.
        • Goedert M.
        • Trojanoswki J.Q.
        Neurodegenerative tauopathies.
        Annu Rev Neurosci. 2001; 24: 1121-1159
        • Goedert M.
        • Wischik C.M.
        • Crowther R.A.
        • Walker J.E.
        • Klug A.
        Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: Identification as the microtubule-associated protein tau.
        Proc Natl Acad Sci U S A. 1988; 85: 4051-4055
        • Wischik C.M.
        • Novak M.
        • Thogersen H.C.
        • Edwards P.C.
        • Runswick M.J.
        • Jakes R.
        • et al.
        Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease.
        Proc Natl Acad Sci U S A. 1988; 85: 4506-4510
        • Lee V.M.
        • Balin B.J.
        • Otvos Jr., L.
        • Trojanowski J.Q.
        A68: A major subunit of paired helical filaments and derivatized forms of normal Tau.
        Science. 1991; 251: 675-678
        • Kosik K.S.
        • Orecchio L.D.
        • Binder L.
        • Trojanowski J.Q.
        • Lee V.M.
        • Lee G.
        Epitopes that span the tau molecule are shared with paired helical filaments.
        Neuron. 1988; 1: 817-825
        • Kidd M.
        Paired helical filaments in electron microscopy of Alzheimer's disease.
        Nature. 1963; 197: 192-193
        • Crowther R.A.
        • Wischik C.M.
        Image reconstruction of the Alzheimer paired helical filament.
        EMBO J. 1985; 4: 3661-3665
        • Crowther R.A.
        Straight and paired helical filaments in Alzheimer disease have a common structural unit.
        Proc Natl Acad Sci U S A. 1991; 88: 2288-2292
        • Yagishita S.
        • Itoh Y.
        • Nan W.
        • Amano N.
        Reappraisal of the fine structure of Alzheimer's neurofibrillary tangles.
        Acta Neuropathol. 1981; 54: 239-246
        • Braak H.
        • Braak E.
        Neuropathological stageing of Alzheimer-related changes.
        Acta Neuropathol. 1991; 82: 239-259
        • Braak H.
        • Alafuzoff I.
        • Arzberger T.
        • Kretzschmar H.
        • Del T.K.
        Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry.
        Acta Neuropathol. 2006; 112: 389-404
        • Braak H.
        • Thal D.R.
        • Ghebremedhin E.
        • Del Tredici K.
        Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years.
        J Neuropathol Exp Neurol. 2011; 70: 960-969
        • Crary J.F.
        • Trojanowski J.Q.
        • Schneider J.A.
        • Abisambra J.F.
        • Abner E.L.
        • Alafuzoff I.
        • et al.
        Primary age-related tauopathy (PART): A common pathology associated with human aging.
        Acta Neuropathol. 2014; 128: 755-766
        • Jellinger K.A.
        • Alafuzoff I.
        • Attems J.
        • Beach T.G.
        • Cairns N.J.
        • Crary J.F.
        • et al.
        PART, a distinct tauopathy, different from classical sporadic Alzheimer disease.
        Acta Neuropathol. 2015; 129: 757-762
        • Braak H.
        • Del Tredici K.
        Are cases with tau pathology occurring in the absence of Aβ deposits part of the AD-related pathological process?.
        Acta Neuropathol. 2014; 128: 767-772
        • Duyckaerts C.
        • Braak H.
        • Brion J.P.
        • Buee L.
        • Del Tredici K.
        • Goedert M.
        • et al.
        PART is part of Alzheimer disease.
        Acta Neuropathol. 2015; 129: 749-756
        • Dickson D.W.
        Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration.
        J Neurol. 1999; 246: II6-II15
        • Feany M.B.
        • Mattiace L.A.
        • Dickson D.W.
        Neuropathologic overlap of progressive supranuclear palsy, Pick's disease and corticobasal degeneration.
        J Neuropathol Exp Neurol. 1996; 55: 53-67
        • Chin S.S.
        • Goldman J.E.
        Glial inclusions in CNS degenerative diseases.
        J Neuropathol Exp Neurol. 1996; 55: 499-508
        • Cleveland D.W.
        • Hwo S.Y.
        • Kirschner M.W.
        Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin.
        J Mol Biol. 1977; 116: 207-225
        • Weingarten M.D.
        • Lockwood A.H.
        • Hwo S.Y.
        • Kirschner M.W.
        A protein factor essential for microtubule assembly.
        Proc Natl Acad Sci U S A. 1975; 72: 1858-1862
        • Neve R.L.
        • Harris P.
        • Kosik K.S.
        • Kurnit D.M.
        • Donlon T.A.
        Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2.
        Brain Res. 1986; 387: 271-280
        • Andreadis A.
        • Brown W.M.
        • Kosik K.S.
        Structure and novel exons of the human tau gene.
        Biochemistry. 1992; 31: 10626-10633
        • Goedert M.
        • Spillantini M.G.
        • Potier M.C.
        • Ulrich J.
        • Crowther R.A.
        Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: Differential expression of tau protein mRNAs in human brain.
        EMBO J. 1989; 8: 393-399
        • Goedert M.
        • Spillantini M.G.
        • Jakes R.
        • Rutherford D.
        • Crowther R.A.
        Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer's disease.
        Neuron. 1989; 3: 519-526
        • Goedert M.
        • Jakes R.
        Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization.
        EMBO J. 1990; 9: 4225-4230
        • Hong M.
        • Zhukareva V.
        • Vogelsberg-Ragaglia V.
        • Wszolek Z.
        • Reed L.
        • Miller B.I.
        • et al.
        Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17.
        Science. 1998; 282: 1914-1917
        • Binder L.I.
        • Frankfurter A.
        • Rebhun L.I.
        The distribution of tau in the mammalian central nervous system.
        J Cell Biol. 1985; 101: 1371-1378
        • Migheli A.
        • Butler M.
        • Brown K.
        • Shelanski M.L.
        Light and electron microscope localization of the microtubule-associated tau protein in rat brain.
        J Neurosci. 1988; 8: 1846-1851
        • LoPresti P.
        • Szuchet S.
        • Papasozomenos S.C.
        • Zinkowski R.P.
        • Binder L.I.
        Functional implications for the microtubule-associated protein tau: Localization in oligodendrocytes.
        Proc Natl Acad Sci U S A. 1995; 92: 10369-10373
        • Tashiro K.
        • Hasegawa M.
        • Ihara Y.
        • Iwatsubo T.
        Somatodendritic localization of phosphorylated tau in neonatal and adult rat cerebral cortex.
        Neuroreport. 1997; 8: 2797-2801
        • Drechsel D.N.
        • Hyman A.A.
        • Cobb M.H.
        • Kirschner M.W.
        Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau.
        Mol Biol Cell. 1992; 3: 1141-1154
        • Kanai Y.
        • Chen J.
        • Hirokawa N.
        Microtubule bundling by tau proteins in vivo: Analysis of functional domains.
        EMBO J. 1992; 11: 3953-3961
        • Drubin D.G.
        • Kirschner M.W.
        Tau protein function in living cells.
        J Cell Biol. 1986; 103: 2739-2746
        • Bramblett G.T.
        • Goedert M.
        • Jakes R.
        • Merrick S.E.
        • Trojanowski J.Q.
        • Lee V.M.
        Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding.
        Neuron. 1993; 10: 1089-1099
        • Preuss U.
        • Biernat J.
        • Mandelkow E.M.
        • Mandelkow E.
        The ‘jaws’ model of tau-microtubule interaction examined in CHO cells.
        J Cell Sci. 1997; 110: 789-800
        • Brandt R.
        • Lee G.
        Functional organization of microtubule-associated protein tau. Identification of regions which affect microtubule growth, nucleation, and bundle formation in vitro.
        J Biol Chem. 1993; 268: 3414-3419
        • Ebneth A.
        • Godemann R.
        • Stamer K.
        • Illenberger S.
        • Trinczek B.
        • Mandelkow E.
        Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: Implications for Alzheimer's disease.
        J Cell Biol. 1998; 143: 777-794
        • Stamer K.
        • Vogel R.
        • Thies E.
        • Mandelkow E.
        • Mandelkow E.M.
        Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress.
        J Cell Biol. 2002; 156: 1051-1063
        • Dixit R.
        • Ross J.L.
        • Goldman Y.E.
        • Holzbaur E.L.
        Differential regulation of dynein and kinesin motor proteins by tau.
        Science. 2008; 319: 1086-1089
        • Harada A.
        • Oguchi K.
        • Okabe S.
        • Kuno J.
        • Terada S.
        • Ohshima T.
        • et al.
        Altered microtubule organization in small-calibre axons of mice lacking tau protein.
        Nature. 1994; 369: 488-491
        • Takei Y.
        • Teng J.
        • Harada A.
        • Hirokawa N.
        Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes.
        J Cell Biol. 2000; 150: 989-1000
        • Himmler A.
        • Drechsel D.
        • Kirschner M.W.
        • Martin Jr., D.W.
        Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains.
        Mol Cell Biol. 1989; 9: 1381-1388
        • Butner K.A.
        • Kirschner M.W.
        Tau protein binds to microtubules through a flexible array of distributed weak sites.
        J Cell Biol. 1991; 115: 717-730
        • Lee G.
        • Neve R.L.
        • Kosik K.S.
        The microtubule binding domain of tau protein.
        Neuron. 1989; 2: 1615-1624
        • Ennulat D.J.
        • Liem R.K.
        • Hashim G.A.
        • Shelanski M.L.
        Two separate 18-amino acid domains of tau promote the polymerization of tubulin.
        J Biol Chem. 1989; 264: 5327-5330
        • Goode B.L.
        • Feinstein S.C.
        Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau.
        J Cell Biol. 1994; 124: 769-782
        • Goode B.L.
        • Denis P.E.
        • Panda D.
        • Radeke M.J.
        • Miller H.P.
        • Wilson L.
        • et al.
        Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly.
        Mol Biol Cell. 1997; 8: 353-365
        • Biernat J.
        • Gustke N.
        • Drewes G.
        • Mandelkow E.M.
        • Mandelkow E.
        Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding.
        Neuron. 1993; 11: 153-163
        • Yoshida H.
        • Ihara Y.
        Tau in paired helical filaments is functionally distinct from fetal tau: assembly incompetence of paired helical filament-tau.
        J Neurochem. 1993; 61: 1183-1186
        • Lindwall G.
        • Cole R.D.
        Phosphorylation affects the ability of tau protein to promote microtubule assembly.
        J Biol Chem. 1984; 259: 5301-5305
        • Clavaguera F.
        • Bolmont T.
        • Crowther R.A.
        • Abramowski D.
        • Frank S.
        • Probst A.
        • et al.
        Transmission and spreading of tauopathy in transgenic mouse brain.
        Nat Cell Biol. 2009; 11: 909-913
        • Frost B.
        • Ollesch J.
        • Wille H.
        • Diamond M.I.
        Conformational diversity of wild-type Tau fibrils specified by templated conformation change.
        J Biol Chem. 2009; 284: 3546-3551
        • Cleveland D.W.
        • Hwo S.Y.
        • Kirschner M.W.
        Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly.
        J Mol Biol. 1977; 116: 227-247
        • Schweers O.
        • Schonbrunn-Hanebeck E.
        • Marx A.
        • Mandelkow E.
        Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure.
        J Biol Chem. 1994; 269: 24290-24297
        • Jeganathan S.
        • von Bergen M.
        • Brutlach H.
        • Steinhoff H.J.
        • Mandelkow E.
        Global hairpin folding of tau in solution.
        Biochemistry. 2006; 45: 2283-2293
        • Crowther R.A.
        • Olesen O.F.
        • Smith M.J.
        • Jakes R.
        • Goedert M.
        Assembly of Alzheimer-like filaments from full-length tau protein.
        FEBS Lett. 1994; 337: 135-138
        • Goedert M.
        • Jakes R.
        • Spillantini M.G.
        • Hasegawa M.
        • Smith M.J.
        • Crowther R.A.
        Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans.
        Nature. 1996; 383: 550-553
        • Kampers T.
        • Friedhoff P.
        • Biernat J.
        • Mandelkow E.M.
        • Mandelkow E.
        RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments.
        FEBS Lett. 1996; 399: 344-349
        • Perez M.
        • Valpuesta J.M.
        • Medina M.
        • Montejo dG.
        • Avila J.
        Polymerization of tau into filaments in the presence of heparin: the minimal sequence required for tau-tau interaction.
        J Neurochem. 1996; 67: 1183-1190
        • King M.E.
        • Gamblin T.C.
        • Kuret J.
        • Binder L.I.
        Differential assembly of human tau isoforms in the presence of arachidonic acid.
        J Neurochem. 2000; 74: 1749-1757
        • Wilson D.M.
        • Binder L.I.
        Free fatty acids stimulate the polymerization of tau and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer's disease.
        Am J Pathol. 1997; 150: 2181-2195
        • Friedhoff P.
        • von Bergen M.
        • Mandelkow E.M.
        • Davies P.
        • Mandelkow E.
        A nucleated assembly mechanism of Alzheimer paired helical filaments.
        Proc Natl Acad Sci U S A. 1998; 95: 15712-15717
        • Guo J.L.
        • Lee V.M.
        Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles.
        J Biol Chem. 2011; 286: 15317-15331
        • Nonaka T.
        • Watanabe S.T.
        • Iwatsubo T.
        • Hasegawa M.
        Seeded aggregation and toxicity of {alpha}-synuclein and tau: Cellular models of neurodegenerative diseases.
        J Biol Chem. 2010; 285: 34885-34898
        • Goedert M.
        • Spillantini M.G.
        • Cairns N.J.
        • Crowther R.A.
        Tau proteins of Alzheimer paired helical filaments: Abnormal phosphorylation of all six brain isoforms.
        Neuron. 1992; 8: 159-168
        • Hanger D.P.
        • Betts J.C.
        • Loviny T.L.
        • Blackstock W.P.
        • Anderton B.H.
        New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer's disease brain using nanoelectrospray mass spectrometry.
        J Neurochem. 1998; 71: 2465-2476
        • Hanger D.P.
        • Anderton B.H.
        • Noble W.
        Tau phosphorylation: The therapeutic challenge for neurodegenerative disease.
        Trends Mol Med. 2009; 15: 112-119
        • Martin L.
        • Latypova X.
        • Terro F.
        Post-translational modifications of tau protein: Implications for Alzheimer's disease.
        Neurochem Int. 2011; 58: 458-471
        • Billingsley M.L.
        • Kincaid R.L.
        Regulated phosphorylation and dephosphorylation of tau protein: Effects on microtubule interaction, intracellular trafficking and neurodegeneration.
        Biochem J. 1997; 323: 577-591
        • Kenessey A.
        • Yen S.H.
        The extent of phosphorylation of fetal tau is comparable to that of PHF-tau from Alzheimer paired helical filaments.
        Brain Res. 1993; 629: 40-46
        • Morishima-Kawashima M.
        • Hasegawa M.
        • Takio K.
        • Suzuki M.
        • Yoshida H.
        • Watanabe A.
        • et al.
        Hyperphosphorylation of tau in PHF.
        Neurobiol Aging. 1995; 16 (discussion 371–380): 365-371
        • Matsuo E.S.
        • Shin R.W.
        • Billingsley M.L.
        • Van deVoorde A.
        • O'Connor M.
        • Trojanowski J.Q.
        • et al.
        Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer's disease paired helical filament tau.
        Neuron. 1994; 13: 989-1002
        • Braak E.
        • Braak H.
        • Mandelkow E.M.
        A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads.
        Acta Neuropathol. 1994; 87: 554-567
        • Bancher C.
        • Grundke-Iqbal I.
        • Iqbal K.
        • Fried V.A.
        • Smith H.T.
        • Wisniewski H.M.
        Abnormal phosphorylation of tau precedes ubiquitination in neurofibrillary pathology of Alzheimer disease.
        Brain Res. 1991; 539: 11-18
        • Gustke N.
        • Steiner B.
        • Mandelkow E.M.
        • Biernat J.
        • Meyer H.E.
        • Goedert M.
        • et al.
        The Alzheimer-like phosphorylation of tau protein reduces microtubule binding and involves Ser-Pro and Thr-Pro motifs.
        FEBS Lett. 1992; 307: 199-205
        • Iqbal K.
        • Zaidi T.
        • Bancher C.
        • Grundke-Iqbal I.
        Alzheimer paired helical filaments. Restoration of the biological activity by dephosphorylation.
        FEBS Lett. 1994; 349: 104-108
        • Guo J.L.
        • Buist A.
        • Soares A.
        • Callaerts K.
        • Calafate S.
        • Stevenaert F.
        • et al.
        The dynamics and turnover of tau aggregates in cultured cells: Insights into therapies for tauopathies.
        J Biol Chem. 2016; 291: 13175-13193
        • Falcon B.
        • Cavallini A.
        • Angers R.
        • Glover S.
        • Murray T.K.
        • Barnham L.
        • et al.
        Conformation determines the seeding potencies of native and recombinant Tau aggregates.
        J Biol Chem. 2015; 290: 1049-1065
        • Morishima-Kawashima M.
        • Hasegawa M.
        • Takio K.
        • Suzuki M.
        • Titani K.
        • Ihara Y.
        Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments.
        Neuron. 1993; 10: 1151-1160
        • Ledesma M.D.
        • Bonay P.
        • Avila J.
        Tau protein from Alzheimer's disease patients is glycated at its tubulin-binding domain.
        J Neurochem. 1995; 65: 1658-1664
        • Ledesma M.D.
        • Bonay P.
        • Colaco C.
        • Avila J.
        Analysis of microtubule-associated protein tau glycation in paired helical filaments.
        J Biol Chem. 1994; 269: 21614-21619
        • Wang J.Z.
        • Grundke-Iqbal I.
        • Iqbal K.
        Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer's disease.
        Nat Med. 1996; 2: 871-875
        • Horiguchi T.
        • Uryu K.
        • Giasson B.I.
        • Ischiropoulos H.
        • LightFoot R.
        • Bellmann C.
        • et al.
        Nitration of tau protein is linked to neurodegeneration in tauopathies.
        Am J Pathol. 2003; 163: 1021-1031
        • Cook C.
        • Stankowski J.N.
        • Carlomagno Y.
        • Stetler C.
        • Petrucelli L.
        Acetylation: A new key to unlock tau's role in neurodegeneration.
        Alzheimers Res Ther. 2014; 6: 29
        • Basurto-Islas G.
        • Luna-Munoz J.
        • Guillozet-Bongaarts A.L.
        • Binder L.I.
        • Mena R.
        • Garcia-Sierra F.
        Accumulation of aspartic acid421- and glutamic acid391-cleaved tau in neurofibrillary tangles correlates with progression in Alzheimer disease.
        J Neuropathol Exp Neurol. 2008; 67: 470-483
        • Iwatsubo T.
        • Hasegawa M.
        • Esaki Y.
        • Ihara Y.
        Lack of ubiquitin immunoreactivities at both ends of neuropil threads. Possible bidirectional growth of neuropil threads.
        Am J Pathol. 1992; 140: 277-282
        • Kondo A.
        • Shahpasand K.
        • Mannix R.
        • Qiu J.
        • Moncaster J.
        • Chen C.H.
        • et al.
        Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy.
        Nature. 2015; 523: 431-436
        • Zhong Q.
        • Congdon E.E.
        • Nagaraja H.N.
        • Kuret J.
        Tau isoform composition influences rate and extent of filament formation.
        J Biol Chem. 2012; 287: 20711-20719
        • McKhann G.M.
        • Albert M.S.
        • Grossman M.
        • Miller B.
        • Dickson D.
        • Trojanowski J.Q.
        Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease.
        Arch Neurol. 2001; 58: 1803-1809
        • Foster N.L.
        • Wilhelmsen K.
        • Sima A.A.
        • Jones M.Z.
        • D'Amato C.J.
        • Gilman S.
        Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants.
        Ann Neurol. 1997; 41: 706-715
        • Reed L.A.
        • Wszolek Z.K.
        • Hutton M.
        Phenotypic correlations in FTDP-17.
        Neurobiol Aging. 2001; 22: 89-107
        • Hutton M.
        • Lendon C.L.
        • Rizzu P.
        • Baker M.
        • Froelich S.
        • Houlden H.
        • et al.
        Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17.
        Nature. 1998; 393: 702-705
        • Poorkaj P.
        • Bird T.D.
        • Wijsman E.
        • Nemens E.
        • Garruto R.M.
        • Anderson L.
        • et al.
        Tau is a candidate gene for chromosome 17 frontotemporal dementia.
        Ann Neurol. 1998; 43: 815-825
        • Spillantini M.G.
        • Crowther R.A.
        • Kamphorst W.
        • Heutink P.
        • van Swieten J.C.
        Tau pathology in two Dutch families with mutations in the microtubule-binding region of tau.
        Am J Pathol. 1998; 153: 1359-1363
        • Baker M.
        • Mackenzie I.R.
        • Pickering-Brown S.M.
        • Gass J.
        • Rademakers R.
        • Lindholm C.
        • et al.
        Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17.
        Nature. 2006; 442: 916-919
        • Cruts M.
        • Gijselinck I.
        • van der Zee J.
        • Engelborghs S.
        • Wils H.
        • Pirici D.
        • et al.
        Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21.
        Nature. 2006; 442: 920-924
        • Ghetti B.
        • Oblak A.L.
        • Boeve B.F.
        • Johnson K.A.
        • Dickerson B.C.
        • Goedert M.
        Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging.
        Neuropathol Appl Neurobiol. 2015; 41: 24-46
        • Iijima M.
        • Tabira T.
        • Poorkaj P.
        • Schellenberg G.D.
        • Trojanowski J.Q.
        • Lee V.M.
        • et al.
        A distinct familial presenile dementia with a novel missense mutation in the tau gene.
        Neuroreport. 1999; 10: 497-501
        • Spillantini M.G.
        • Goedert M.
        • Crowther R.A.
        • Murrell J.R.
        • Farlow M.R.
        • Ghetti B.
        Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments.
        Proc Natl Acad Sci U S A. 1997; 94: 4113-4118
        • Sima A.A.
        • Defendini R.
        • Keohane C.
        • D'Amato C.
        • Foster N.L.
        • Parchi P.
        • et al.
        The neuropathology of chromosome 17-linked dementia.
        Ann Neurol. 1996; 39: 734-743
        • Reed L.A.
        • Schmidt M.L.
        • Wszolek Z.K.
        • Balin B.J.
        • Soontornniyomkij V.
        • Lee V.M.
        • et al.
        The neuropathology of a chromosome 17-linked autosomal dominant parkinsonism and dementia (“pallido-ponto-nigral degeneration”).
        J Neuropathol Exp Neurol. 1998; 57: 588-601
        • Goedert M.
        • Spillantini M.G.
        • Crowther R.A.
        • Chen S.G.
        • Parchi P.
        • Tabaton M.
        • et al.
        Tau gene mutation in familial progressive subcortical gliosis.
        Nat Med. 1999; 5: 454-457
        • D'Souza I.
        • Poorkaj P.
        • Hong M.
        • Nochlin D.
        • Lee V.M.
        • Bird T.D.
        • et al.
        Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements.
        Proc Natl Acad Sci U S A. 1999; 96: 5598-5603
        • Sumi S.M.
        • Bird T.D.
        • Nochlin D.
        • Raskind M.A.
        Familial presenile dementia with psychosis associated with cortical neurofibrillary tangles and degeneration of the amygdala.
        Neurology. 1992; 42: 120-127
        • Hayashi S.
        • Toyoshima Y.
        • Hasegawa M.
        • Umeda Y.
        • Wakabayashi K.
        • Tokiguchi S.
        • et al.
        Late-onset frontotemporal dementia with a novel exon 1 (Arg5His) tau gene mutation.
        Ann Neurol. 2002; 51: 525-530
        • Poorkaj P.
        • Muma N.A.
        • Zhukareva V.
        • Cochran E.J.
        • Shannon K.M.
        • Hurtig H.
        • et al.
        An R5L tau mutation in a subject with a progressive supranuclear palsy phenotype.
        Ann Neurol. 2002; 52: 511-516
        • Sergeant N.
        • Wattez A.
        • Delacourte A.
        Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: tau pathologies with exclusively “exon 10” isoforms.
        J Neurochem. 1999; 72: 1243-1249
        • Delacourte A.
        • Sergeant N.
        • Wattez A.
        • Gauvreau D.
        • Robitaille Y.
        Vulnerable neuronal subsets in Alzheimer's and Pick's disease are distinguished by their tau isoform distribution and phosphorylation.
        Ann Neurol. 1998; 43: 193-204
        • Sergeant N.
        • David J.P.
        • Lefranc D.
        • Vermersch P.
        • Wattez A.
        • Delacourte A.
        Different distribution of phosphorylated tau protein isoforms in Alzheimer's and Pick's diseases.
        FEBS Lett. 1997; 412: 578-582
        • Rewcastle N.B.
        • Ball M.J.
        Electron microscopic structure of the “inclusion bodies” in Pick's disease.
        Neurology. 1968; 18: 1205-1213
        • Fontaine S.N.
        • Sabbagh J.J.
        • Baker J.
        • Martinez-Licha C.R.
        • Darling A.
        • Dickey C.A.
        Cellular factors modulating the mechanism of tau protein aggregation.
        Cell Mol Life Sci. 2015; 72: 1863-1879
        • Arrasate M.
        • Perez M.
        • Armas-Portela R.
        • Avila J.
        Polymerization of tau peptides into fibrillar structures. The effect of FTDP-17 mutations.
        FEBS Lett. 1999; 446: 199-202
        • Nacharaju P.
        • Lewis J.
        • Easson C.
        • Yen S.
        • Hackett J.
        • Hutton M.
        • et al.
        Accelerated filament formation from tau protein with specific FTDP-17 missence.
        FEBS Lett. 1999; 447: 195-199
        • Clark L.N.
        • Poorkaj P.
        • Wszolek Z.
        • Geschwind D.H.
        • Nasreddine Z.S.
        • Miller B.
        • et al.
        Pathogenic implications of mutations in the tau gene in pallido-ponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17.
        Proc Natl Acad Sci U S A. 1998; 95: 13103-13107
        • Aoyagi H.
        • Hasegawa M.
        • Tamaoka A.
        Fibrillogenic nuclei composed of P301L mutant tau induce elongation of P301L tau but not wild-type tau.
        J Biol Chem. 2007; 282: 20309-20318
        • Rizzu P.
        • Joosse M.
        • Ravid R.
        • Hoogeveen A.
        • Kamphorst W.
        • van Swieten J.C.
        • et al.
        Mutation-dependent aggregation of tau protein and its selective depletion from the soluble fraction in brain of P301L FTDP-17 patients.
        Hum Mol Genet. 2000; 9: 3075-3082
        • Jucker M.
        • Walker L.C.
        Self-propagation of pathogenic protein aggregates in neurodegenerative diseases.
        Nature. 2013; 501: 45-51
        • Yamada K.
        • Cirrito J.R.
        • Stewart F.R.
        • Jiang H.
        • Finn M.B.
        • Holmes B.B.
        • et al.
        In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice.
        J Neurosci. 2011; 31: 13110-13117
        • Johnson G.V.
        • Seubert P.
        • Cox T.M.
        • Motter R.
        • Brown J.P.
        • Galasko D.
        The tau protein in human cerebrospinal fluid in Alzheimer's disease consists of proteolytically derived fragments.
        J Neurochem. 1997; 68: 430-433
        • Mohamed N.V.
        • Herrou T.
        • Plouffe V.
        • Piperno N.
        • Leclerc N.
        Spreading of tau pathology in Alzheimer's disease by cell-to-cell transmission.
        Eur J Neurosci. 2013; 37: 1939-1948
        • Guo J.L.
        • Lee V.M.
        Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases.
        Nat Med. 2014; 20: 130-138
        • Pooler A.M.
        • Phillips E.C.
        • Lau D.H.
        • Noble W.
        • Hanger D.P.
        Physiological release of endogenous tau is stimulated by neuronal activity.
        EMBO Rep. 2013; 14: 389-394
        • Wu J.W.
        • Hussaini S.A.
        • Bastille I.M.
        • Rodriguez G.A.
        • Mrejeru A.
        • Rilett K.
        • et al.
        Neuronal activity enhances tau propagation and tau pathology in vivo.
        Nat Neurosci. 2016; 19: 1085-1092
        • Iba M.
        • Guo J.L.
        • McBride J.D.
        • Zhang B.
        • Trojanowski J.Q.
        • Lee V.M.
        Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy.
        J Neurosci. 2013; 33: 1024-1037
        • Peeraer E.
        • Bottelbergs A.
        • Van Kolen K.
        • Stancu I.C.
        • Vasconcelos B.
        • Mahieu M.
        • et al.
        Intracerebral injection of preformed synthetic tau fibrils initiates widespread tauopathy and neuronal loss in the brains of tau transgenic mice.
        Neurobiol Dis. 2015; 73: 83-95
        • Clavaguera F.
        • Akatsu H.
        • Fraser G.
        • Crowther R.A.
        • Frank S.
        • Hench J.
        • et al.
        Brain homogenates from human tauopathies induce tau inclusions in mouse brain.
        Proc Natl Acad Sci U S A. 2013; 110: 9535-9540
        • Jackson S.J.
        • Kerridge C.
        • Cooper J.
        • Cavallini A.
        • Falcon B.
        • Cella C.V.
        • et al.
        Short fibrils constitute the major species of seed-competent Tau in the brains of mice transgenic for human P301S Tau.
        J Neurosci. 2016; 36: 762-772
        • Ahmed Z.
        • Cooper J.
        • Murray T.K.
        • Garn K.
        • McNaughton E.
        • Clarke H.
        • et al.
        A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity.
        Acta Neuropathol. 2014; 127: 667-683
        • Chakrabarty P.
        • Hudson Iii V.J.
        • Sacino A.N.
        • Brooks M.M.
        • D'Alton S.
        • Lewis J.
        • et al.
        Inefficient induction and spread of seeded tau pathology in P301L mouse model of tauopathy suggests inherent physiological barriers to transmission.
        Acta Neuropathol. 2015; 130: 303-305
        • Guo J.L.
        • Narasimhan S.
        • Changolkar L.
        • He Z.
        • Stieber A.
        • Zhang B.
        • et al.
        Unique pathological tau conformers from Alzheimer's brains transmit tau pathology in nontransgenic mice.
        J Exp Med. 2016; 213: 2635-2654
        • de Calignon A.
        • Polydoro M.
        • Suarez-Calvet M.
        • William C.
        • Adamowicz D.H.
        • Kopeikina K.J.
        • et al.
        Propagation of tau pathology in a model of early Alzheimer's disease.
        Neuron. 2012; 73: 685-697
        • Liu L.
        • Drouet V.
        • Wu J.W.
        • Witter M.P.
        • Small S.A.
        • Clelland C.
        • et al.
        Trans-synaptic spread of tau pathology in vivo.
        PLoS One. 2012; 7: e31302
        • Yetman M.J.
        • Lillehaug S.
        • Bjaalie J.G.
        • Leergaard T.B.
        • Jankowsky J.L.
        Transgene expression in the Nop-tTA driver line is not inherently restricted to the entorhinal cortex.
        Brain Struct Funct. 2016; 221: 2231-2249
        • Boutajangout A.
        • Quartermain D.
        • Sigurdsson E.M.
        Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model.
        J Neurosci. 2010; 30: 16559-16566
        • Chai X.
        • Wu S.
        • Murray T.K.
        • Kinley R.
        • Cella C.V.
        • Sims H.
        • et al.
        Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression.
        J Biol Chem. 2011; 286: 34457-34467
        • Bi M.
        • Ittner A.
        • Ke Y.D.
        • Gotz J.
        • Ittner L.M.
        Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice.
        PLoS One. 2011; 6: e26860
        • Yanamandra K.
        • Kfoury N.
        • Jiang H.
        • Mahan T.E.
        • Ma S.
        • Maloney S.E.
        • et al.
        Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo.
        Neuron. 2013; 80: 402-414
        • McEwan W.A.
        • Falcon B.
        • Vaysburd M.
        • Clift D.
        • Oblak A.L.
        • Ghetti B.
        • et al.
        Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation.
        Proc Natl Acad Sci U S A. 2017; 114: 574-579
        • Fraser H.
        • Dickinson A.G.
        The sequential development of the brain lesion of scrapie in three strains of mice.
        J Comp Pathol. 1968; 78: 301-311
        • Collinge J.
        • Clarke A.R.
        A general model of prion strains and their pathogenicity.
        Science. 2007; 318: 930-936
        • Bessen R.A.
        • Marsh R.F.
        Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy.
        J Virol. 1994; 68: 7859-7868
        • Caughey B.
        • Raymond G.J.
        • Bessen R.A.
        Strain-dependent differences in beta-sheet conformations of abnormal prion protein.
        J Biol Chem. 1998; 273: 32230-32235
        • Telling G.C.
        • Parchi P.
        • DeArmond S.J.
        • Cortelli P.
        • Montagna P.
        • Gabizon R.
        • et al.
        Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity.
        Science. 1996; 274: 2079-2082
        • Kovacs G.G.
        • Trabattoni G.
        • Hainfellner J.A.
        • Ironside J.W.
        • Knight R.S.
        • Budka H.
        Mutations of the prion protein gene phenotypic spectrum.
        J Neurol. 2002; 249: 1567-1582
        • Parchi P.
        • Giese A.
        • Capellari S.
        • Brown P.
        • Schulz-Schaeffer W.
        • Windl O.
        • et al.
        Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects.
        Ann Neurol. 1999; 46: 224-233
        • Collinge J.
        • Sidle K.C.
        • Meads J.
        • Ironside J.
        • Hill A.F.
        Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD.
        Nature. 1996; 383: 685-690
        • Sanders D.W.
        • Kaufman S.K.
        • DeVos S.L.
        • Sharma A.M.
        • Mirbaha H.
        • Li A.
        • et al.
        Distinct tau prion strains propagate in cells and mice and define different tauopathies.
        Neuron. 2014; 82: 1271-1288
        • Kaufman S.K.
        • Sanders D.W.
        • Thomas T.L.
        • Ruchinskas A.J.
        • Vaquer-Alicea J.
        • Sharma A.M.
        • et al.
        Tau prion strains dictate patterns of cell pathology, progression rate, and regional vulnerability in vivo.
        Neuron. 2016; 92: 796-812
        • Woerman A.L.
        • Aoyagi A.
        • Patel S.
        • Kazmi S.A.
        • Lobach I.
        • Grinberg L.T.
        • et al.
        Tau prions from Alzheimer's disease and chronic traumatic encephalopathy patients propagate in cultured cells.
        Proc Natl Acad Sci U S A. 2016; 113: E8187-E8196
        • Dinkel P.D.
        • Siddiqua A.
        • Huynh H.
        • Shah M.
        • Margittai M.
        Variations in filament conformation dictate seeding barrier between three- and four-repeat tau.
        Biochemistry. 2011; 50: 4330-4336