Advertisement

Motor-Activity Markers of Circadian Timekeeping Are Related to Ketamine’s Rapid Antidepressant Properties

      Abstract

      Background

      The rapid clinical antidepressant effects of the glutamatergic modulator ketamine may be due to its ability to restore synaptic plasticity and related effects on sleep-wake and circadian systems. Preclinical studies indicate that ketamine alters expression of circadian clock–associated molecules, and clinical studies of ketamine on plasticity-related biomarkers further suggest an association with sleep slow waves and sleep homeostasis.

      Methods

      Wrist-activity monitors were used to examine the pharmacologic and rapid antidepressant effects of ketamine on markers of circadian timekeeping (amplitude and timing) in mood disorders. Circadian amplitude and timing of activity at baseline, postinfusion day 1 (D1), and day 3 (D3) were measured in 51 patients with major depressive disorder or bipolar disorder.

      Results

      Compared with either placebo or baseline, a mood-independent decrease of the central circadian value (mesor) was present on D1 after ketamine treatment. Mood-associated circadian effects between rapid (D1) responders and nonresponders were found at baseline, D1, and D3. At baseline, a phase-advanced activity pattern and lower mesor distinguished subsequent responders from nonresponders. On D1, ketamine nonresponders had a lower mesor and a blunted 24-hour amplitude relative to baseline. On D3, patients with a persisting clinical response exhibited a higher amplitude and mesor compared with nonresponders.

      Conclusions

      The findings are the first to demonstrate an association between ketamine’s clinical antidepressant effects and circadian timekeeping. The results suggest that traitlike circadian activity patterns indicate rapid mood response to ketamine, and that mediators of continuing ketamine-induced mood changes include altered timing and amplitude of the circadian system.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bellet M.M.
        • Vawter M.P.
        • Bunney B.G.
        • Bunney W.E.
        • Sassone-Corsi P.
        Ketamine influences CLOCK: BMAL1 function leading to altered circadian gene expression.
        PLoS One. 2011; 6: e23982
        • Duncan W.C.
        • Sarasso S.
        • Ferrarelli F.
        • Selter J.
        • Riedner B.A.
        • Hejazi N.S.
        • et al.
        Concomitant BDNF and sleep slow wave changes indicate ketamine-induced plasticity in major depressive disorder.
        Int J Neuropsychopharmacol. 2013; 16: 301-311
        • Duncan Jr., W.C.
        • Selter J.
        • Brutsche N.
        • Sarasso S.
        • Zarate Jr., C.A.
        Baseline delta sleep ratio predicts acute ketamine mood response in major depressive disorder.
        J Affect Disord. 2013; 145: 115-119
        • Duncan Jr., W.C.
        • Zarate Jr., C.A.
        Ketamine, sleep, and depression: current status and new questions.
        Curr Psychiatry Rep. 2013; 15: 394
        • Archer S.N.
        • Laing E.E.
        • Moller-Levet C.S.
        • van der Veen D.R.
        • Bucca G.
        • Lazar A.S.
        • et al.
        Mistimed sleep disrupts circadian regulation of the human transcriptome.
        Proc Natl Acad Sci U S A. 2014; 111: E682-E691
        • Li N.
        • Lee B.
        • Liu R.J.
        • Banasr M.
        • Dwyer J.M.
        • Iwata M.
        • et al.
        mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.
        Science. 2010; 329: 959-964
        • Duman R.S.
        • Aghajanian G.K.
        Synaptic dysfunction in depression: potential therapeutic targets.
        Science. 2012; 338: 68-72
        • Maeng S.
        • Zarate Jr., C.A.
        The role of glutamate in mood disorders: results from the ketamine in major depression study and the presumed cellular mechanism underlying its antidepressant effects.
        Curr Psychiatry Rep. 2007; 9: 467-474
        • Machado-Vieira R.
        • Ibrahim L.
        • Henter I.D.
        • Zarate Jr., C.A.
        Novel glutamatergic agents for major depressive disorder and bipolar disorder.
        Pharmacol Biochem Behav. 2012; 100: 678-687
        • Teicher M.H.
        Actigraphy and motion analysis: new tools for psychiatry.
        Harv Rev Psychiatry. 1995; 3: 18-35
        • Ancoli-Israel S.
        • Cole R.
        • Alessi C.
        • Chambers M.
        • Moorcroft W.
        • Pollak C.P.
        The role of actigraphy in the study of sleep and circadian rhythms.
        Sleep. 2003; 26: 342-392
        • Winkler D.
        • Pjrek E.
        • Praschak-Rieder N.
        • Willeit M.
        • Pezawas L.
        • Konstantinidis A.
        • et al.
        Actigraphy in patients with seasonal affective disorder and healthy control subjects treated with light therapy.
        Biol Psychiatry. 2005; 58: 331-336
        • Kupfer D.J.
        • Weiss B.L.
        • Foster G.
        • Detre T.P.
        • Delgado J.
        • McPartland R.
        Psychomotor activity in affective states.
        Arch Gen Psychiatry. 1974; 30: 765-768
        • Wehr T.A.
        • Muscettola G.
        • Goodwin F.K.
        Urinary 3-methoxy-4-hydroxyphenylglycol circadian rhythm. Early timing (phase-advance) in manic-depressives compared with normal subjects.
        Arch Gen Psychiatry. 1980; 37: 257-263
        • Wolff Ed
        • Putnam F.W.
        • Post R.M.
        Motor activity and affective illness. The relationship of amplitude and temporal distribution to changes in affective state.
        Arch Gen Psychiatry. 1985; 42: 288-294
        • Volkers A.C.
        • Tulen J.H.
        • van den Broek W.W.
        • Bruijn J.A.
        • Passchier J.
        • Pepplinkhuizen L.
        Motor activity and autonomic cardiac functioning in major depressive disorder.
        J Affect Disord. 2003; 76: 23-30
        • Jones S.H.
        • Hare D.J.
        • Evershed K.
        Actigraphic assessment of circadian activity and sleep patterns in bipolar disorder.
        Bipolar Disord. 2005; 7: 176-186
        • Harvey A.G.
        • Schmidt D.A.
        • Scarna A.
        • Semler C.N.
        • Goodwin G.M.
        Sleep-related functioning in euthymic patients with bipolar disorder, patients with insomnia, and subjects without sleep problems.
        Am J Psychiatry. 2005; 162: 50-57
        • Ankers D.
        • Jones S.H.
        Objective assessment of circadian activity and sleep patterns in individuals at behavioural risk of hypomania.
        J Clin Psychol. 2009; 65: 1071-1086
        • Gonzalez R.
        • Tamminga C.A.
        • Tohen M.
        • Suppes T.
        The relationship between affective state and the rhythmicity of activity in bipolar disorder.
        J Clin Psychiatry. 2014; 75: e317-e322
        • Reid K.J.
        • Jaksa A.A.
        • Eisengart J.B.
        • Baron K.G.
        • Lu B.
        • Kane P.
        • et al.
        Systematic evaluation of Axis-I DSM diagnoses in delayed sleep phase disorder and evening-type circadian preference.
        Sleep Med. 2012; 13: 1171-1177
        • Lemke M.R.
        • Puhl P.
        • Broderick A.
        Motor activity and perception of sleep in depressed patients.
        J Psychiatr Res. 1999; 33: 215-224
        • Lemke M.R.
        • Broderick A.
        • Zeitelberger M.
        • Hartmann W.
        Motor activity and daily variation of symptom intensity in depressed patients.
        Neuropsychobiology. 1997; 36: 57-61
        • Burton C.
        • McKinstry B.
        • Szentagotai Tatar A.
        • Serrano-Blanco A.
        • Pagliari C.
        • Wolters M.
        Activity monitoring in patients with depression: A systematic review.
        J Affect Disord. 2013; 145: 21-28
        • Robillard R.
        • Naismith S.L.
        • Smith K.L.
        • Rogers N.L.
        • White D.
        • Terpening Z.
        • et al.
        Sleep-wake cycle in young and older persons with a lifetime history of mood disorders.
        PLoS One. 2014; 9: e87763
        • Hasler B.P.
        • Buysse D.J.
        • Kupfer D.J.
        • Germain A.
        Phase relationships between core body temperature, melatonin, and sleep are associated with depression severity: further evidence for circadian misalignment in non-seasonal depression.
        Psychiatry Res. 2010; 178: 205-207
        • Emens J.
        • Lewy A.
        • Kinzie J.M.
        • Arntz D.
        • Rough J.
        Circadian misalignment in major depressive disorder.
        Psychiatry Res. 2009; 168: 259-261
        • Benedetti F.
        • Dallaspezia S.
        • Fulgosi M.C.
        • Barbini B.
        • Colombo C.
        • Smeraldi E.
        Phase advance is an actimetric correlate of antidepressant response to sleep deprivation and light therapy in bipolar depression.
        Chronobiol Int. 2007; 24: 921-937
        • Kasper S.
        • Hajak G.
        • Wulff K.
        • Hoogendijk W.J.
        • Montejo A.L.
        • Smeraldi E.
        • et al.
        Efficacy of the novel antidepressant agomelatine on the circadian rest-activity cycle and depressive and anxiety symptoms in patients with major depressive disorder: a randomized, double-blind comparison with sertraline.
        J Clin Psychiatry. 2010; 71: 109-120
        • Todder D.
        • Caliskan S.
        • Baune B.T.
        Longitudinal changes of day-time and night-time gross motor activity in clinical responders and non-responders of major depression.
        World J Biol Psychiatry. 2009; 10: 276-284
        • Todder D.
        • Caliskan S.
        • Baune B.T.
        Night locomotor activity and quality of sleep in quetiapine-treated patients with depression.
        J Clin Psychopharmacol. 2006; 26: 638-642
        • Raoux N.
        • Benoit O.
        • Dantchev N.
        • Denise P.
        • Franc B.
        • Allilaire J.
        • et al.
        Circadian pattern of motor activity in major depressed patients undergoing antidepressant therapy: relationship between actigraphic measures and clinical course.
        Psychiatry Res. 1994; 52: 85-98
        • McClung C.A.
        Circadian genes, rhythms and the biology of mood disorders.
        Pharmacol Ther. 2007; 114: 222-232
        • Partonen T.
        Clock gene variants in mood and anxiety disorders.
        J Neural Transm. 2012; 119: 1133-1145
        • Roybal K.
        • Theobold D.
        • Graham A.
        • DiNieri J.
        • Russo S.J.
        • Krishnan V.
        • et al.
        Mania-like behavior induced by disruption of CLOCK.
        Proc Natl Acad Sci USA. 2007; 104: 6406-6411
        • McClung C.A.
        Circadian rhythms and mood regulation: insights from pre-clinical models.
        Eur Neuropsychopharmacol. 2011; 21 Suppl 4: S683-S693
        • Hampp G.
        • Albrecht U.
        The circadian clock and mood-related behavior.
        Commun Integr Biol. 2008; 1: 1-3
        • Hampp G.
        • Ripperger J.A.
        • Houben T.
        • Schmutz I.
        • Blex C.
        • Perreau-Lenz S.
        • et al.
        Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood.
        Curr Biol. 2008; 18: 678-683
        • Schnell A.
        • Albrecht U.
        • Sandrelli F.
        Rhythm and mood: relationships between the circadian clock and mood-related behavior.
        Behav Neurosci. 2014; 128: 326-343
        • Milhiet V.
        • Etain B.
        • Boudebesse C.
        • Bellivier F.
        Circadian biomarkers, circadian genes and bipolar disorders.
        J Physiol Paris. 2011; 105: 183-189
        • Harvey A.G.
        Sleep and circadian rhythms in bipolar disorder: seeking synchrony, harmony, and regulation.
        Am J Psychiatry. 2008; 165: 820-829
        • Benedetti F.
        • Dallaspezia S.
        • Fulgosi M.C.
        • Lorenzi C.
        • Serretti A.
        • Barbini B.
        • et al.
        Actimetric evidence that CLOCK 3111 T/C SNP influences sleep and activity patterns in patients affected by bipolar depression.
        Am J Med Genet B Neuropsychiatr Genet. 2007; 144B: 631-635
        • Franken P.
        • Dijk D.J.
        Circadian clock genes and sleep homeostasis.
        Eur J Neurosci. 2009; 29: 1820-1829
        • Franken P.
        A role for clock genes in sleep homeostasis.
        Curr Opin Neurobiol. 2013; 23: 864-872
        • Franken P.
        • Thomason R.
        • Heller H.C.
        • O’Hara B.F.
        A non-circadian role for clock-genes in sleep homeostasis: a strain comparison.
        BMC Neurosci. 2007; 8: 87
        • Moller-Levet C.S.
        • Archer S.N.
        • Bucca G.
        • Laing E.E.
        • Slak A.
        • Kabiljo R.
        • et al.
        Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome.
        Proc Natl Acad Sci U S A. 2013; 110: E1132-E1141
        • Ibrahim L.
        • Diazgranados N.
        • Franco-Chaves J.
        • Brutsche N.
        • Henter I.D.
        • Kronstein P.
        • et al.
        Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs add-on riluzole: results from a 4-week, double-blind, placebo-controlled study.
        Neuropsychopharmacology. 2012; 37: 1526-1533
        • Ionescu D.F.
        • Luckenbaugh D.A.
        • Niciu M.J.
        • Richards E.M.
        • Zarate C.A.J.
        A single infusion of ketamine improves depression scores in patients with anxious bipolar depression.
        Bipolar Disord. 2015; 17: 438-443
        • Sackeim H.A.
        The definition and meaning of treatment-resistant depression.
        J Clin Psychiatry. 2001; 62 Suppl 16: 10-17
        • Zarate Jr., C.A.
        • Singh J.B.
        • Carlson P.J.
        • Brutsche N.E.
        • Ameli R.
        • Luckenbaugh D.A.
        • et al.
        A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression.
        Arch Gen Psychiatry. 2006; 63: 856-864
        • Erzberger A.
        • Hampp G.
        • Granada A.E.
        • Albrecht U.
        • Herzel H.
        Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range.
        J R Soc Interface. 2013; 10: 20130221
        • Boivin D.B.
        • Czeisler C.A.
        • Dijk D.J.
        • Duffy J.F.
        • Folkard S.
        • Minors D.S.
        • et al.
        Complex interaction of the sleep-wake cycle and circadian phase modulates mood in healthy subjects.
        Arch Gen Psychiatry. 1997; 54: 145-152
        • Wirz-Justice A.
        Diurnal variation of depressive symptoms.
        Dialogues Clin Neurosci. 2008; 10: 337-343
        • Naismith S.L.
        • Lagopoulos J.
        • Hermens D.F.
        • White D.
        • Duffy S.L.
        • Robillard R.
        • et al.
        Delayed circadian phase is linked to glutamatergic functions in young people with affective disorders: A proton magnetic resonance spectroscopy study.
        BMC Psychiatry. 2014; 14: 345
        • Allebrandt K.V.
        • Teder-Laving M.
        • Akyol M.
        • Pichler I.
        • Muller-Myhsok B.
        • Pramstaller P.
        • et al.
        CLOCK gene variants associate with sleep duration in two independent populations.
        Biol Psychiatry. 2010; 67: 1040-1047
        • Novakova M.
        • Sladek M.
        • Sumova A.
        Human chronotype is determined in bodily cells under real-life conditions.
        Chronobiol Int. 2013; 30: 607-617
        • Baehr E.K.
        • Revelle W.
        • Eastman C.I.
        Individual differences in the phase and amplitude of the human circadian temperature rhythm: with an emphasis on morningness-eveningness.
        J Sleep Res. 2000; 9: 117-127
        • Haile C.N.
        • Murrough J.W.
        • Iosifescu D.V.
        • Chang L.C.
        • Al Jurdi R.K.
        • Foulkes A.
        • et al.
        Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression.
        Int J Neuropsychopharmacol. 2014; 17: 331-336
        • Bunney B.G.
        • Li J.Z.
        • Walsh D.M.
        • Stein R.
        • Vawter M.P.
        • Cartagena P.
        • et al.
        Circadian dysregulation of clock genes: clues to rapid treatments in major depressive disorder.
        Mol Psychiatry. 2015; 20: 48-55
        • Cao R.
        • Lee B.
        • Cho H.Y.
        • Saklayen S.
        • Obrietan K.
        Photic regulation of the mTOR signaling pathway in the suprachiasmatic circadian clock.
        Mol Cell Neurosci. 2008; 38: 312-324
        • Cao R.
        • Li A.
        • Cho H.Y.
        • Lee B.
        • Obrietan K.
        Mammalian target of rapamycin signaling modulates photic entrainment of the suprachiasmatic circadian clock.
        J Neurosci. 2010; 30: 6302-6314
        • Zarate Jr., C.A.
        • Brutsche N.
        • Laje G.
        • Luckenbaugh D.A.
        • Venkata S.L.
        • Ramamoorthy A.
        • et al.
        Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression.
        Biol Psychiatry. 2012; 72: 331-338
        • Zanos P.
        • Moaddel R.
        • Morris P.J.
        • Georgiou P.
        • Fischell J.
        • Elmer G.I.
        • et al.
        NMDAR inhibition-independent antidepressant actions of ketamine metabolites.
        Nature. 2016; 533: 481-486
        • Li J.Z.
        • Bunney B.G.
        • Meng F.
        • Hagenauer M.H.
        • Walsh D.M.
        • Vawter M.P.
        • et al.
        Circadian patterns of gene expression in the human brain and disruption in major depressive disorder.
        Proc Natl Acad Sci U S A. 2013; 110: 9950-9955
        • Mukherjee S.
        • Coque L.
        • Cao J.L.
        • Kumar J.
        • Chakravarty S.
        • Asaithamby A.
        • et al.
        Knockdown of Clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior.
        Biol Psychiatry. 2010; 68: 503-511
        • Tan S.
        • Lam W.P.
        • Wai M.S.
        • Yu W.H.
        • Yew D.T.
        Chronic ketamine administration modulates midbrain dopamine system in mice.
        PLoS One. 2012; 7: e43947
        • van Someren E.J.
        • Swaab D.F.
        • Colenda C.C.
        • Cohen W.
        • McCall W.V.
        • Rosenquist P.B.
        Bright light therapy: improved sensitivity to its effects on rest-activity rhythms in Alzheimer patients by application of nonparametric methods.
        Chroniobiol Int. 1999; 16: 505-518
        • Wirz-Justice A.
        How to measure circadian rhythms in humans.
        Medicographia. 2007; 29: 84-90

      Linked Article