Advertisement

Targeted Interneuron Depletion in the Dorsal Striatum Produces Autism-like Behavioral Abnormalities in Male but Not Female Mice

Published:February 10, 2017DOI:https://doi.org/10.1016/j.biopsych.2017.01.020

      Abstract

      Background

      Interneuronal pathology is implicated in many neuropsychiatric disorders, including autism spectrum disorder (ASD) and Tourette syndrome (TS). Interneurons of the striatum, including the parvalbumin-expressing fast-spiking interneurons (FSIs) and the large cholinergic interneurons (CINs), are affected in patients with TS and in preclinical models of both ASD and TS.

      Methods

      To test the causal importance of these neuronal abnormalities, we recapitulated them in vivo in developmentally normal mice using a combination transgenic–viral strategy for targeted toxin-mediated ablation.

      Results

      We found that conjoint ~50% depletion of FSIs and CINs in the dorsal striatum of male mice produces spontaneous stereotypy and marked deficits in social interaction. Strikingly, these behavioral effects are not seen in female mice; because ASD and TS have a marked male predominance, this observation reinforces the potential relevance of the finding to human disease. Neither of these effects is seen when only one or the other interneuronal population is depleted; ablation of both is required. Depletion of FSIs, but not of CINs, also produces anxiety-like behavior, as has been described previously. Behavioral pathology in male mice after conjoint FSI and CIN depletion is accompanied by increases in activity-dependent signaling in the dorsal striatum; these alterations were not observed after disruption of only one interneuron type or in doubly depleted female mice.

      Conclusions

      These data indicate that disruption of CIN and FSI interneurons in the dorsal striatum is sufficient to produce network and behavioral changes of potential relevance to ASD, in a sexually dimorphic manner.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chattopadhyaya B.
        • Cristo G.D.
        GABAergic circuit dysfunctions in neurodevelopmental disorders.
        Front Psychiatry. 2012; 3: 51
        • Coghlan S.
        • Horder J.
        • Inkster B.
        • Mendez M.A.
        • Murphy D.G.
        • Nutt D.J.
        GABA system dysfunction in autism and related disorders: From synapse to symptoms.
        Neurosci Biobehav Rev. 2012; 36: 2044-2055
        • Gonzalez-Burgos G.
        • Cho R.Y.
        • Lewis D.A.
        Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia.
        Biol Psychiatry. 2015; 77: 1031-1040
        • Kalanithi P.S.
        • Zheng W.
        • Kataoka Y.
        • DiFiglia M.
        • Grantz H.
        • Saper C.B.
        • et al.
        Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome.
        Proc Natl Acad Sci U S A. 2005; 102: 13307-13312
        • Kataoka Y.
        • Kalanithi P.S.
        • Grantz H.
        • Schwartz M.L.
        • Saper C.
        • Leckman J.F.
        • et al.
        Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome.
        J Comp Neurol. 2010; 518: 277-291
        • Rajkowska G.
        • O׳Dwyer G.
        • Teleki Z.
        • Stockmeier C.A.
        • Miguel-Hidalgo J.J.
        GABAergic neurons immunoreactive for calcium binding proteins are reduced in the prefrontal cortex in major depression.
        Neuropsychopharmacology. 2007; 32: 471-482
        • Kreitzer A.C.
        Physiology and pharmacology of striatal neurons.
        Ann Rev Neurosci. 2009; 32: 127-147
        • Canitano R.
        • Vivanti G.
        Tics and Tourette syndrome in autism spectrum disorders.
        Autism. 2007; 11: 19-28
        • Clarke R.A.
        • Lee S.
        • Eapen V.
        Pathogenetic model for Tourette syndrome delineates overlap with related neurodevelopmental disorders including autism.
        Transl Psychiatry. 2012; 2: e158
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        American Psychiatric Association, Washington, DC2013
        • Centers for Disease Control and Prevention
        Prevalence of autism spectrum disorder among children aged 8 years: Autism and Developmental Disabilities Monitoring Network, 11 sites, United States, 2010.
        Surveillance Summaries. 2014; 63: 1-21
        • Kim Y.S.
        • Leventhal B.L.
        • Koh Y.J.
        • Fombonne E.
        • Laska E.
        • Lim E.C.
        • et al.
        Prevalence of autism spectrum disorders in a total population sample.
        Am J Psychiatry. 2011; 168: 904-912
      1. Scahill L, Dalsgaard S, Bradbury K (2013): The prevalence of Tourette syndrome and its relationship to clinical features. In: Martino D, Leckman JF, editors. Tourette Syndrome. New York: Oxford University Press, 121–167.

        • Sandin S.
        • Lichtenstein P.
        • Kuja-Halkola R.
        • Larsson H.
        • Hultman C.M.
        • Reichenberg A.
        The familial risk of autism.
        JAMA. 2014; 311: 1770-1777
        • Krumm N.
        • O’Roak B.J.
        • Shendure J.
        • Eichler E.E.
        A de novo convergence of autism genetics and molecular neuroscience.
        Trends Neurosci. 2014; 37: 95-105
        • Fuccillo M.V.
        Striatal circuits as a common node for autism pathophysiology.
        Front Neurosci. 2016; 10: 27
        • Delmonte S.
        • Gallagher L.
        • O’Hanlon E.
        • McGrath J.
        • Balsters J.H.
        Functional and structural connectivity of frontostriatal circuitry in autism spectrum disorder.
        Front Hum Neurosci. 2013; 7: 430
        • Di Martino A.
        • Kelly C.
        • Grzadzinski R.
        • Zuo X.N.
        • Mennes M.
        • Mairena M.A.
        • et al.
        Aberrant striatal functional connectivity in children with autism.
        Biol Psychiatry. 2011; 69: 847-856
        • Ha S.
        • Sohn I.J.
        • Kim N.
        • Sim H.J.
        • Cheon K.A.
        Characteristics of brains in autism spectrum disorder: Structure, function and connectivity across the lifespan.
        Exp Neurobiol. 2015; 24: 273-284
        • Lennington J.B.
        • Coppola G.
        • Kataoka-Sasaki Y.
        • Fernandez T.V.
        • Palejev D.
        • Li Y.
        • et al.
        Transcriptome analysis of the human striatum in Tourette syndrome.
        Biol Psychiatry. 2016; 79: 372-382
        • Xu M.
        • Kobets A.
        • Du J.C.
        • Lennington J.
        • Li L.
        • Banasr M.
        • et al.
        Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome.
        Proc Natl Acad Sci U S A. 2015; 112: 893-898
        • Xu M.
        • Li L.
        • Pittenger C.
        Ablation of fast-spiking neurons in the dorsal striatum, recapitulating abnormalities seen post-mortem in Tourette syndrome, produces anxiety and elevated grooming.
        Neuroscience. 2016; 324: 321-329
        • Faust T.W.
        • Assous M.
        • Tepper J.M.
        • Koos T.
        Neostriatal GABAergic interneurons mediate cholinergic inhibition of spiny projection neurons.
        J Neurosci. 2016; 36: 9505-9511
        • Gittis A.H.
        • Nelson A.B.
        • Thwin M.T.
        • Palop J.J.
        • Kreitzer A.C.
        Distinct roles of GABAergic interneurons in the regulation of striatal output pathways.
        J Neurosci. 2010; 30: 2223-2234
        • Hashemi E.
        • Ariza J.
        • Rogers H.
        • Noctor S.C.
        • Martínez-Cerdeño V.
        The number of parvalbumin-expressing interneurons is decreased in the medial prefrontal cortex in autism.
        Cereb Cortex. 2017; 27: 1931-1943
        • Penagarikano O.
        • Abrahams B.S.
        • Herman E.I.
        • Winden K.D.
        • Gdalyahu A.
        • Dong H.
        • et al.
        Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits.
        Cell. 2011; 147: 235-246
        • Gogolla N.
        • Takesian A.E.
        • Feng G.
        • Fagiolini M.
        • Hensch T.K.
        Sensory integration in mouse insular cortex reflects GABA circuit maturation.
        Neuron. 2014; 83: 894-905
        • Peca J.
        • Feliciano C.
        • Ting J.T.
        • Wang W.
        • Wells M.F.
        • Venkatraman T.N.
        • et al.
        Shank3 mutant mice display autistic-like behaviours and striatal dysfunction.
        Nature. 2011; 472: 437-442
        • Zhao Y.T.
        • Goffin D.
        • Johnson B.S.
        • Zhou Z.
        Loss of MeCP2 function is associated with distinct gene expression changes in the striatum.
        Neurobiol Dis. 2013; 59: 257-266
        • Filice F.
        • Vorckel K.J.
        • Sungur A.O.
        • Wohr M.
        • Schwaller B.
        Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism.
        Mol Brain. 2016; 9: 10
        • Kao F.C.
        • Su S.H.
        • Carlson G.C.
        • Liao W.
        MeCP2-mediated alterations of striatal features accompany psychomotor deficits in a mouse model of Rett syndrome.
        Brain Struct Funct. 2015; 220: 419-434
        • Ito-Ishida A.
        • Ure K.
        • Chen H.
        • Swann J.W.
        • Zoghbi H.Y.
        Loss of MeCP2 in parvalbumin- and somatostatin-expressing neurons in mice leads to distinct Rett syndrome-like phenotypes.
        Neuron. 2015; 88: 651-658
        • Wohr M.
        • Orduz D.
        • Gregory P.
        • Moreno H.
        • Khan U.
        • Vorckel K.J.
        • et al.
        Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities.
        Transl Psychiatry. 2015; 5: e525
        • Karvat G.
        • Kimchi T.
        Acetylcholine elevation relieves cognitive rigidity and social deficiency in a mouse model of autism.
        Neuropsychopharmacology. 2014; 39: 831-840
        • Tanahira C.
        • Higo S.
        • Watanabe K.
        • Tomioka R.
        • Ebihara S.
        • Kaneko T.
        • et al.
        Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice.
        Neurosci Res. 2009; 63: 213-223
        • Paxinos G.
        • Franklin K.B.J.
        The Mouse Brain in Sereotaxic Cordinates. 2nd ed. Elsevier Academic Press, Amsterdam2004
        • Rapanelli M.
        • Frick L.
        • Pogorelov V.
        • Ohtsu H.
        • Bito H.
        • Pittenger C.
        Histamine H3R receptor activation in the dorsal striatum triggers stereotypies in a mouse model of tic disorders.
        Transl Psychiatry. 2017; : 7:e1013
        • Rapanelli M.
        • Frick L.R.
        • Horn K.D.
        • Schwarcz R.C.
        • Pogorelov V.
        • Nairn A.C.
        • et al.
        The histamine H3 receptor differentially modulates mitogen-activated protein kinase (MAPK) and Akt signaling in striatonigral and striatopallidal neurons.
        J Biol Chem. 2016; 291: 21042-21052
        • Baldan Ramsey L.C.
        • Xu M.
        • Wood N.
        • Pittenger C.
        Lesions of the dorsomedial striatum disrupt prepulse inhibition.
        Neuroscience. 2011; 180: 222-228
        • Castellan Baldan L.
        • Williams K.A.
        • Gallezot J.D.
        • Pogorelov V.
        • Rapanelli M.
        • Crowley M.
        • et al.
        Histidine decarboxylase deficiency causes Tourette syndrome: Parallel findings in humans and mice.
        Neuron. 2014; 81: 77-90
        • Xuan I.C.
        • Hampson D.R.
        Gender-dependent effects of maternal immune activation on the behavior of mouse offspring.
        PLoS One. 2014; 9: e104433
        • Beaulieu J.M.
        • Sotnikova T.D.
        • Marion S.
        • Lefkowitz R.J.
        • Gainetdinov R.R.
        • Caron M.G.
        An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior.
        Cell. 2005; 122: 261-273
        • Beaulieu J.M.
        • Sotnikova T.D.
        • Yao W.D.
        • Kockeritz L.
        • Woodgett J.R.
        • Gainetdinov R.R.
        • et al.
        Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade.
        Proc Natl Acad Sci U S A. 2004; 101: 5099-5104
        • Gainetdinov R.R.
        • Wetsel W.C.
        • Jones S.R.
        • Levin E.D.
        • Jaber M.
        • Caron M.G.
        Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity.
        Science. 1999; 283: 397-401
        • Frick L.
        • Rapanelli M.
        • Abbasi E.
        • Ohtsu H.
        • Pittenger C.
        Histamine regulation of microglia: Gene–environment interaction in the regulation of central nervous system inflammation.
        Brain Behav Immun. 2016; 57: 326-337
        • Rapanelli M.
        • Frick L.R.
        • Pogorelov V.
        • Ota K.T.
        • Abbasi E.
        • Ohtsu H.
        • et al.
        Dysregulated intracellular signaling in the striatum in a pathophysiologically grounded model of Tourette syndrome.
        Eur Neuropsychopharmacol. 2014; 24: 1896-1906
        • Guo X.
        • Hamilton P.J.
        • Reish N.J.
        • Sweatt J.D.
        • Miller C.A.
        • Rumbaugh G.
        Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of schizophrenia.
        Neuropsychopharmacology. 2009; 34: 1659-1672
        • Silverman J.L.
        • Yang M.
        • Lord C.
        • Crawley J.N.
        Behavioural phenotyping assays for mouse models of autism.
        Nat Rev Neurosci. 2010; 11: 490-502
        • Penagarikano O.
        • Lazaro M.T.
        • Lu X.H.
        • Gordon A.
        • Dong H.
        • Lam H.A.
        • et al.
        Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism.
        Sci Transl Med. 2015; 7: 271ra278
        • Teng B.L.
        • Nonneman R.J.
        • Agster K.L.
        • Nikolova V.D.
        • Davis T.T.
        • Riddick N.V.
        • et al.
        Prosocial effects of oxytocin in two mouse models of autism spectrum disorders.
        Neuropharmacology. 2013; 72: 187-196
        • Yatawara C.J.
        • Einfeld S.L.
        • Hickie I.B.
        • Davenport T.A.
        • Guastella A.J.
        The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: A randomized clinical crossover trial.
        Mol Psychiatry. 2016; 21: 1225-1231
        • Ooi Y.P.
        • Weng S.J.
        • Kossowsky J.
        • Gerger H.
        • Sung M.
        Oxytocin and autism spectrum disorders: A systematic review and meta-analysis of randomized controlled trials.
        Pharmacopsychiatry. 2017; 50: 5-13
        • Park H.Y.
        • Kang Y.M.
        • Kang Y.
        • Park T.S.
        • Ryu Y.K.
        • Hwang J.H.
        • et al.
        Inhibition of adenylyl cyclase type 5 prevents L-DOPA-induced dyskinesia in an animal model of Parkinson’s disease.
        J Neurosci. 2014; 34: 11744-11753
        • Deak M.
        • Clifton A.D.
        • Lucocq L.M.
        • Alessi D.R.
        Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB.
        EMBO J. 1998; 17: 4426-4441
        • Biever A.
        • Valjent E.
        • Puighermanal E.
        Ribosomal protein S6 phosphorylation in the nervous system: From regulation to function.
        Front Mol Neurosci. 2015; 8: 75
        • Day J.J.
        • Sweatt J.D.
        Epigenetic treatments for cognitive impairments.
        Neuropsychopharmacology. 2012; 37: 247-260
        • Beaulieu J.M.
        A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health.
        J Psychiatry Neurosci. 2012; 37: 7-16
        • Emamian E.S.
        • Hall D.
        • Birnbaum M.J.
        • Karayiorgou M.
        • Gogos J.A.
        Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia.
        Nat Genet. 2004; 36: 131-137
        • Mei Y.
        • Monteiro P.
        • Zhou Y.
        • Kim J.A.
        • Gao X.
        • Fu Z.
        • et al.
        Adult restoration of Shank3 expression rescues selective autistic-like phenotypes.
        Nature. 2016; 530: 481-484
        • van Steensel F.J.
        • Bogels S.M.
        • Perrin S.
        Anxiety disorders in children and adolescents with autistic spectrum disorders: A meta-analysis.
        Clin Child Fam Psychol Rev. 2011; 14: 302-317
        • White S.W.
        • Oswald D.
        • Ollendick T.
        • Scahill L.
        Anxiety in children and adolescents with autism spectrum disorders.
        Clin Psychol Rev. 2009; 29: 216-229
        • Brunner D.
        • Kabitzke P.
        • He D.
        • Cox K.
        • Thiede L.
        • Hanania T.
        • et al.
        Comprehensive analysis of the 16p11.2 deletion and null Cntnap2 mouse models of autism spectrum disorder.
        PLoS One. 2015; 10: e0134572
        • Flaisher-Grinberg S.
        • Albelda N.
        • Gitter L.
        • Weltman K.
        • Arad M.
        • Joel D.
        Ovarian hormones modulate “compulsive” lever-pressing in female rats.
        Horm Behav. 2009; 55: 356-365
        • Peñagarikano O.
        Oxytocin in animal models of autism spectrum disorder.
        Dev Neurobiol. 2017; 77: 202-213
        • Tozzi A.
        • de Iure A.
        • Tantucci M.
        • Durante V.
        • Quiroga-Varela A.
        • Giampa C.
        • et al.
        Endogenous 17β-estradiol is required for activity-dependent long-term potentiation in the striatum: Interaction with the dopaminergic system.
        Front Cell Neurosci. 2015; 9: 192
        • Shams W.M.
        • Sanio C.
        • Quinlan M.G.
        • Brake W.G.
        17β-Estradiol infusions into the dorsal striatum rapidly increase dorsal striatal dopamine release in vivo.
        Neuroscience. 2016; 330: 162-170
        • Yunes R.
        • Casas S.
        • Gaglio E.
        • Cabrera R.
        Progesterone exerts a neuromodulatory effect on turning behavior of hemiparkinsonian male rats: Expression of 3α-hydoxysteroid oxidoreductase and allopregnanolone as suggestive of GABAA receptors involvement.
        Parkinsons Dis. 2015; 2015: 431690
        • Biever A.
        • Puighermanal E.
        • Nishi A.
        • David A.
        • Panciatici C.
        • Longueville S.
        • et al.
        PKA-dependent phosphorylation of ribosomal protein S6 does not correlate with translation efficiency in striatonigral and striatopallidal medium-sized spiny neurons.
        J Neurosci. 2015; 35: 4113-4130
        • Sawicka A.
        • Seiser C.
        Histone H3 phosphorylation—a versatile chromatin modification for different occasions.
        Biochimie. 2012; 94: 2193-2201
        • Matamales M.
        • Girault J.A.
        Signaling from the cytoplasm to the nucleus in striatal medium-sized spiny neurons.
        Front Neuroanat. 2011; 5: 37
        • English D.F.
        • Ibanez-Sandoval O.
        • Stark E.
        • Tecuapetla F.
        • Buzsaki G.
        • Deisseroth K.
        • et al.
        GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons.
        Nat Neurosci. 2012; 15: 123-130
        • Silberberg G.
        • Bolam J.P.
        Local and afferent synaptic pathways in the striatal microcircuitry.
        Curr Opin Neurobiol. 2015; 33: 182-187
        • Hrdlicka M.
        • Dudova I.
        Controversies in autism: Is a broader model of social disorders needed?.
        Child Adolesc Psychiatry Ment Health. 2013; 7: 9
        • Welch J.M.
        • Lu J.
        • Rodriguiz R.M.
        • Trotta N.C.
        • Peca J.
        • Ding J.D.
        • et al.
        Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice.
        Nature. 2007; 448: 894-900