Advertisement

Constitutive Increases in Amygdalar Corticotropin-Releasing Factor and Fatty Acid Amide Hydrolase Drive an Anxious Phenotype

      Abstract

      Background

      Corticotropin-releasing factor (CRF) mediates anxiogenic responses by activating CRF type 1 (CRF1) receptors in limbic brain regions. Anxiety is further modulated by the endogenous cannabinoid (eCB) system that attenuates the synaptic effects of stress. In the amygdala, acute stress activates the enzymatic clearance of the eCB N-arachidonoylethanolamine via fatty acid amide hydrolase (FAAH), although it is unclear whether chronic dysregulation of CRF systems induces maladaptive changes in amygdalar eCB signaling. Here, we used genetically selected Marchigian Sardinian P (msP) rats carrying an innate overexpression of CRF1 receptors to study the role of constitutive upregulation in CRF systems on amygdalar eCB function and persistent anxiety-like effects.

      Methods

      We applied behavioral, pharmacological, and biochemical methods to broadly characterize anxiety-like behaviors and amygdalar eCB clearance enzymes in msP versus nonselected Wistar rats. Subsequent studies examined the influence of dysregulated CRF and FAAH systems in altering excitatory transmission in the central amygdala (CeA).

      Results

      msPs display an anxious phenotype accompanied by elevations in amygdalar FAAH activity and reduced dialysate N-arachidonoylethanolamine levels in the CeA. Elevations in CRF–CRF1 signaling dysregulate FAAH activity, and this genotypic difference is normalized with pharmacological blockade of CRF1 receptors. msPs also exhibit elevated baseline glutamatergic transmission in the CeA, and dysregulated CRF–FAAH facilitates stress-induced increases in glutamatergic activity. Treatment with an FAAH inhibitor relieves sensitized glutamatergic responses in msPs and attenuates the anxiety-like phenotype.

      Conclusions

      Pathological anxiety and stress hypersensitivity are driven by constitutive increases in CRF1 signaling that dysregulate N-arachidonoylethanolamine signaling mechanisms and reduce neuronal inhibitory control of CeA glutamatergic synapses.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bale T.L.
        • Vale W.W.
        CRF and CRF receptors: Role in stress responsivity and other behaviors.
        Annu Rev Pharmacol Toxicol. 2004; 44: 525-557
        • Hauger R.L.
        • Risbrough V.
        • Brauns O.
        • Dautzenberg F.M.
        Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: New molecular targets.
        CNS Neurol Disord Drug Targets. 2006; 5: 453-479
        • Risbrough V.B.
        • Stein M.B.
        Role of corticotropin releasing factor in anxiety disorders: A translational research perspective.
        Horm Behav. 2006; 50: 550-561
        • Muller M.B.
        • Zimmermann S.
        • Sillaber I.
        • Hagemeyer T.P.
        • Deussing J.M.
        • Timpl P.
        • et al.
        Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress.
        Nat Neurosci. 2003; 6: 1100-1107
        • Koob G.F.
        • Heinrichs S.C.
        A role for corticotropin releasing factor and urocortin in behavioral responses to stressors.
        Brain Res. 1999; 848: 141-152
        • Gilpin N.W.
        • Herman M.A.
        • Roberto M.
        The central amygdala as an integrative hub for anxiety and alcohol use disorders.
        Biol Psychiatry. 2015; 77: 859-869
        • Ressler K.J.
        Amygdala activity, fear, and anxiety: Modulation by stress.
        Biol Psychiatry. 2010; 67: 1117-1119
        • Tye K.M.
        • Prakash R.
        • Kim S.Y.
        • Fenno L.E.
        • Grosenick L.
        • Zarabi H.
        • et al.
        Amygdala circuitry mediating reversible and bidirectional control of anxiety.
        Nature. 2011; 471: 358-362
        • Reagan L.P.
        • Reznikov L.R.
        • Evans A.N.
        • Gabriel C.
        • Mocaer E.
        • Fadel J.R.
        The antidepressant agomelatine inhibits stress-mediated changes in amino acid efflux in the rat hippocampus and amygdala.
        Brain Res. 2012; 1466: 91-98
        • Reznikov L.R.
        • Grillo C.A.
        • Piroli G.G.
        • Pasumarthi R.K.
        • Reagan L.P.
        • Fadel J.
        Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: Differential effects of antidepressant treatment.
        Eur J Neurosci. 2007; 25: 3109-3114
        • Silberman Y.
        • Winder D.G.
        Corticotropin releasing factor and catecholamines enhance glutamatergic neurotransmission in the lateral subdivision of the central amygdala.
        Neuropharmacology. 2013; 70: 316-323
        • Herman M.A.
        • Varodayan F.P.
        • Oleata C.S.
        • Luu G.
        • Kirson D.
        • Heilig M.
        • et al.
        Glutamatergic transmission in the central nucleus of the amygdala is selectively altered in Marchigian Sardinian alcohol-preferring rats: Alcohol and CRF effects.
        Neuropharmacology. 2016; 102: 21-31
        • Skorzewska A.
        • Bidzinski A.
        • Hamed A.
        • Lehner M.
        • Turzynska D.
        • Sobolewska A.
        • et al.
        The effect of CRF and alpha-helical CRF(9–41) on rat fear responses and amino acids release in the central nucleus of the amygdala.
        Neuropharmacology. 2009; 57: 148-156
        • Radley J.
        • Morilak D.
        • Viau V.
        • Campeau S.
        Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders.
        Neurosci Biobehav Rev. 2015; 58: 79-91
        • Smoller J.W.
        The genetics of stress-related disorders: PTSD, depression, and anxiety disorders.
        Neuropsychopharmacology. 2016; 41: 297-319
        • Morena M.
        • Patel S.
        • Bains J.S.
        • Hill M.N.
        Neurobiological interactions between stress and the endocannabinoid system.
        Neuropsychopharmacology. 2016; 41: 80-102
        • Marsicano G.
        • Lutz B.
        Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain.
        Eur J Neurosci. 1999; 11: 4213-4225
        • Kreitzer A.C.
        • Regehr W.G.
        Cerebellar depolarization-induced suppression of inhibition is mediated by endogenous cannabinoids.
        J Neurosci. 2001; 21: RC174
        • Kreitzer A.C.
        • Regehr W.G.
        Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells.
        Neuron. 2001; 29: 717-727
        • Diana M.A.
        • Marty A.
        Endocannabinoid-mediated short-term synaptic plasticity: Depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE).
        Br J Pharmacol. 2004; 142: 9-19
        • Blankman J.L.
        • Cravatt B.F.
        Chemical probes of endocannabinoid metabolism.
        Pharmacol Rev. 2013; 65: 849-871
        • Sugiura T.
        • Kondo S.
        • Sukagawa A.
        • Tonegawa T.
        • Nakane S.
        • Yamashita A.
        • et al.
        N-Arachidonoylethanolamine (anandamide), an endogenous cannabinoid receptor ligand, and related lipid molecules in the nervous tissues.
        J Lipid Mediat Cell Signal. 1996; 14: 51-56
        • Goodfellow C.E.
        • Glass M.
        Anandamide receptor signal transduction.
        Vitam Horm. 2009; 81: 79-110
        • Long J.Z.
        • Nomura D.K.
        • Vann R.E.
        • Walentiny D.M.
        • Booker L.
        • Jin X.
        • et al.
        Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo.
        Proc Natl Acad Sci U S A. 2009; 106: 20270-20275
        • Marrs W.R.
        • Blankman J.L.
        • Horne E.A.
        • Thomazeau A.
        • Lin Y.H.
        • Coy J.
        • et al.
        The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors.
        Nat Neurosci. 2010; 13: 951-957
        • Hariri A.R.
        • Gorka A.
        • Hyde L.W.
        • Kimak M.
        • Halder I.
        • Ducci F.
        • et al.
        Divergent effects of genetic variation in endocannabinoid signaling on human threat- and reward-related brain function.
        Biol Psychiatry. 2009; 66: 9-16
        • Dincheva I.
        • Drysdale A.T.
        • Hartley C.A.
        • Johnson D.C.
        • Jing D.
        • King E.C.
        • et al.
        FAAH genetic variation enhances fronto-amygdala function in mouse and human.
        Nat Commun. 2015; 6: 6395
        • Carey C.E.
        • Agrawal A.
        • Zhang B.
        • Conley E.D.
        • Degenhardt L.
        • Heath A.C.
        • et al.
        Monoacylglycerol lipase (MGLL) polymorphism rs604300 interacts with childhood adversity to predict cannabis dependence symptoms and amygdala habituation: Evidence from an endocannabinoid system-level analysis.
        J Abnorm Psychol. 2015; 124: 860-877
        • Conzelmann A.
        • Reif A.
        • Jacob C.
        • Weyers P.
        • Lesch K.P.
        • Lutz B.
        • et al.
        A polymorphism in the gene of the endocannabinoid-degrading enzyme FAAH (FAAH C385A) is associated with emotional–motivational reactivity.
        Psychopharmacology (Berl). 2012; 224: 573-579
        • Gunduz-Cinar O.
        • MacPherson K.P.
        • Cinar R.
        • Gamble-George J.
        • Sugden K.
        • Williams B.
        • et al.
        Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing, and stress-reactivity.
        Mol Psychiatry. 2013; 18: 813-823
        • Pardini M.
        • Krueger F.
        • Koenigs M.
        • Raymont V.
        • Hodgkinson C.
        • Zoubak S.
        • et al.
        Fatty-acid amide hydrolase polymorphisms and post-traumatic stress disorder after penetrating brain injury.
        Transl Psychiatry. 2012; 2: e75
        • Sipe J.C.
        • Chiang K.
        • Gerber A.L.
        • Beutler E.
        • Cravatt B.F.
        A missense mutation in human fatty acid amide hydrolase associated with problem drug use.
        Proc Natl Acad Sci U S A. 2002; 99: 8394-8399
        • Buhler K.M.
        • Huertas E.
        • Echeverry-Alzate V.
        • Gine E.
        • Molto E.
        • Montoliu L.
        • et al.
        Risky alcohol consumption in young people is associated with the fatty acid amide hydrolase gene polymorphism C385A and affective rating of drug pictures.
        Mol Genet Genomics. 2014; 289: 279-289
        • Gray J.M.
        • Vecchiarelli H.A.
        • Morena M.
        • Lee T.T.
        • Hermanson D.J.
        • Kim A.B.
        • et al.
        Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety.
        J Neurosci. 2015; 35: 3879-3892
        • Hill M.N.
        • Kumar S.A.
        • Filipski S.B.
        • Iverson M.
        • Stuhr K.L.
        • Keith J.M.
        • et al.
        Disruption of fatty acid amide hydrolase activity prevents the effects of chronic stress on anxiety and amygdalar microstructure.
        Mol Psychiatry. 2013; 18: 1125-1135
        • Hansson A.C.
        • Cippitelli A.
        • Sommer W.H.
        • Fedeli A.
        • Bjork K.
        • Soverchia L.
        • et al.
        Variation at the rat Crhr1 locus and sensitivity to relapse into alcohol seeking induced by environmental stress.
        Proc Natl Acad Sci U S A. 2006; 103: 15236-15241
        • Ayanwuyi L.O.
        • Carvajal F.
        • Lerma-Cabrera J.M.
        • Domi E.
        • Bjork K.
        • Ubaldi M.
        • et al.
        Role of a genetic polymorphism in the corticotropin-releasing factor receptor 1 gene in alcohol drinking and seeking behaviors of Marchigian Sardinian alcohol-preferring rats.
        Front Psychiatry. 2013; 4: 23
        • Cippitelli A.
        • Ayanwuyi L.O.
        • Barbier E.
        • Domi E.
        • Lerma-Cabrera J.M.
        • Carvajal F.
        • et al.
        Polymorphism in the corticotropin-releasing factor receptor 1 (CRF1-R) gene plays a role in shaping the high anxious phenotype of Marchigian Sardinian alcohol-preferring (msP) rats.
        Psychopharmacology (Berl). 2015; 232: 1083-1093
        • Lin D.
        • Parsons L.H.
        Anxiogenic-like effect of serotonin(1B) receptor stimulation in the rat elevated plus-maze.
        Pharmacol Biochem Behav. 2002; 71: 581-587
        • Bechtholt A.J.
        • Hill T.E.
        • Lucki I.
        Anxiolytic effect of serotonin depletion in the novelty-induced hypophagia test.
        Psychopharmacology (Berl). 2007; 190: 531-540
        • Bluett R.J.
        • Gamble-George J.C.
        • Hermanson D.J.
        • Hartley N.D.
        • Marnett L.J.
        • Patel S.
        Central anandamide deficiency predicts stress-induced anxiety: Behavioral reversal through endocannabinoid augmentation.
        Transl Psychiatry. 2014; 4: e408
        • Buczynski M.W.
        • Herman M.A.
        • Hsu K.L.
        • Natividad L.A.
        • Irimia C.
        • Polis I.Y.
        • et al.
        Diacylglycerol lipase disinhibits VTA dopamine neurons during chronic nicotine exposure.
        Proc Natl Acad Sci U S A. 2016; 113: 1086-1091
        • Rakers C.
        • Zoerner A.A.
        • Engeli S.
        • Batkai S.
        • Jordan J.
        • Tsikas D.
        Stable isotope liquid chromatography–tandem mass spectrometry assay for fatty acid amide hydrolase activity.
        Anal Biochem. 2012; 421: 699-705
        • Buczynski M.W.
        • Polis I.Y.
        • Parsons L.H.
        The volitional nature of nicotine exposure alters anandamide and oleoylethanolamide levels in the ventral tegmental area.
        Neuropsychopharmacology. 2013; 38: 574-584
        • Herman M.A.
        • Kallupi M.
        • Luu G.
        • Oleata C.S.
        • Heilig M.
        • Koob G.F.
        • et al.
        Enhanced GABAergic transmission in the central nucleus of the amygdala of genetically selected Marchigian Sardinian rats: Alcohol and CRF effects.
        Neuropharmacology. 2013; 67: 337-348
        • Pitkanen A.
        • Amaral D.G.
        Distribution of calbindin-D28k immunoreactivity in the monkey temporal lobe: The amygdaloid complex.
        J Comp Neurol. 1993; 331: 199-224
        • Veinante P.
        • Freund-Mercier M.J.
        Intrinsic and extrinsic connections of the rat central extended amygdala: An in vivo electrophysiological study of the central amygdaloid nucleus.
        Brain Res. 1998; 794: 188-198
        • Ciccocioppo R.
        • Economidou D.
        • Cippitelli A.
        • Cucculelli M.
        • Ubaldi M.
        • Soverchia L.
        • et al.
        Genetically selected Marchigian Sardinian alcohol-preferring (msP) rats: An animal model to study the neurobiology of alcoholism.
        Addict Biol. 2006; 11: 339-355
        • Gray J.M.
        • Wilson C.D.
        • Lee T.T.
        • Pittman Q.J.
        • Deussing J.M.
        • Hillard C.J.
        • et al.
        Sustained glucocorticoid exposure recruits cortico-limbic CRH signaling to modulate endocannabinoid function.
        Psychoneuroendocrinology. 2016; 66: 151-158
        • Morena M.
        • Leitl K.D.
        • Vecchiarelli H.A.
        • Gray J.M.
        • Campolongo P.
        • Hill M.N.
        Emotional arousal state influences the ability of amygdalar endocannabinoid signaling to modulate anxiety.
        Neuropharmacology. 2016; 111: 59-69
        • Egertova M.
        • Cravatt B.F.
        • Elphick M.R.
        Comparative analysis of fatty acid amide hydrolase and CB1 cannabinoid receptor expression in the mouse brain: Evidence of a widespread role for fatty acid amide hydrolase in regulation of endocannabinoid signaling.
        Neuroscience. 2003; 119: 481-496
        • Egertova M.
        • Giang D.K.
        • Cravatt B.F.
        • Elphick M.R.
        A new perspective on cannabinoid signalling: Complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain.
        Proc Biol Sci. 1998; 265: 2081-2085
        • Gulyas A.I.
        • Cravatt B.F.
        • Bracey M.H.
        • Dinh T.P.
        • Piomelli D.
        • Boscia F.
        • et al.
        Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala.
        Eur J Neurosci. 2004; 20: 441-458
        • Tsou K.
        • Nogueron M.I.
        • Muthian S.
        • Sanudo-Pena M.C.
        • Hillard C.J.
        • Deutsch D.G.
        • et al.
        Fatty acid amide hydrolase is located preferentially in large neurons in the rat central nervous system as revealed by immunohistochemistry.
        Neurosci Lett. 1998; 254: 137-140
        • Ramikie T.S.
        • Nyilas R.
        • Bluett R.J.
        • Gamble-George J.C.
        • Hartley N.D.
        • Mackie K.
        • et al.
        Multiple mechanistically distinct modes of endocannabinoid mobilization at central amygdala glutamatergic synapses.
        Neuron. 2014; 81: 1111-1125
        • John C.S.
        • Sypek E.I.
        • Carlezon W.A.
        • Cohen B.M.
        • Ongur D.
        • Bechtholt A.J.
        Blockade of the GLT-1 transporter in the central nucleus of the amygdala induces both anxiety and depressive-like symptoms.
        Neuropsychopharmacology. 2015; 40: 1700-1708
        • Haller J.
        • Barna I.
        • Barsvari B.
        • Gyimesi Pelczer K.
        • Yasar S.
        • Panlilio L.V.
        • et al.
        Interactions between environmental aversiveness and the anxiolytic effects of enhanced cannabinoid signaling by FAAH inhibition in rats.
        Psychopharmacology (Berl). 2009; 204: 607-616
        • Haller J.
        • Goldberg S.R.
        • Pelczer K.G.
        • Aliczki M.
        • Panlilio L.V.
        The effects of anandamide signaling enhanced by the FAAH inhibitor URB597 on coping styles in rats.
        Psychopharmacology (Berl). 2013; 230: 353-362
        • Ciccocioppo R.
        • Panocka I.
        • Froldi R.
        • Colombo G.
        • Gessa G.L.
        • Massi M.
        Antidepressant-like effect of ethanol revealed in the forced swimming test in Sardinian alcohol-preferring rats.
        Psychopharmacology (Berl). 1999; 144: 151-157
        • Haller J.
        • Bakos N.
        • Szirmay M.
        • Ledent C.
        • Freund T.F.
        The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety.
        Eur J Neurosci. 2002; 16: 1395-1398
        • Haller J.
        • Matyas F.
        • Soproni K.
        • Varga B.
        • Barsy B.
        • Nemeth B.
        • et al.
        Correlated species differences in the effects of cannabinoid ligands on anxiety and on GABAergic and glutamatergic synaptic transmission.
        Eur J Neurosci. 2007; 25: 2445-2456
        • Arevalo C.
        • de Miguel R.
        • Hernandez-Tristan R.
        Cannabinoid effects on anxiety-related behaviours and hypothalamic neurotransmitters.
        Pharmacol Biochem Behav. 2001; 70: 123-131
        • Moreira F.A.
        • Crippa J.A.
        The psychiatric side-effects of rimonabant.
        Rev Bras Psiquiatr. 2009; 31: 145-153
        • Haller J.
        • Varga B.
        • Ledent C.
        • Barna I.
        • Freund T.F.
        Context-dependent effects of CB1 cannabinoid gene disruption on anxiety-like and social behaviour in mice.
        Eur J Neurosci. 2004; 19: 1906-1912
        • Rubino T.
        • Guidali C.
        • Vigano D.
        • Realini N.
        • Valenti M.
        • Massi P.
        • et al.
        CB1 receptor stimulation in specific brain areas differently modulate anxiety-related behaviour.
        Neuropharmacology. 2008; 54: 151-160
        • Patel S.
        • Hillard C.J.
        Pharmacological evaluation of cannabinoid receptor ligands in a mouse model of anxiety: Further evidence for an anxiolytic role for endogenous cannabinoid signaling.
        J Pharmacol Exp Ther. 2006; 318: 304-311
        • Moreira F.A.
        • Aguiar D.C.
        • Terzian A.L.
        • Guimaraes F.S.
        • Wotjak C.T.
        Cannabinoid type 1 receptors and transient receptor potential vanilloid type 1 channels in fear and anxiety—two sides of one coin?.
        Neuroscience. 2012; 204: 186-192
        • Lomazzo E.
        • Bindila L.
        • Remmers F.
        • Lerner R.
        • Schwitter C.
        • Hoheisel U.
        • et al.
        Therapeutic potential of inhibitors of endocannabinoid degradation for the treatment of stress-related hyperalgesia in an animal model of chronic pain.
        Neuropsychopharmacology. 2015; 40: 488-501
        • Rossi S.
        • De Chiara V.
        • Musella A.
        • Sacchetti L.
        • Cantarella C.
        • Castelli M.
        • et al.
        Preservation of striatal cannabinoid CB1 receptor function correlates with the antianxiety effects of fatty acid amide hydrolase inhibition.
        Mol Pharmacol. 2010; 78: 260-268
        • Rey A.A.
        • Purrio M.
        • Viveros M.P.
        • Lutz B.
        Biphasic effects of cannabinoids in anxiety responses: CB1 and GABAB receptors in the balance of GABAergic and glutamatergic neurotransmission.
        Neuropsychopharmacology. 2012; 37: 2624-2634
        • Demers C.H.
        • Drabant Conley E.
        • Bogdan R.
        • Hariri A.R.
        Interactions between anandamide and corticotropin-releasing factor signaling modulate human amygdala function and risk for anxiety disorders: An imaging genetics strategy for modeling molecular interactions.
        Biol Psychiatry. 2016; 80: 356-362
        • Lazary J.
        • Eszlari N.
        • Juhasz G.
        • Bagdy G.
        Genetically reduced FAAH activity may be a risk for the development of anxiety and depression in persons with repetitive childhood trauma.
        Eur Neuropsychopharmacol. 2016; 26: 1020-1028
        • Grammatopoulos D.K.
        Insights into mechanisms of corticotropin-releasing hormone receptor signal transduction.
        Br J Pharmacol. 2012; 166: 85-97