Advertisement

Adaptive and Behavioral Changes in Kynurenine 3-Monooxygenase Knockout Mice: Relevance to Psychotic Disorders

Published:December 16, 2016DOI:https://doi.org/10.1016/j.biopsych.2016.12.011

      Abstract

      Background

      Kynurenine 3-monooxygenase converts kynurenine to 3-hydroxykynurenine, and its inhibition shunts the kynurenine pathway—which is implicated as dysfunctional in various psychiatric disorders—toward enhanced synthesis of kynurenic acid, an antagonist of both α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors. Possibly as a result of reduced kynurenine 3-monooxygenase activity, elevated central nervous system levels of kynurenic acid have been found in patients with psychotic disorders, including schizophrenia.

      Methods

      In the present study, we investigated adaptive—and possibly regulatory—changes in mice with a targeted deletion of Kmo (Kmo–/–) and characterized the kynurenine 3-monooxygenase–deficient mice using six behavioral assays relevant for the study of schizophrenia.

      Results

      Genome-wide differential gene expression analyses in the cerebral cortex and cerebellum of these mice identified a network of schizophrenia- and psychosis-related genes, with more pronounced alterations in cerebellar tissue. Kynurenic acid levels were also increased in these brain regions in Kmo–/– mice, with significantly higher levels in the cerebellum than in the cerebrum. Kmo–/– mice exhibited impairments in contextual memory and spent less time than did controls interacting with an unfamiliar mouse in a social interaction paradigm. The mutant animals displayed increased anxiety-like behavior in the elevated plus maze and in a light/dark box. After a D-amphetamine challenge (5 mg/kg, intraperitoneal), Kmo–/– mice showed potentiated horizontal activity in the open field paradigm.

      Conclusions

      Taken together, these results demonstrate that the elimination of Kmo in mice is associated with multiple gene and functional alterations that appear to duplicate aspects of the psychopathology of several neuropsychiatric disorders.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Colin-Gonzalez A.L.
        • Maldonado P.D.
        • Santamariá A.
        3-Hydroxykynurenine: An intriguing molecule exerting dual actions in the central nervous system.
        Neurotoxicology. 2013; 34: 189-204
        • Parrott J.M.
        • O׳Connor J.C.
        Kynurenine 3-monooxygenase: An influential mediator of neuropathology.
        Front Psychiatry. 2015; 6: 116
        • Lavebratt C.
        • Olsson S.
        • Backlund L.
        • Frisen L.
        • Sellgren C.
        • Priebe L.
        • et al.
        The KMO allele encoding Arg452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression.
        Mol Psychiatry. 2014; 19: 334-341
        • Sathyasaikumar K.V.
        • Stachowski E.K.
        • Wonodi I.
        • Roberts R.C.
        • Rassoulpour A.
        • McMahon R.P.
        • et al.
        Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia.
        Schizophr Bull. 2011; 37: 1147-1156
        • Wonodi I.
        • Schwarcz R.
        Cortical kynurenine pathway metabolism: A novel target for cognitive enhancement in schizophrenia.
        Schizophr Bull. 2010; 36: 211-218
        • Carpenter Jr., W.T.
        • Buchanan R.W.
        Schizophrenia.
        N Engl J Med. 1994; 330: 681-690
        • Wonodi I.
        • Stine O.C.
        • Sathyasaikumar K.V.
        • Roberts R.C.
        • Mitchell B.D.
        • Hong L.E.
        • et al.
        Downregulated kynurenine 3-monooxygenase gene expression and enzyme activity in schizophrenia and genetic association with schizophrenia endophenotypes.
        Arch Gen Psychiatry. 2011; 68: 665-674
        • Schwarcz R.
        • Rassoulpour A.
        • Wu H.Q.
        • Medoff D.
        • Tamminga C.A.
        • Roberts R.C.
        Increased cortical kynurenate content in schizophrenia.
        Biol Psychiatry. 2001; 50: 521-530
        • Aoyama N.
        • Takahashi N.
        • Saito S.
        • Maeno N.
        • Ishihara R.
        • Ji X.
        • et al.
        Association study between kynurenine 3-monooxygenase gene and schizophrenia in the Japanese population.
        Genes Brain Behav. 2006; 5: 364-368
        • Erhardt S.
        • Blennow K.
        • Nordin C.
        • Skogh E.
        • Lindstrom L.H.
        • Engberg G.
        Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia.
        Neurosci Lett. 2001; 313: 96-98
        • Linderholm K.R.
        • Skogh E.
        • Olsson S.K.
        • Dahl M.L.
        • Holtze M.
        • Engberg G.
        • et al.
        Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia.
        Schizophr Bull. 2012; 38: 426-432
        • Miller C.L.
        • Llenos I.C.
        • Dulay J.R.
        • Weis S.
        Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder.
        Brain Res. 2006; 1073–1074: 25-37
        • Nilsson L.K.
        • Linderholm K.R.
        • Engberg G.
        • Paulson L.
        • Blennow K.
        • Lindstrom L.H.
        • et al.
        Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia.
        Schizophr Res. 2005; 80: 315-322
        • Olsson S.K.
        • Samuelsson M.
        • Saetre P.
        • Lindstrom L.
        • Jonsson E.G.
        • Nordin C.
        • et al.
        Elevated levels of kynurenic acid in the cerebrospinal fluid of patients with bipolar disorder.
        J Psychiatry Neurosci. 2010; 35: 195-199
        • Sellgren C.M.
        • Kegel M.E.
        • Bergen S.E.
        • Ekman C.J.
        • Olsson S.
        • Larsson M.
        • et al.
        A genome-wide association study of kynurenic acid in cerebrospinal fluid: Implications for psychosis and cognitive impairment in bipolar disorder.
        Mol Psychiatry. 2015; 21: 1342-1350
        • Carpenedo R.
        • Chiarugi A.
        • Russi P.
        • Lombardi G.
        • Carlà V.
        • Pellicciari R.
        • et al.
        Inhibitors of kynurenine hydroxylase and kynureninase increase cerebral formation of kynurenate and have sedative and anticonvulsant activities.
        Neuroscience. 1994; 61: 237-243
        • Speciale C.
        • Wu H.Q.
        • Cini M.
        • Marconi M.
        • Varasi M.
        • Schwarcz R.
        (R,S)-3,4-dichlorobenzoylalanine (FCE 28833A) causes a large and persistent increase in brain kynurenic acid levels in rats.
        Eur J Pharmacol. 1996; 315: 263-267
        • Zwilling D.
        • Huang S.Y.
        • Sathyasaikumar K.V.
        • Notarangelo F.M.
        • Guidetti P.
        • Wu H.Q.
        • et al.
        Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration.
        Cell. 2011; 145: 863-874
        • Giorgini F.
        • Huang S.Y.
        • Sathyasaikumar K.V.
        • Notarangelo F.M.
        • Thomas M.A.
        • Tararina M.
        • et al.
        Targeted deletion of kynurenine 3-monooxygenase in mice: A new tool for studying kynurenine pathway metabolism in periphery and brain.
        J Biol Chem. 2013; 288: 36554-36566
        • Hilmas C.
        • Pereira E.F.
        • Alkondon M.
        • Rassoulpour A.
        • Schwarcz R.
        • Albuquerque E.X.
        The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications.
        J Neurosci. 2001; 21: 7463-7473
        • Birch P.J.
        • Grossman C.J.
        • Hayes A.G.
        Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor.
        Eur J Pharmacol. 1988; 154: 85-87
        • Ganong A.H.
        • Cotman C.W.
        Kynurenic acid and quinolinic acid act at N-methyl-D-aspartate receptors in the rat hippocampus.
        J Pharmacol Exp Ther. 1986; 236: 293-299
        • Kessler M.
        • Terramani T.
        • Lynch G.
        • Baudry M.
        A glycine site associated with N-methyl-D-aspartic acid receptors: Characterization and identification of a new class of antagonists.
        J Neurochem. 1989; 52: 1319-1328
        • Lin H.
        • Hsu F.C.
        • Baumann B.H.
        • Coulter D.A.
        • Lynch D.R.
        Cortical synaptic NMDA receptor deficits in alpha7 nicotinic acetylcholine receptor gene deletion models: implications for neuropsychiatric diseases.
        Neurobiol Dis. 2014; 63: 129-140
        • Koola M.M.
        • Buchanan R.W.
        • Pillai A.
        • Aitchison K.J.
        • Weinberger D.R.
        • Aaronson S.T.
        • et al.
        Potential role of the combination of galantamine and memantine to improve cognition in schizophrenia.
        Schizophr Res. 2014; 157: 84-89
        • Moroni F.
        • Cozzi A.
        • Sili M.
        • Mannaioni G.
        Kynurenic acid: A metabolite with multiple actions and multiple targets in brain and periphery.
        J Neural Transm (Vienna). 2012; 119: 133-139
        • Stone T.W.
        • Stoy N.
        • Darlington L.G.
        An expanding range of targets for kynurenine metabolites of tryptophan.
        Trends Pharmacol Sci. 2013; 34: 136-143
        • Erhardt S.
        • Schwieler L.
        • Emanuelsson C.
        • Geyer M.
        Endogenous kynurenic acid disrupts prepulse inhibition.
        Biol Psychiatry. 2004; 56: 255-260
        • Shepard P.D.
        • Joy B.
        • Clerkin L.
        • Schwarcz R.
        Micromolar brain levels of kynurenic acid are associated with a disruption of auditory sensory gating in the rat.
        Neuropsychopharmacology. 2003; 28: 1454-1462
        • Chess A.C.
        • Simoni M.K.
        • Alling T.E.
        • Bucci D.J.
        Elevations of endogenous kynurenic acid produce spatial working memory deficits.
        Schizophr Bull. 2007; 33: 797-804
        • Chess A.C.
        • Landers A.M.
        • Bucci D.J.
        L-kynurenine treatment alters contextual fear conditioning and context discrimination but not cue-specific fear conditioning.
        Behav Brain Res. 2009; 201: 325-331
        • Pocivavsek A.
        • Wu H.Q.
        • Potter M.C.
        • Elmer G.I.
        • Pellicciari R.
        • Schwarcz R.
        Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory.
        Neuropsychopharmacology. 2011; 36: 2357-2367
        • Alexander K.S.
        • Wu H.Q.
        • Schwarcz R.
        • Bruno J.P.
        Acute elevations of brain kynurenic acid impair cognitive flexibility: Normalization by the alpha7 positive modulator galantamine.
        Psychopharmacology (Berl). 2012; 220: 627-637
        • Smalley J.L.
        • Breda C.
        • Mason R.P.
        • Kooner G.
        • Luthi-Carter R.
        • Gant T.W.
        • et al.
        Connectivity mapping uncovers small molecules that modulate neurodegeneration in Huntington׳s disease models.
        J Mol Med (Berl). 2016; 94: 235-245
        • Varadarajan S.
        • Bampton E.T.
        • Smalley J.L.
        • Tanaka K.
        • Caves R.E.
        • Butterworth M.
        • et al.
        A novel cellular stress response characterised by a rapid reorganisation of membranes of the endoplasmic reticulum.
        Cell Death Differ. 2012; 19: 1896-1907
        • Szklarczyk D.
        • Franceschini A.
        • Wyder S.
        • Forslund K.
        • Heller D.
        • Huerta-Cepas J.
        • et al.
        STRING v10: Protein-protein interaction networks, integrated over the tree of life.
        Nucleic Acids Res. 2015; 43: D447-D452
        • Stefansson H.
        • Ophoff R.A.
        • Steinberg S.
        • Andreassen O.A.
        • Cichon S.
        • Rujescu D.
        • et al.
        Common variants conferring risk of schizophrenia.
        Nature. 2009; 460: 744-747
        • Pak J.H.
        • Huang F.L.
        • Li J.
        • Balschun D.
        • Reymann K.G.
        • Chiang C.
        • et al.
        Involvement of neurogranin in the modulation of calcium/calmodulin-dependent protein kinase II, synaptic plasticity, and spatial learning: A study with knockout mice.
        Proc Natl Acad Sci U S A. 2000; 97: 11232-11237
        • Yamada K.
        • Gerber D.J.
        • Iwayama Y.
        • Ohnishi T.
        • Ohba H.
        • Toyota T.
        • et al.
        Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia.
        Proc Natl Acad Sci U S A. 2007; 104: 2815-2820
        • Poirier R.
        • Cheval H.
        • Mailhes C.
        • Garel S.
        • Charnay P.
        • Davis S.
        • et al.
        Distinct functions of egr gene family members in cognitive processes.
        Front Neurosci. 2008; 2: 47-55
        • Murakami G.
        • Hunter R.G.
        • Fontaine C.
        • Ribeiro A.
        • Pfaff D.
        Relationships among estrogen receptor, oxytocin and vasopressin gene expression and social interaction in male mice.
        Eur J Neurosci. 2011; 34: 469-477
        • Haram M.
        • Tesli M.
        • Bettella F.
        • Djurovic S.
        • Andreassen O.A.
        • Melle I.
        Association between genetic variation in the oxytocin receptor gene and emotional withdrawal, but not between oxytocin pathway genes and diagnosis in psychotic disorders.
        Front Hum Neurosci. 2015; 9: 9
        • Jentsch J.D.
        • Arguello P.A.
        • Anzivino L.A.
        Null mutation of the arginine-vasopressin gene in rats slows attentional engagement and facilitates response accuracy in a lateralized reaction time task.
        Neuropsychopharmacology. 2003; 28: 1597-1605
        • Li D.
        • He L.
        G72/G30 genes and schizophrenia: A systematic meta-analysis of association studies.
        Genetics. 2007; 175: 917-922
        • Uwai Y.
        • Hara H.
        • Iwamoto K.
        Transport of kynurenic acid by rat organic anion transporters rOAT1 and rOAT3: Species difference between human and rat in OAT1.
        Int J Tryptophan Res. 2013; 6: 1-6
        • Oxenkrug G.
        • van der Hart M.
        • Roeser J.
        • Summergrad P.
        Anthranilic acid: A potential biomarker and treatment target for schizophrenia.
        Ann Psychiatry Ment Health. 2016; 4
        • Miller C.L.
        • Llenos I.C.
        • Cwik M.
        • Walkup J.
        • Weis S.
        Alterations in kynurenine precursor and product levels in schizophrenia and bipolar disorder.
        Neurochem Int. 2008; 52: 1297-1303
        • Hiramatsu R.
        • Hara T.
        • Akimoto H.
        • Takikawa O.
        • Kawabe T.
        • Isobe K.
        • et al.
        Cinnabarinic acid generated from 3-hydroxyanthranilic acid strongly induces apoptosis in thymocytes through the generation of reactive oxygen species and the induction of caspase.
        J Cell Biochem. 2008; 103: 42-53
        • Pocivavsek A.
        • Thomas M.A.
        • Elmer G.I.
        • Bruno J.P.
        • Schwarcz R.
        Continuous kynurenine administration during the prenatal period, but not during adolescence, causes learning and memory deficits in adult rats.
        Psychopharmacology (Berl). 2014; 231: 2799-2809
        • Pocivavsek A.
        • Wu H.Q.
        • Elmer G.I.
        • Bruno J.P.
        • Schwarcz R.
        Pre- and postnatal exposure to kynurenine causes cognitive deficits in adulthood.
        Eur J Neurosci. 2012; 35: 1605-1612
        • Albuquerque E.X.
        • Schwarcz R.
        Kynurenic acid as an antagonist of alpha7 nicotinic acetylcholine receptors in the brain: Facts and challenges.
        Biochem Pharmacol. 2013; 85: 1027-1032
        • Yang M.
        • Silverman J.L.
        • Crawley J.N.
        Automated three-chambered social approach task for mice.
        Curr Protoc Neurosci. 2011; (Chapter 8:Unit 8.26)
        • Iaccarino H.F.
        • Suckow R.F.
        • Xie S.
        • Bucci D.J.
        The effect of transient increases in kynurenic acid and quinolinic acid levels early in life on behavior in adulthood: Implications for schizophrenia.
        Schizophr Res. 2013; 150: 392-397
        • Trecartin K.V.
        • Bucci D.J.
        Administration of kynurenine during adolescence, but not during adulthood, impairs social behavior in rats.
        Schizophr Res. 2011; 133: 156-158
        • McFarlane H.G.
        • Kusek G.K.
        • Yang M.
        • Phoenix J.L.
        • Bolivar V.J.
        • Crawley J.N.
        Autism-like behavioral phenotypes in BTBR T+tf/J mice.
        Genes Brain Behav. 2008; 7: 152-163
        • Olsson S.K.
        • Larsson M.K.
        • Erhardt S.
        Subchronic elevation of brain kynurenic acid augments amphetamine-induced locomotor response in mice.
        J Neural Transm (Vienna). 2012; 119: 155-163
        • Salazar A.
        • Gonzalez-Rivera B.L.
        • Redus L.
        • Parrott J.M.
        • O׳Connor J.C.
        Indoleamine 2,3-dioxygenase mediates anhedonia and anxiety-like behaviors caused by peripheral lipopolysaccharide immune challenge.
        Horm Behav. 2012; 62: 202-209
        • Vécsei L.
        • Beal M.F.
        Influence of kynurenine treatment on open-field activity, elevated plus maze, avoidance behaviors and seizures in rats.
        Pharmacol Biochem Behav. 1990; 37: 71-76
        • Goldstein M.
        • Deutch A.Y.
        Dopaminergic mechanisms in the pathogenesis of schizophrenia.
        FASEB J. 1992; 6: 2413-2421
        • Geyer M.A.
        • Krebs-Thomson K.
        • Braff D.L.
        • Swerdlow N.R.
        Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: A decade in review.
        Psychopharmacology (Berl). 2001; 156: 117-154
        • Nilsson L.K.
        • Linderholm K.R.
        • Erhardt S.
        Subchronic treatment with kynurenine and probenecid: effects on prepulse inhibition and firing of midbrain dopamine neurons.
        J Neural Transm (Vienna). 2006; 113: 557-571
        • Hasenkamp W.
        • Kelley M.
        • Egan G.
        • Green A.
        • Wilcox L.
        • Boshoven W.
        • et al.
        Lack of relationship between acoustic startle and cognitive variables in schizophrenia and control subjects.
        Psychiatry Res. 2011; 187: 324-328
        • Erhardt S.
        • Schwieler L.
        • Imbeault S.
        • Engberg G.
        The kynurenine pathway in schizophrenia and bipolar disorder.
        Neuropharmacology. 2017; 112: 297-306
        • Pocivavsek A.
        • Notarangelo F.M.
        • Wu H.Q.
        • Bruno J.P.
        • Schwarcz R.
        Astrocytes as pharmacological targets in the treatment of schizophrenia: focus on kynurenic acid.
        in: Pletnikov M.V. Waddington J.L. Modeling the Psychophathological Dimensions of Schizophrenia - From Molecules to Behavior. Elsevier, New York2016: 423-443
        • Volk D.W.
        • Lewis D.A.
        Prefrontal cortical circuits in schizophrenia.
        Curr Top Behav Neurosci. 2010; 4: 485-508
        • Baran H.
        • Schwarcz R.
        Regional differences in the ontogenetic pattern of kynurenine aminotransferase in the rat brain.
        Brain Res Dev Brain Res. 1993; 74: 283-286
        • Blanco Ayala T.
        • Lugo Huítron R.
        • Carmona Aparicio L.
        • Ramirez Ortega D.
        • Gonzalez Esquivel D.
        • Pedraza Chaverri J.
        • et al.
        Alternative kynurenic acid synthesis routes studied in the rat cerebellum.
        Front Cell Neurosci. 2015; 9: 178
        • Kanai M.
        • Nakamura T.
        • Funakoshi H.
        Identification and characterization of novel variants of the tryptophan 2,3-dioxygenase gene: Differential regulation in the mouse nervous system during development.
        Neurosci Res. 2009; 64: 111-117
        • Notarangelo F.M.
        • Pocivavsek A.
        Elevated kynurenine pathway metabolism during neurodevelopment: Implications for brain and behavior.
        Neuropharmacology. 2017; 112: 275-285
        • Wu H.Q.
        • Schwarcz R.
        Modulation of glutamate and dopamine levels in the prefrontal cortex by intra-cerebellar kynurenic acid infusion in the rat.
        Soc Neurosci Abstr. 2013; 38: 231.03
        • Andreasen N.C.
        • Pierson R.
        The role of the cerebellum in schizophrenia.
        Biol Psychiatry. 2008; 64: 81-88
        • Hensch T.K.
        Critical period mechanisms in developing visual cortex.
        Curr Top Dev Biol. 2005; 69: 215-237
        • Huntley G.W.
        • Vickers J.C.
        • Morrison J.H.
        Cellular and synaptic localization of NMDA and non-NMDA receptor subunits in neocortex: Organizational features related to cortical circuitry, function and disease.
        Trends Neurosci. 1994; 17: 536-543
        • Lozada A.F.
        • Wang X.
        • Gounko N.V.
        • Massey K.A.
        • Duan J.
        • Liu Z.
        • et al.
        Glutamatergic synapse formation is promoted by alpha7-containing nicotinic acetylcholine receptors.
        J Neurosci. 2012; 32: 7651-7661
        • Russo P.
        • Taly A.
        α7-Nicotinic acetylcholine receptors: An old actor for new different roles.
        Curr Drug Targets. 2012; 13: 574-578
        • Ultanir S.K.
        • Kim J.E.
        • Hall B.J.
        • Deerinck T.
        • Ellisman M.
        • Ghosh A.
        Regulation of spine morphology and spine density by NMDA receptor signaling in vivo.
        Proc Natl Acad Sci U S A. 2007; 104: 19553-19558
        • Beggiato S.
        • Sathyasaikumar K.V.
        • Notarangelo F.M.
        • Giorgini F.
        • Muchowski J.M.
        • Schwarcz R.
        Prenatal kynurenine treatment in mice: Effects on placental and fetal brain kynurenines.
        Soc Neurosci Abstr. 2014; 39: 51.05
        • Pocivavsek A.
        • Thomas M.A.
        • Giorgini F.
        • Schwarcz R.
        Targeted deletion of both kynurenine aminotransferase II and kynurenine 3-monooxygenase in mice: Implications for studying kynurenine pathway metabolism.
        Soc Neurosci Abstr. 2016; 41: 364.03
        • Wu H.Q.
        • Okuyama M.
        • Kajii Y.
        • Pocivavsek A.
        • Bruno J.P.
        • Schwarcz R.
        Targeting kynurenine aminotransferase II in psychiatric diseases: Promising effects of an orally active enzyme inhibitor.
        Schizophr Bull. 2014; 40: S152-S158
        • Kohl P.
        • Crampin E.J.
        • Quinn T.A.
        • Noble D.
        Systems biology: An approach.
        Clin Pharmacol Ther. 2010; 88: 25-33
        • Erhardt S.
        • Olsson S.K.
        • Engberg G.
        Pharmacological manipulation of kynurenic acid: potential in the treatment of psychiatric disorders.
        CNS Drugs. 2009; 23: 91-101