Learning From One’s Mistakes: A Dual Role for the Rostromedial Tegmental Nucleus in the Encoding and Expression of Punished Reward Seeking



      Psychiatric disorders such as addiction and mania are marked by persistent reward seeking despite highly negative or aversive outcomes, but the neural mechanisms underlying this aberrant decision making are unknown. The recently identified rostromedial tegmental nucleus (RMTg) encodes a wide variety of aversive stimuli and sends robust inhibitory projections to midbrain dopamine neurons, leading to the hypothesis that the RMTg provides a brake to reward signaling in response to aversive costs.


      To test the role of the RMTg in punished reward seeking, adult male Sprague Dawley rats were tested in several cost-benefit decision tasks after excitotoxic lesions of the RMTg or temporally specific optogenetic inhibition of RMTg efferents in the ventral tegmental area.


      RMTg lesions drastically impaired the ability of foot shock to suppress operant responding for food. Optogenetic inhibition showed that this resistance to punishment was due in part to RMTg activity at the precise moment of shock delivery and was mediated by projections to the ventral tegmental area, which is consistent with an aversive “teaching signal” role for the RMTg during encoding of the aversive event. We observed a similar resistance to punishment when the RMTg was selectively inhibited immediately prior to the operant lever press, which is consistent with a second distinct role for the RMTg during action selection. These effects were not attributable to RMTg effects on learning rate, locomotion, shock sensitivity, or perseveration.


      The RMTg has two strong and dissociable roles during both encoding and recall of aversive consequences of behavior.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        5th ed. American Psychiatric Publishing, Arlington, VA2013
        • Stopper C.M.
        • Green E.B.
        • Floresco S.B.
        Selective involvement by the medial orbitofrontal cortex in biasing risky, but not impulsive, choice.
        Cereb Cortex. 2014; 24: 154-162
        • St Onge J.R.
        • Stopper C.M.
        • Zahm D.S.
        • Floresco S.B.
        Separate prefrontal-subcortical circuits mediate different components of risk-based decision making.
        J Neurosci. 2012; 32: 2886-2899
        • St Onge J.R.
        • Floresco S.B.
        Prefrontal cortical contribution to risk-based decision making.
        Cereb Cortex. 2010; 20: 1816-1828
        • Rudebeck P.H.
        • Walton M.E.
        • Smyth A.N.
        • Bannerman D.M.
        • Rushworth M.F.
        Separate neural pathways process different decision costs.
        Nat Neurosci. 2006; 9: 1161-1168
        • Churchwell J.C.
        • Morris A.M.
        • Heurtelou N.M.
        • Kesner R.P.
        Interactions between the prefrontal cortex and amygdala during delay discounting and reversal.
        Behav Neurosci. 2009; 123: 1185-1196
        • Bromberg-Martin E.S.
        • Matsumoto M.
        • Hikosaka O.
        Dopamine in motivational control: Rewarding, aversive, and alerting.
        Neuron. 2010; 68: 815-834
        • Stopper C.M.
        • Floresco S.B.
        Dopaminergic circuitry and risk/reward decision making: Implications for schizophrenia.
        Schizophr Bull. 2015; 41: 9-14
        • Schultz W.
        Multiple dopamine functions at different time courses.
        Annu Rev Neurosci. 2007; 30: 259-288
        • Jhou T.C.
        • Fields H.L.
        • Baxter M.G.
        • Saper C.B.
        • Holland P.C.
        The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses.
        Neuron. 2009; 61: 786-800
        • Jhou T.C.
        • Geisler S.
        • Marinelli M.
        • Degarmo B.A.
        • Zahm D.S.
        The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta.
        J Comp Neurol. 2009; 513: 566-596
        • Bourdy R.
        • Sanchez-Catalan M.J.
        • Kaufling J.
        • Balcita-Pedicino J.J.
        • Freund-Mercier M.J.
        • Veinante P.
        • et al.
        Control of the nigrostriatal dopamine neuron activity and motor function by the tail of the ventral tegmental area.
        Neuropsychopharmacology. 2014; 39: 2788-2798
        • Lecca S.
        • Melis M.
        • Luchicchi A.
        • Muntoni A.L.
        • Pistis M.
        Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse.
        Neuropsychopharmacology. 2012; 37: 1164-1176
        • Kaufling J.
        • Veinante P.
        • Pawlowski S.A.
        • Freund-Mercier M.J.
        • Barrot M.
        Afferents to the GABAergic tail of the ventral tegmental area in the rat.
        J Comp Neurol. 2009; 513: 597-621
        • Balcita-Pedicino J.J.
        • Omelchenko N.
        • Bell R.
        • Sesack S.R.
        The inhibitory influence of the lateral habenula on midbrain dopamine cells: Ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus.
        J Comp Neurol. 2011; 519: 1143-1164
        • Ungless M.A.
        • Magill P.J.
        • Bolam J.P.
        Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli.
        Science. 2004; 303: 2040-2042
        • Schultz W.
        Predictive reward signal of dopamine neurons.
        J Neurophysiol. 1998; 80: 1-27
        • Geisler S.
        • Marinelli M.
        • Degarmo B.
        • Becker M.L.
        • Freiman A.J.
        • Beales M.
        • et al.
        Prominent activation of brainstem and pallidal afferents of the ventral tegmental area by cocaine.
        Neuropsychopharmacology. 2008; 33: 2688-2700
        • Fowler C.D.
        • Lu Q.
        • Johnson P.M.
        • Marks M.J.
        • Kenny P.J.
        Habenular α5 nicotinic receptor subunit signalling controls nicotine intake.
        Nature. 2011; 471: 597-601
        • Hsu Y.W.
        • Wang S.D.
        • Wang S.
        • Morton G.
        • Zariwala H.A.
        • de la Iglesia H.O.
        • Turner E.E.
        Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement.
        J Neurosci. 2014; 34: 11366-11384
        • Richardson N.R.
        • Roberts D.C.
        Progressive ratio schedules in drug self-administration studies in rats: A method to evaluate reinforcing efficacy.
        J Neurosci Methods. 1996; 66: 1-11
        • McClure S.M.
        • Daw N.D.
        • Montague P.R.
        A computational substrate for incentive salience.
        Trends Neurosci. 2003; 26: 423-428
        • Robinson T.E.
        • Berridge K.C.
        The neural basis of drug craving: An incentive-sensitization theory of addiction.
        Brain Res Brain Res Rev. 1993; 18: 247-291
        • Lavezzi H.N.
        • Zahm D.S.
        The mesopontine rostromedial tegmental nucleus: An integrative modulator of the reward system.
        Basal Ganglia. 2011; 1: 191-200
        • Goldstein R.Z.
        • Volkow N.D.
        Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications.
        Nat Rev Neurosci. 2011; 12: 652-669
        • Tsai H.C.
        • Zhang F.
        • Adamantidis A.
        • Stuber G.D.
        • Bonci A.
        • de Lecea L.
        • Deisseroth K.
        Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning.
        Science. 2009; 324: 1080-1084
        • Jhou T.C.
        • Good C.H.
        • Rowley C.S.
        • Xu S.P.
        • Wang H.
        • Burnham N.W.
        • et al.
        Cocaine drives aversive conditioning via delayed activation of dopamine-responsive habenular and midbrain pathways.
        J Neurosci. 2013; 33: 7501-7512
        • Cohen M.X.
        • Frank M.J.
        Neurocomputational models of basal ganglia function in learning, memory and choice.
        Behav Brain Res. 2009; 199: 141-156
        • Wickens J.R.
        • Reynolds J.N.
        • Hyland B.I.
        Neural mechanisms of reward-related motor learning.
        Curr Opin Neurobiol. 2003; 13: 685-690
        • Adamantidis A.R.
        • Tsai H.C.
        • Boutrel B.
        • Zhang F.
        • Stuber G.D.
        • Budygin E.A.
        • et al.
        Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior.
        J Neurosci. 2011; 31: 10829-10835
        • Ettenberg A.
        The runway model of drug self-administration.
        Pharmacol Biochem Behav. 2009; 91: 271-277
        • Phillips P.E.
        • Stuber G.D.
        • Heien M.L.
        • Wightman R.M.
        • Carelli R.M.
        Subsecond dopamine release promotes cocaine seeking.
        Nature. 2003; 422: 614-618
        • Hong S.
        • Jhou T.C.
        • Smith M.
        • Saleem K.S.
        • Hikosaka O.
        Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates.
        J Neurosci. 2011; 31: 11457-11471
        • Jhou T.C.
        • Xu S.P.
        • Lee M.R.
        • Gallen C.L.
        • Ikemoto S.
        Mapping of reinforcing and analgesic effects of the mu opioid agonist endomorphin-1 in the ventral midbrain of the rat.
        Psychopharmacology (Berl). 2012; 224: 303-312
        • Chen B.T.
        • Yau H.J.
        • Hatch C.
        • Kusumoto-Yoshida I.
        • Cho S.L.
        • Hopf F.W.
        • Bonci A.
        Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking.
        Nature. 2013; 496: 359-362
        • Jennings J.H.
        • Sparta D.R.
        • Stamatakis A.M.
        • Ung R.L.
        • Pleil K.E.
        • Kash T.L.
        • Stuber G.D.
        Distinct extended amygdala circuits for divergent motivational states.
        Nature. 2013; 496: 224-228
        • Matsumoto M.
        • Hikosaka O.
        Lateral habenula as a source of negative reward signals in dopamine neurons.
        Nature. 2007; 447: 1111-1115
        • Stamatakis A.M.
        • Stuber G.D.
        Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance.
        Nat Neurosci. 2012; 15: 1105-1107
        • Vanderschuren L.J.
        • Everitt B.J.
        Drug seeking becomes compulsive after prolonged cocaine self-administration.
        Science. 2004; 305: 1017-1019
        • Pelloux Y.
        • Everitt B.J.
        • Dickinson A.
        Compulsive drug seeking by rats under punishment: Effects of drug taking history.
        Psychopharmacology (Berl). 2007; 194: 127-137
        • Deroche-Gamonet V.
        • Belin D.
        • Piazza P.V.
        Evidence for addiction-like behavior in the rat.
        Science. 2004; 305: 1014-1017
        • Lecca S.
        • Melis M.
        • Luchicchi A.
        • Ennas M.G.
        • Castelli M.P.
        • Muntoni A.L.
        • Pistis M.
        Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells.
        Neuropsychopharmacology. 2011; 36: 589-602
        • Perrotti L.I.
        • Bolanos C.A.
        • Choi K.H.
        • Russo S.J.
        • Edwards S.
        • Ulery P.G.
        • et al.
        DeltaFosB accumulates in a GABAergic cell population in the posterior tail of the ventral tegmental area after psychostimulant treatment.
        Eur J Neurosci. 2005; 21: 2817-2824