Advertisement

Trace Amine-Associated Receptor 1 Agonists as Narcolepsy Therapeutics

  • Author Footnotes
    1 SWB and MDS contributed equally to this work.
    Sarah W. Black
    Footnotes
    1 SWB and MDS contributed equally to this work.
    Affiliations
    Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California
    Search for articles by this author
  • Author Footnotes
    1 SWB and MDS contributed equally to this work.
    Michael D. Schwartz
    Footnotes
    1 SWB and MDS contributed equally to this work.
    Affiliations
    Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California

    Neuroscience, Ophthalmology and Rare Disease DTA, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
    Search for articles by this author
  • Tsui-Ming Chen
    Affiliations
    Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California
    Search for articles by this author
  • Marius C. Hoener
    Affiliations
    Neuroscience, Ophthalmology and Rare Disease DTA, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
    Search for articles by this author
  • Thomas S. Kilduff
    Correspondence
    Address correspondence to Thomas Kilduff, Ph.D., Center for Neuroscience, Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025; .
    Affiliations
    Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, California
    Search for articles by this author
  • Author Footnotes
    1 SWB and MDS contributed equally to this work.

      Abstract

      Background

      Narcolepsy, a disorder of rapid eye movement (REM) sleep, is characterized by excessive daytime sleepiness and cataplexy, a loss of muscle tone triggered by emotional stimulation. Current narcolepsy pharmacotherapeutics include controlled substances with abuse potential or drugs with undesirable side effects. As partial agonists at trace amine-associated receptor 1 (TAAR1) promote wakefulness in mice and rats, we evaluated whether TAAR1 agonism had beneficial effects in two mouse models of narcolepsy.

      Methods

      In the first experiment, male homozygous B6-Taar1tm1(NLSLacZ)Blt (Taar1 knockout) and wild-type mice were surgically implanted to record electroencephalogram, electromyogram, locomotor activity, and body temperature, and the efficacy of the TAAR1 agonist, RO5256390, on sleep/wake and physiological parameters was determined. In the second experiment, the effects of the TAAR1 full agonist RO5256390 and partial agonist RO5263397 on sleep/wake, locomotor activity, body temperature, and cataplexy were assessed in two mouse narcolepsy models.

      Results

      RO5256390 profoundly reduced rapid eye movement sleep in wild-type mice; these effects were eliminated in Taar1 knockout mice. The TAAR1 partial agonist RO5263397 also promoted wakefulness and suppressed nonrapid eye movement sleep. Both compounds reduced body temperature in the two narcolepsy models at the highest doses tested. Both TAAR1 compounds also mitigated cataplexy, the pathognomonic symptom of this disorder, in the narcolepsy models. The therapeutic benefit was mediated through a reduction in number of cataplexy episodes and time spent in cataplexy.

      Conclusions

      These results suggest TAAR1 agonism as a new therapeutic pathway for treatment of this orphan disease. The common underlying mechanism may be the suppression of rapid eye movement sleep.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Burgess C.R.
        • Scammell T.E.
        Narcolepsy: Neural mechanisms of sleepiness and cataplexy.
        J Neurosci. 2012; 32: 12305-12311
        • Peyron C.
        • Faraco J.
        • Rogers W.
        • Ripley B.
        • Overeem S.
        • Charnay Y.
        • et al.
        A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains.
        Nat Med. 2000; 6: 991-997
        • Thannickal T.C.
        • Moore R.Y.
        • Nienhuis R.
        • Ramanathan L.
        • Gulyani S.
        • Aldrich M.
        • et al.
        Reduced number of hypocretin neurons in human narcolepsy.
        Neuron. 2000; 27: 469-474
        • Nishino S.
        • Ripley B.
        • Overeem S.
        • Lammers G.J.
        • Mignot E.
        Hypocretin (orexin) deficiency in human narcolepsy.
        Lancet. 2000; 355: 39-40
        • Gerashchenko D.
        • Murillo-Rodriguez E.
        • Lin L.
        • Xu M.
        • Hallett L.
        • Nishino S.
        • et al.
        Relationship between CSF hypocretin levels and hypocretin neuronal loss.
        Exp Neurol. 2003; 184: 1010-1016
        • Zhang S.
        • Lin L.
        • Kaur S.
        • Thankachan S.
        • Blanco-Centurion C.
        • Yanagisawa M.
        • et al.
        The development of hypocretin (orexin) deficiency in hypocretin/ataxin-3 transgenic rats.
        Neuroscience. 2007; 148: 34-43
        • Chemelli R.M.
        • Willie J.T.
        • Sinton C.M.
        • Elmquist J.K.
        • Scammell T.
        • Lee C.
        • et al.
        Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation.
        Cell. 1999; 98: 437-451
        • Lin L.
        • Faraco J.
        • Li R.
        • Kadotani H.
        • Rogers W.
        • Lin X.
        • et al.
        The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene.
        Cell. 1999; 98: 365-376
        • Willie J.T.
        • Chemelli R.M.
        • Sinton C.M.
        • Tokita S.
        • Williams S.C.
        • Kisanuki Y.Y.
        • et al.
        Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: Molecular genetic dissection of Non-REM and REM sleep regulatory processes.
        Neuron. 2003; 38: 715-730
        • Beuckmann C.T.
        • Sinton C.M.
        • Williams S.C.
        • Richardson J.A.
        • Hammer R.E.
        • Sakurai T.
        • et al.
        Expression of a poly-glutamine-ataxin-3 transgene in orexin neurons induces narcolepsy-cataplexy in the rat.
        J Neurosci. 2004; 24: 4469-4477
        • Hara J.
        • Beuckmann C.T.
        • Nambu T.
        • Willie J.T.
        • Chemelli R.M.
        • Sinton C.M.
        • et al.
        Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity.
        Neuron. 2001; 30: 345-354
        • Tabuchi S.
        • Tsunematsu T.
        • Black S.W.
        • Tominaga M.
        • Maruyama M.
        • Takagi K.
        • et al.
        Conditional ablation of orexin/hypocretin neurons: A new mouse model for the study of narcolepsy and orexin system function.
        J Neurosci. 2014; 34: 6495-6509
        • Burgess C.R.
        • Tse G.
        • Gillis L.
        • Peever J.H.
        Dopaminergic regulation of sleep and cataplexy in a murine model of narcolepsy.
        Sleep. 2010; 33: 1295-1304
        • Guilleminault C.
        • Cao M.T.
        Narcolepsy: Diagnosis and management.
        in: Kryger M.H. Roth T. Dement W.C. Principles and Practice of Sleep Medicine. 5th ed. Saunders, St. Louis2011: 957-968
        • Wisor J.P.
        • Nishino S.
        • Sora I.
        • Uhl G.H.
        • Mignot E.
        • Edgar D.M.
        Dopaminergic role in stimulant-induced wakefulness.
        J Neurosci. 2001; 21: 1787-1794
        • Madras B.K.
        • Xie Z.
        • Lin Z.
        • Jassen A.
        • Panas H.
        • Lynch L.
        • et al.
        Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro.
        J Pharmacol Exp Ther. 2006; 319: 561-569
        • Nishino S.
        • Mignot E.
        Pharmacological aspects of human and canine narcolepsy.
        Prog Neurobiol. 1997; 52: 27-78
        • Mignot E.
        Narcolepsy: Pathophysiology and genetic predisposition.
        in: Kryger M.H. Roth T. Dement W.C. Principles and Practice of Sleep Medicine. 5th ed. Saunders, St. Louis2011: 938-956
        • Bosch O.G.
        • Quednow B.B.
        • Seifritz E.
        • Wetter T.C.
        Reconsidering GHB: orphan drug or new model antidepressant?.
        J Psychopharmacol. 2012; 26: 618-628
        • Boscolo-Berto R.
        • Viel G.
        • Montagnese S.
        • Raduazzo D.I.
        • Ferrara S.D.
        • Dauvilliers Y.
        Narcolepsy and effectiveness of gamma-hydroxybutyrate (GHB): A systematic review and meta-analysis of randomized controlled trials.
        Sleep Med Rev. 2012; 16: 431-443
        • Borowsky B.
        • Adham N.
        • Jones K.A.
        • Raddatz R.
        • Artymyshyn R.
        • Ogozalek K.L.
        • et al.
        Trace amines: Identification of a family of mammalian G protein-coupled receptors.
        Proc Natl Acad Sci U S A. 2001; 98: 8966-8971
        • Bunzow J.R.
        • Sonders M.S.
        • Arttamangkul S.
        • Harrison L.M.
        • Zhang G.
        • Quigley D.I.
        • et al.
        Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor.
        Mol Pharmacol. 2001; 60: 1181-1188
        • Lindemann L.
        • Meyer C.A.
        • Jeanneau K.
        • Bradaia A.
        • Ozmen L.
        • Bluethmann H.
        • et al.
        Trace amine-associated receptor 1 modulates dopaminergic activity.
        J Pharmacol Exp Ther. 2008; 324: 948-956
        • Wolinsky T.D.
        • Swanson C.J.
        • Smith K.E.
        • Zhong H.
        • Borowsky B.
        • Seeman P.
        • et al.
        The trace amine 1 receptor knockout mouse: An animal model with relevance to schizophrenia.
        Genes Brain Behav. 2007; 6: 628-639
        • Revel F.G.
        • Meyer C.A.
        • Bradaia A.
        • Jeanneau K.
        • Calcagno E.
        • Andre C.B.
        • et al.
        Brain-specific overexpression of trace amine-associated receptor 1 alters monoaminergic neurotransmission and decreases sensitivity to amphetamine.
        Neuropsychopharmacology. 2012; 37: 2580-2592
        • Bradaia A.
        • Trube G.
        • Stalder H.
        • Norcross R.D.
        • Ozmen L.
        • Wettstein J.G.
        • et al.
        The selective antagonist EPPTB reveals TAAR1-mediated regulatory mechanisms in dopaminergic neurons of the mesolimbic system.
        Proc Natl Acad Sci U S A. 2009; 106: 20081-20086
        • Revel F.G.
        • Moreau J.L.
        • Gainetdinov R.R.
        • Bradaia A.
        • Sotnikova T.D.
        • Mory R.
        • et al.
        TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity.
        Proc Natl Acad Sci U S A. 2011; 108: 8485-8490
        • Espinoza S.
        • Lignani G.
        • Caffino L.
        • Maggi S.
        • Sukhanov I.
        • Leo D.
        • et al.
        TAAR1 modulates cortical glutamate NMDA receptor function.
        Neuropsychopharmacology. 2015; 40: 2217-2227
        • Burchett S.A.
        • Hicks T.P.
        The mysterious trace amines: Protean neuromodulators of synaptic transmission in mammalian brain.
        Prog Neurobiol. 2006; 79: 223-246
        • Grandy D.K.
        Trace amine-associated receptor 1—family archetype or iconoclast?.
        Pharmacol Ther. 2007; 116: 355-390
        • Scanlan T.S.
        • Suchland K.L.
        • Hart M.E.
        • Chiellini G.
        • Huang Y.
        • Kruzich P.J.
        • et al.
        3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone.
        Nat Med. 2004; 10: 638-642
        • Kok S.W.
        • Roelfsema F.
        • Overeem S.
        • Lammers G.J.
        • Frolich M.
        • Meinders A.E.
        • et al.
        Altered setting of the pituitary-thyroid ensemble in hypocretin-deficient narcoleptic men.
        Am J Physiol Endocrinol Metab. 2005; 288: E892-E899
        • Berry M.D.
        The potential of trace amines and their receptors for treating neurological and psychiatric diseases.
        Rev Recent Clin Trials. 2007; 2: 3-19
        • Davis B.A.
        Biogenic amines and their metabolites in body fluids of normal, psychiatric and neurological subjects.
        J Chromatogr. 1989; 466: 89-218
        • Sotnikova T.D.
        • Caron M.G.
        • Gainetdinov R.R.
        Trace amine-associated receptors as emerging therapeutic targets.
        Mol Pharmacol. 2009; 76: 229-235
        • Revel F.G.
        • Moreau J.L.
        • Gainetdinov R.R.
        • Ferragud A.
        • Velazquez-Sanchez C.
        • Sotnikova T.D.
        • et al.
        Trace amine-associated receptor 1 partial agonism reveals novel paradigm for neuropsychiatric therapeutics.
        Biol Psychiatry. 2012; 72: 934-942
        • Revel F.G.
        • Moreau J.L.
        • Pouzet B.
        • Mory R.
        • Bradaia A.
        • Buchy D.
        • et al.
        A new perspective for schizophrenia: TAAR1 agonists reveal antipsychotic- and antidepressant-like activity, improve cognition and control body weight.
        Mol Psychiatry. 2013; 18: 543-556
        • Schwartz M.D.
        • Black S.W.
        • Fisher S.P.
        • Palmerston J.B.
        • Morairty S.R.
        • Hoener M.C.
        • Kilduff T.S.
        Trace amine-associated receptor 1 regulates wakefulness and EEG spectral composition.
        Neuropsychopharmacology. 2017; 42: 1305-1314
        • Fisher S.P.
        • Schwartz M.D.
        • Black S.W.
        • Thomas A.M.
        • Chen T.-M.
        • Miller M.A.
        • et al.
        Quantitative EEG analysis provides an early-stage indicator of disease onset and progression in the zQ175 knock-in mouse model of Huntington’s disease.
        Sleep. 2016; 39: 379-391
        • Fisher S.P.
        • Wurts Black S.W.
        • Schwartz M.D.
        • Wilk A.J.
        • Liu H.
        • Chen T.-M.
        • et al.
        Longitudinal analysis of the sleep phenotype and EEG signatures in the R6/2 model of Huntington’s disease.
        Brain. 2013; 136: 2159-2172
        • Black S.W.
        • Morairty S.R.
        • Fisher S.P.
        • Chen T.M.
        • Warrier D.R.
        • Kilduff T.S.
        Almorexant promotes sleep and exacerbates cataplexy in a murine model of narcolepsy.
        Sleep. 2013; 36: 325-336
        • Black S.W.
        • Morairty S.R.
        • Chen T.M.
        • Leung A.K.
        • Wisor J.P.
        • Yamanaka A.
        • et al.
        GABAB agonism promotes sleep and reduces cataplexy in murine narcolepsy.
        J Neurosci. 2014; 34: 6485-6494
        • Brisbare-Roch C.
        • Dingemanse J.
        • Koberstein R.
        • Hoever P.
        • Aissaoui H.
        • Flores S.
        • et al.
        Promotion of sleep by targeting the orexin system in rats, dogs and humans.
        Nat Med. 2007; 13: 150-155
      1. Weller T, Koberstein R, Aissaoui H, Clozel M, Fischli W, inventors; Actelion Pharm, LTD, asignee. Substituted 1,2,3,4-tetrahydroisoquinoline derivatives. WIPO application WO 2005118548. December 15, 2005.

        • Willie J.T.
        • Renthal W.
        • Chemelli R.M.
        • Miller M.S.
        • Scammell T.E.
        • Yanagisawa M.
        • et al.
        Modafinil more effectively induces wakefulness in orexin-null mice than in wild-type littermates.
        Neuroscience. 2005; 130: 983-995
        • Black S.W.
        • Yamanaka A.
        • Kilduff T.S.
        Challenges in the development of therapeutics for narcolepsy.
        Prog Neurobiol. 2017; 152: 89-113
        • Scammell T.E.
        • Willie J.T.
        • Guilleminault C.
        • Siegel J.M.
        A consensus definition of cataplexy in mouse models of narcolepsy.
        Sleep. 2009; 32: 111-116
        • Hasegawa E.
        • Yanagisawa M.
        • Sakurai T.
        • Mieda M.
        Orexin neurons suppress narcolepsy via 2 distinct efferent pathways.
        J Clin Invest. 2014; 124: 604-616
        • Nagahara T.
        • Saitoh T.
        • Kutsumura N.
        • Irukayama-Tomobe Y.
        • Ogawa Y.
        • Kuroda D.
        • et al.
        Design and synthesis of non-peptide, selective orexin receptor 2 agonists.
        J Med Chem. 2015; 58: 7931-7937