Advertisement

Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder

      Abstract

      Autism spectrum disorder (ASD) is a serious neurodevelopmental disorder that affects one in 45 children in the United States, with a similarly striking prevalence in countries around the world. However, mechanisms underlying its etiology and manifestations remain poorly understood. Although ASD is diagnosed based on the presence and severity of impaired social communication and repetitive behavior, immune dysregulation and gastrointestinal issues are common comorbidities. The microbiome is an integral part of human physiology; recent studies show that changes in the gut microbiota can modulate gastrointestinal physiology, immune function, and even behavior. Links between particular bacteria from the indigenous gut microbiota and phenotypes relevant to ASD raise the important question of whether microbial dysbiosis plays a role in the development or presentation of ASD symptoms. Here we review reports of microbial dysbiosis in ASD. We further discuss potential effects of the microbiota on ASD-associated symptoms, drawing on signaling mechanisms for reciprocal interactions among the microbiota, immunity, gut function, and behavior. In addition, we discuss recent findings supporting a role for the microbiome as an interface between environmental and genetic risk factors that are associated with ASD. These studies highlight the integration of pathways across multiple body systems that together can impact brain and behavior and suggest that changes in the microbiome may contribute to symptoms of neurodevelopmental disease.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bercum F.M.
        • Rodgers K.M.
        • Benison A.M.
        • Smith Z.Z.
        • Taylor J.
        • Kornreich E.
        • et al.
        Maternal stress combined with terbutaline leads to comorbid autistic-like behavior and epilepsy in a rat model.
        J Neurosci. 2015; 35: 15894-15902
        • Antshel K.M.
        • Zhang-James Y.
        • Wagner K.E.
        • Ledesma A.
        • Faraone S.V.
        An update on the comorbidity of ADHD and ASD: A focus on clinical management.
        Expert Rev Neurother. 2016; 16: 279-293
        • Becker K.G.
        Autism, asthma, inflammation, and the hygiene hypothesis.
        Med Hypotheses. 2007; 69: 731-740
        • Kohane I.S.
        • McMurry A.
        • Weber G.
        • MacFadden D.
        • Rappaport L.
        • Kunkel L.
        • et al.
        The co-morbidity burden of children and young adults with autism spectrum disorders.
        PLoS One. 2012; 7: e33224
        • Meyer U.
        • Feldon J.
        • Dammann O.
        Schizophrenia and autism: Both shared and disorder-specific pathogenesis via perinatal inflammation?.
        Pediatr Res. 2011; 69: 26R-33R
        • Courchesne E.
        • Mouton P.R.
        • Calhoun M.E.
        • Semendeferi K.
        • Ahrens-Barbeau C.
        • Hallet M.J.
        • et al.
        Neuron number and size in prefrontal cortex of children with autism.
        JAMA. 2011; 306: 2001-2010
        • Voineagu I.
        • Wang X.
        • Johnston P.
        • Lowe J.K.
        • Tian Y.
        • Horvath S.
        • et al.
        Transcriptomic analysis of autistic brain reveals convergent molecular pathology.
        Nature. 2011; 474: 380-384
        • Chow M.L.
        • Pramparo T.
        • Winn M.E.
        • Barnes C.C.
        • Li H.R.
        • Weiss L.
        • et al.
        Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.
        PLoS Genet. 2012; 8: e1002592
        • Broek J.A.
        • Guest P.C.
        • Rahmoune H.
        • Bahn S.
        Proteomic analysis of post mortem brain tissue from autism patients: Evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins.
        Mol Autism. 2014; 5: 41
        • Catani M.
        • Dell’Acqua F.
        • Budisavljevic S.
        • Howells H.
        • Thiebaut de Schotten M.
        • Froudist-Walsh S.
        • et al.
        Frontal networks in adults with autism spectrum disorder.
        Brain. 2016; 139: 616-630
        • Yang D.Y.
        • Beam D.
        • Pelphrey K.A.
        • Abdullahi S.
        • Jou R.J.
        Cortical morphological markers in children with autism: A structural magnetic resonance imaging study of thickness, area, volume, and gyrification.
        Mol Autism. 2016; 7: 11
        • Herrington J.D.
        • Miller J.
        • Pandey J.
        • Schultz R.T.
        Anxiety and social deficits have distinct relationships with amygdala function in autism spectrum disorder.
        Soc Cogn Affect Neurosci. 2016; 11: 907-914
        • Ha S.
        • Sohn I.J.
        • Kim N.
        • Sim H.J.
        • Cheon K.A.
        Characteristics of brains in autism spectrum disorder: Structure, function and connectivity across the lifespan.
        Exp Neurbiol. 2015; 24: 273-284
        • Gaugler T.
        • Klei L.
        • Sanders S.J.
        • Bodea C.A.
        • Goldberg A.P.
        • Lee A.B.
        • et al.
        Most genetic risk for autism resides with common variation.
        Nat Genet. 2014; 46: 881-885
        • Iossifov I.
        • Levy D.
        • Allen J.
        • Ye K.
        • Ronemus M.
        • Lee Y.H.
        • et al.
        Low load for disruptive mutations in autism genes and their biased transmission.
        Proc Natl Acad Sci U S A. 2015; 112: E5600-E5607
        • Vargas D.L.
        • Nascimbene C.
        • Krishnan C.
        • Zimmerman A.W.
        • Pardo C.A.
        Neuroglial activation and neuroinflammation in the brain of patients with autism.
        Ann Neurol. 2005; 57: 67-81
        • Estes M.L.
        • McAllister A.K.
        Immune mediators in the brain and peripheral tissues in autism spectrum disorder.
        Nat Rev Neurosci. 2015; 16: 469-486
        • Hsiao E.Y.
        Immune dysregulation in autism spectrum disorder.
        Int Rev Neurobiol. 2013; 113: 269-302
        • Adams J.B.
        • Johansen L.J.
        • Powell L.D.
        • Quig D.
        • Rubin R.A.
        Gastrointestinal flora and gastrointestinal status in children with autism--comparisons to typical children and correlation with autism severity.
        BMC Gastroenterol. 2011; 11: 22
        • Williams B.L.
        • Hornig M.
        • Parekh T.
        • Lipkin W.I.
        Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances.
        mBio. 2012; 3: e00261
        • Emanuele E.
        • Orsi P.
        • Boso M.
        • Broglia D.
        • Brondino N.
        • Barale F.
        • et al.
        Low-grade endotoxemia in patients with severe autism.
        Neurosci Lett. 2010; 471: 162-165
        • Desbonnet L.
        • Clarke G.
        • Shanahan F.
        • Dinan T.G.
        • Cryan J.F.
        Microbiota is essential for social development in the mouse.
        Mol Psychiatry. 2014; 19: 146-148
        • Arentsen T.
        • Raith H.
        • Qian Y.
        • Forssberg H.
        • Diaz Heijtz R.
        Host microbiota modulates development of social preference in mice.
        Microb Ecol Health Dis. 2015; 26: 29719
        • Crumeyrolle-Arias M.
        • Jaglin M.
        • Bruneau A.
        • Vancassel S.
        • Cardona A.
        • Dauge V.
        • et al.
        Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats.
        Psychoneuroendocrinology. 2014; 42: 207-217
        • Stilling R.M.
        • Ryan F.J.
        • Hoban A.E.
        • Shanahan F.
        • Clarke G.
        • Claesson M.J.
        • et al.
        Microbes & neurodevelopment--absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala.
        Brain Behav Immun. 2015; 50: 209-220
        • Clarke G.
        • Grenham S.
        • Scully P.
        • Fitzgerald P.
        • Moloney R.D.
        • Shanahan F.
        • et al.
        The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner.
        Mol Psychiatry. 2013; 18: 666-673
        • Bonini S.A.
        • Mastinu A.
        • Maccarinelli G.
        • Mitola S.
        • Premoli M.
        • La Rosa L.R.
        • et al.
        Cortical structure alterations and social behavior impairment in p50-deficient mice.
        Cereb Cortex. 2016; 26: 2832-2849
        • Accordino R.E.
        • Kidd C.
        • Politte L.C.
        • Henry C.A.
        • McDougle C.J.
        Psychopharmacological interventions in autism spectrum disorder.
        Expert Opin Pharmacother. 2016; 17: 937-952
        • Buffington S.A.
        • Di Prisco G.V.
        • Auchtung T.A.
        • Ajami N.J.
        • Petrosino J.F.
        • Costa-Mattioli M.
        Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring.
        Cell. 2016; 165: 1762-1775
        • Coiro P.
        • Padmashri R.
        • Suresh A.
        • Spartz E.
        • Pendyala G.
        • Chou S.
        • et al.
        Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders.
        Brain Behav Immun. 2015; 50: 249-258
        • Shi L.
        • Fatemi S.H.
        • Sidwell R.W.
        • Patterson P.H.
        Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring.
        J Neurosci. 2003; 23: 297-302
        • Hsiao E.Y.
        • McBride S.W.
        • Hsien S.
        • Sharon G.
        • Hyde E.R.
        • McCue T.
        • et al.
        Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders.
        Cell. 2013; 155: 1451-1463
        • Desbonnet L.
        • Clarke G.
        • Traplin A.
        • O’Sullivan O.
        • Crispie F.
        • Moloney R.D.
        • et al.
        Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour.
        Brain Behav Immun. 2015; 48: 165-173
        • Neufeld K.M.
        • Kang N.
        • Bienenstock J.
        • Foster J.A.
        Reduced anxiety-like behavior and central neurochemical change in germ-free mice.
        Neurogastroenterol Motil. 2011; 23 (e119): 255-264
        • Diaz Heijtz R.
        • Wang S.
        • Anuar F.
        • Qian Y.
        • Bjorkholm B.
        • Samuelsson A.
        • et al.
        Normal gut microbiota modulates brain development and behavior.
        Proc Natl Acad Sci U S A. 2011; 108: 3047-3052
        • Frohlich E.E.
        • Farzi A.
        • Mayerhofer R.
        • Reichmann F.
        • Jacan A.
        • Wagner B.
        • et al.
        Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication.
        Brain Behav Immun. 2016; 56: 140-155
        • Gareau M.G.
        Microbiota-gut-brain axis and cognitive function.
        Adv Exp Med Biol. 2014; 817: 357-371
        • Bercik P.
        • Denou E.
        • Collins J.
        • Jackson W.
        • Lu J.
        • Jury J.
        • et al.
        The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice.
        Gastroenterology. 2011; 141 (609 e591–e593): 599-609
        • O’Mahony S.M.
        • Clarke G.
        • Borre Y.E.
        • Dinan T.G.
        • Cryan J.F.
        Serotonin, tryptophan metabolism and the brain-gut-microbiome axis.
        Behav Brain Res. 2015; 277: 32-48
        • Sudo N.
        • Chida Y.
        • Aiba Y.
        • Sonoda J.
        • Oyama N.
        • Yu X.N.
        • et al.
        Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice.
        J Physiol. 2004; 558: 263-275
        • Ogbonnaya E.S.
        • Clarke G.
        • Shanahan F.
        • Dinan T.G.
        • Cryan J.F.
        • O’Leary O.F.
        Adult hippocampal neurogenesis is regulated by the microbiome.
        Biol Psychiatry. 2015; 78: e7-e9
        • Finegold S.M.
        • Molitoris D.
        • Song Y.
        • Liu C.
        • Vaisanen M.L.
        • Bolte E.
        • et al.
        Gastrointestinal microflora studies in late-onset autism.
        Clin Infect Dis. 2002; 35: S6-S16
        • Song Y.
        • Liu C.
        • Finegold S.M.
        Real-time PCR quantitation of clostridia in feces of autistic children.
        Appl Environ Microbiol. 2004; 70: 6459-6465
        • Parracho H.M.
        • Bingham M.O.
        • Gibson G.R.
        • McCartney A.L.
        Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children.
        J Med Microbiol. 2005; 54: 987-991
        • Tomova A.
        • Husarova V.
        • Lakatosova S.
        • Bakos J.
        • Vlkova B.
        • Babinska K.
        • et al.
        Gastrointestinal microbiota in children with autism in Slovakia.
        Physiol Behav. 2015; 138: 179-187
        • Kang D.W.
        • Park J.G.
        • Ilhan Z.E.
        • Wallstrom G.
        • Labaer J.
        • Adams J.B.
        • et al.
        Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children.
        PLoS One. 2013; 8: e68322
        • Williams B.L.
        • Hornig M.
        • Buie T.
        • Bauman M.L.
        • Cho Paik M.
        • Wick I.
        • et al.
        Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances.
        PLoS One. 2011; 6: e24585
        • Wang L.
        • Christophersen C.T.
        • Sorich M.J.
        • Gerber J.P.
        • Angley M.T.
        • Conlon M.A.
        Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder.
        Mol Autism. 2013; 4: 42
        • Taguer M.
        • Maurice C.F.
        The complex interplay of diet, xenobiotics, and microbial metabolism in the gut: Implications for clinical outcomes.
        Clin Pharmacol Ther. 2016; 96: 588-599
        • Sandler R.H.
        • Finegold S.M.
        • Bolte E.R.
        • Buchanan C.P.
        • Maxwell A.P.
        • Vaisanen M.L.
        • et al.
        Short-term benefit from oral vancomycin treatment of regressive-onset autism.
        J Child Neurol. 2000; 15: 429-435
        • Ramirez P.L.
        • Barnhill K.
        • Gutierrez A.
        • Schutte C.
        • Hewitson L.
        Improvements in behavioral symptoms following antibiotic therapy in a 14-year-old male with autism.
        Case Rep Psychiatry. 2013; 2013: 239034
        • Wellmann K.A.
        • Varlinskaya E.I.
        • Mooney S.M.
        D-Cycloserine ameliorates social alterations that result from prenatal exposure to valproic acid.
        Brain Res Bull. 2014; 108: 1-9
        • Urbano M.
        • Okwara L.
        • Manser P.
        • Hartmann K.
        • Herndon A.
        • Deutsch S.I.
        A trial of D-cycloserine to treat stereotypies in older adolescents and young adults with autism spectrum disorder.
        Clin Neuropharmacol. 2014; 37: 69-72
        • Kumar H.
        • Sharma B.
        Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.
        Brain Res. 2016; 1630: 83-97
        • Buie T.
        • Campbell D.B.
        • Fuchs 3rd, G.J.
        • Furuta G.T.
        • Levy J.
        • Vandewater J.
        • et al.
        Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: A consensus report.
        Pediatrics. 2010; 125: S1-18
        • Jyonouchi H.
        • Geng L.
        • Ruby A.
        • Reddy C.
        • Zimmerman-Bier B.
        Evaluation of an association between gastrointestinal symptoms and cytokine production against common dietary proteins in children with autism spectrum disorders.
        J Pediatr. 2005; 146: 605-610
        • McElhanon B.O.
        • McCracken C.
        • Karpen S.
        • Sharp W.G.
        Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis.
        Pediatrics. 2014; 133: 872-883
        • Chaidez V.
        • Hansen R.L.
        • Hertz-Picciotto I.
        Gastrointestinal problems in children with autism, developmental delays or typical development.
        J Autism Dev Disord. 2014; 44: 1117-1127
        • Burger-van Paassen N.
        • Vincent A.
        • Puiman P.J.
        • van der Sluis M.
        • Bouma J.
        • Boehm G.
        • et al.
        The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection.
        Biochem J. 2009; 420: 211-219
        • Morgan J.T.
        • Chana G.
        • Pardo C.A.
        • Achim C.
        • Semendeferi K.
        • Buckwalter J.
        • et al.
        Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism.
        Biol Psychiatry. 2010; 68: 368-376
        • Careaga M.
        • Ashwood P.
        Autism spectrum disorders: From immunity to behavior.
        Methods Mol Biol. 2012; 934: 219-240
        • El-Ansary A.
        • Al-Ayadhi L.
        GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders.
        J Neuroinflammation. 2014; 11: 189
        • Jyonouchi H.
        • Sun S.
        • Le H.
        Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression.
        J Neuroimmunol. 2001; 120: 170-179
        • Suzuki K.
        • Matsuzaki H.
        • Iwata K.
        • Kameno Y.
        • Shimmura C.
        • Kawai S.
        • et al.
        Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders.
        PLoS One. 2011; 6: e20470
        • Xu N.
        • Li X.
        • Zhong Y.
        Inflammatory cytokines: Potential biomarkers of immunologic dysfunction in autism spectrum disorders.
        Mediators Inflamm. 2015; 2015: 531518
        • Masi A.
        • Quintana D.S.
        • Glozier N.
        • Lloyd A.R.
        • Hickie I.B.
        • Guastella A.J.
        Cytokine aberrations in autism spectrum disorder: A systematic review and meta-analysis.
        Mol Psychiatry. 2015; 20: 440-446
        • Morgan J.T.
        • Chana G.
        • Abramson I.
        • Semendeferi K.
        • Courchesne E.
        • Everall I.P.
        Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex in autism.
        Brain Res. 2012; 1456: 72-81
        • Tetreault N.A.
        • Hakeem A.Y.
        • Jiang S.
        • Williams B.A.
        • Allman E.
        • Wold B.J.
        • et al.
        Microglia in the cerebral cortex in autism.
        J Autism Dev Disord. 2012; 42: 2569-2584
        • Edmonson C.
        • Ziats M.N.
        • Rennert O.M.
        Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum.
        Mol Autism. 2014; 5: 3
        • Suzuki K.
        • Sugihara G.
        • Ouchi Y.
        • Nakamura K.
        • Futatsubashi M.
        • Takebayashi K.
        • et al.
        Microglial activation in young adults with autism spectrum disorder.
        JAMA Psychiatry. 2013; 70: 49-58
        • Erny D.
        • Hrabe de Angelis A.L.
        • Jaitin D.
        • Wieghofer P.
        • Staszewski O.
        • David E.
        • et al.
        Host microbiota constantly control maturation and function of microglia in the CNS.
        Nat Neurosci. 2015; 18: 965-977
        • Lee Y.K.
        • Menezes J.S.
        • Umesaki Y.
        • Mazmanian S.K.
        Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis.
        Proc Natl Acad Sci U S A. 2011; 108: 4615-4622
        • Wu H.J.
        • Ivanov I.I.
        • Darce J.
        • Hattori K.
        • Shima T.
        • Umesaki Y.
        • et al.
        Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells.
        Immunity. 2010; 32: 815-827
        • Round J.L.
        • Lee S.M.
        • Li J.
        • Tran G.
        • Jabri B.
        • Chatila T.A.
        • et al.
        The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota.
        Science. 2011; 332: 974-977
        • Ochoa-Reparaz J.
        • Mielcarz D.W.
        • Ditrio L.E.
        • Burroughs A.R.
        • Begum-Haque S.
        • Dasgupta S.
        • et al.
        Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression.
        J Immunol. 2010; 185: 4101-4108
        • Li X.
        • Chauhan A.
        • Sheikh A.M.
        • Patil S.
        • Chauhan V.
        • Li X.M.
        • et al.
        Elevated immune response in the brain of autistic patients.
        J Neuroimmunol. 2009; 207: 111-116
        • Grigorenko E.L.
        • Han S.S.
        • Yrigollen C.M.
        • Leng L.
        • Mizue Y.
        • Anderson G.M.
        • et al.
        Macrophage migration inhibitory factor and autism spectrum disorders.
        Pediatrics. 2008; 122: e438-e445
        • Hooper L.V.
        • Littman D.R.
        • Macpherson A.J.
        Interactions between the microbiota and the immune system.
        Science. 2012; 336: 1268-1273
        • de Theije C.G.
        • Wopereis H.
        • Ramadan M.
        • van Eijndthoven T.
        • Lambert J.
        • Knol J.
        • et al.
        Altered gut microbiota and activity in a murine model of autism spectrum disorders.
        Brain Behav Immun. 2014; 37: 197-206
        • Sandin S.
        • Lichtenstein P.
        • Kuja-Halkola R.
        • Larsson H.
        • Hultman C.M.
        • Reichenberg A.
        The familial risk of autism.
        JAMA. 2014; 311: 1770-1777
        • Colvert E.
        • Tick B.
        • McEwen F.
        • Stewart C.
        • Curran S.R.
        • Woodhouse E.
        • et al.
        Heritability of autism spectrum disorder in a UK population-based twin sample.
        JAMA Psychiatry. 2015; 72: 415-423
        • Micheau J.
        • Vimeney A.
        • Normand E.
        • Mulle C.
        • Riedel G.
        Impaired hippocampus-dependent spatial flexibility and sociability represent autism-like phenotypes in GluK2 mice.
        Hippocampus. 2014; 24: 1059-1069
        • Aller M.I.
        • Pecoraro V.
        • Paternain A.V.
        • Canals S.
        • Lerma J.
        Increased dosage of high-affinity kainate receptor gene grik4 alters synaptic transmission and reproduces autism spectrum disorders features.
        J Neurosci. 2015; 35: 13619-13628
        • Rendall A.R.
        • Truong D.T.
        • Fitch R.H.
        Learning delays in a mouse model of autism spectrum disorder.
        Behav Brain Res. 2016; 303: 201-207
        • Koeth R.A.
        • Wang Z.
        • Levison B.S.
        • Buffa J.A.
        • Org E.
        • Sheehy B.T.
        • et al.
        Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis.
        Nat Med. 2013; 19: 576-585
        • Smith M.I.
        • Yatsunenko T.
        • Manary M.J.
        • Trehan I.
        • Mkakosya R.
        • Cheng J.
        • et al.
        Gut microbiomes of Malawian twin pairs discordant for kwashiorkor.
        Science. 2013; 339: 548-554
        • Turnbaugh P.J.
        • Ley R.E.
        • Mahowald M.A.
        • Magrini V.
        • Mardis E.R.
        • Gordon J.I.
        An obesity-associated gut microbiome with increased capacity for energy harvest.
        Nature. 2006; 444: 1027-1031
        • Turnbaugh P.J.
        • Backhed F.
        • Fulton L.
        • Gordon J.I.
        Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome.
        Cell Host Microbe. 2008; 3: 213-223
        • Buffie C.G.
        • Jarchum I.
        • Equinda M.
        • Lipuma L.
        • Gobourne A.
        • Viale A.
        • et al.
        Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to Clostridium difficile-induced colitis.
        Infect Immun. 2012; 80: 62-73
        • Kumar H.
        • Lund R.
        • Laiho A.
        • Lundelin K.
        • Ley R.E.
        • Isolauri E.
        • et al.
        Gut microbiota as an epigenetic regulator: Pilot study based on whole-genome methylation analysis.
        mBio. 2014; 16: e02113
        • Cortese R.
        • Lu L.
        • Yu Y.
        • Ruden D.
        • Claud E.C.
        Epigenome-microbiome crosstalk: A potential new paradigm influencing neonatal susceptibility to disease.
        Epigenetics. 2016; 11: 205-215
        • Waldecker M.
        • Kautenburger T.
        • Daumann H.
        • Busch C.
        • Schrenk D.
        Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon.
        J Nutr Biochem. 2008; 19: 587-593
        • Oskvig D.B.
        • Elkahloun A.G.
        • Johnson K.R.
        • Phillips T.M.
        • Herkenham M.
        Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response.
        Brain Behav Immun. 2012; 26: 623-634
        • Le Belle J.E.
        • Sperry J.
        • Ngo A.
        • Ghochani Y.
        • Laks D.R.
        • Lopez-Aranda M.
        • et al.
        Maternal inflammation contributes to brain overgrowth and autism-associated behaviors through altered redox signaling in stem and progenitor cells.
        Stem Cell Reports. 2014; 3: 725-734
        • Lee B.K.
        • Magnusson C.
        • Gardner R.M.
        • Blomstrom A.
        • Newschaffer C.J.
        • Burstyn I.
        • et al.
        Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders.
        Brain Behav Immun. 2015; 44: 100-105
        • Malkova N.V.
        • Yu C.Z.
        • Hsiao E.Y.
        • Moore M.J.
        • Patterson P.H.
        Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism.
        Brain Behav Immun. 2012; 26: 607-616
        • Zerbo O.
        • Iosif A.M.
        • Walker C.
        • Ozonoff S.
        • Hansen R.L.
        • Hertz-Picciotto I.
        Is maternal influenza or fever during pregnancy associated with autism or developmental delays? Results from the CHARGE (CHildhood Autism Risks from Genetics and Environment) study.
        J Autism Dev Disord. 2013; 43: 25-33
        • Zerbo O.
        • Qian Y.
        • Yoshida C.
        • Grether J.K.
        • Van de Water J.
        • Croen L.A.
        Maternal infection during pregnancy and autism spectrum disorders.
        J Autism Dev Disord. 2015; 45: 4015-4025
        • Mandal M.
        • Donnelly R.
        • Elkabes S.
        • Zhang P.
        • Davini D.
        • David B.T.
        • et al.
        Maternal immune stimulation during pregnancy shapes the immunological phenotype of offspring.
        Brain Behav Immun. 2013; 33: 33-45
        • Weir R.K.
        • Forghany R.
        • Smith S.E.
        • Patterson P.H.
        • McAllister A.K.
        • Schumann C.M.
        • et al.
        Preliminary evidence of neuropathology in nonhuman primates prenatally exposed to maternal immune activation.
        Brain Behav Immun. 2015; 48: 139-146
        • de Theije C.G.
        • Koelink P.J.
        • Korte-Bouws G.A.
        • Lopes da Silva S.
        • Korte S.M.
        • Olivier B.
        • et al.
        Intestinal inflammation in a murine model of autism spectrum disorders.
        Brain Behav Immun. 2014; 37: 240-247
        • Dominguez-Bello M.G.
        • Costello E.K.
        • Contreras M.
        • Magris M.
        • Hidalgo G.
        • Fierer N.
        • et al.
        Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns.
        Proc Natl Acad Sci U S A. 2010; 107: 11971-11975
        • Biasucci G.
        • Benenati B.
        • Morelli L.
        • Bessi E.
        • Boehm G.
        Cesarean delivery may affect the early biodiversity of intestinal bacteria.
        J Nutr. 2008; 138: 1796S-1800S
        • Biasucci G.
        • Rubini M.
        • Riboni S.
        • Morelli L.
        • Bessi E.
        • Retetangos C.
        Mode of delivery affects the bacterial community in the newborn gut.
        Early Hum Dev. 2010; 86: 13-15
        • Golubeva A.V.
        • Crampton S.
        • Desbonnet L.
        • Edge D.
        • O’Sullivan O.
        • Lomasney K.W.
        • et al.
        Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood.
        Psychoneuroendocrinology. 2015; 60: 58-74
        • Jasarevic E.
        • Howerton C.L.
        • Howard C.D.
        • Bale T.L.
        Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain.
        Endocrinology. 2015; 156: 3265-3276
        • De Palma G.
        • Blennerhassett P.
        • Lu J.
        • Deng Y.
        • Park A.J.
        • Green W.
        • et al.
        Microbiota and host determinants of behavioural phenotype in maternally separated mice.
        Nat Commun. 2015; 6: 7735
        • Curran E.A.
        • Dalman C.
        • Kearney P.M.
        • Kenny L.C.
        • Cryan J.F.
        • Dinan T.G.
        • et al.
        Association between obstetric mode of delivery and autism spectrum disorder: A population-based sibling design study.
        JAMA Psychiatry. 2015; 72: 935-942
        • Curran E.A.
        • O’Neill S.M.
        • Cryan J.F.
        • Kenny L.C.
        • Dinan T.G.
        • Khashan A.S.
        • et al.
        Research review: Birth by caesarean section and development of autism spectrum disorder and attention-deficit/hyperactivity disorder: A systematic review and meta-analysis.
        J Child Psychol Psychiatry. 2015; 56: 500-508
        • Curran E.A.
        • Cryan J.F.
        • Kenny L.C.
        • Dinan T.G.
        • Kearney P.M.
        • Khashan A.S.
        Obstetrical mode of delivery and childhood behavior and psychological development in a British cohort.
        J Autism Dev Disord. 2016; 46: 603-614
        • Dominguez-Bello M.G.
        • De Jesus-Laboy K.M.
        • Shen N.
        • Cox L.M.
        • Amir A.
        • Gonzalez A.
        • et al.
        Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer.
        Nat Med. 2016; 22: 250-253
        • Bokulich N.A.
        • Chung J.
        • Battaglia T.
        • Henderson N.
        • Jay M.
        • Li H.
        • et al.
        Antibiotics, birth mode, and diet shape microbiome maturation during early life.
        Sci Transl Med. 2016; 8: 343ra382
        • Yassour M.
        • Vatanen T.
        • Siljander H.
        • Hamalainen A.M.
        • Harkonen T.
        • Ryhanen S.J.
        • et al.
        Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability.
        Sci Transl Med. 2016; 8: 343ra381
        • Niehus R.
        • Lord C.
        Early medical history of children with autism spectrum disorders.
        J Dev Behav Pediatr. 2006; 27: S120-S127
        • Verdu E.F.
        • Bercik P.
        • Verma-Gandhu M.
        • Huang X.X.
        • Blennerhassett P.
        • Jackson W.
        • et al.
        Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice.
        Gut. 2006; 55: 182-190
        • Adams J.B.
        • Romdalvik J.
        • Ramanujam V.M.
        • Legator M.S.
        Mercury, lead, and zinc in baby teeth of children with autism versus controls.
        J Toxicol Environ Health Part A. 2007; 70: 1046-1051
        • Desbonnet L.
        • Garrett L.
        • Clarke G.
        • Bienenstock J.
        • Dinan T.G.
        The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat.
        J Psychiatr Res. 2008; 43: 164-174
        • Bercik P.
        • Verdu E.F.
        • Foster J.A.
        • Macri J.
        • Potter M.
        • Huang X.
        • et al.
        Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice.
        Gastroenterology. 2010; 139 (e2101): 2102-2112
        • Desbonnet L.
        • Garrett L.
        • Clarke G.
        • Kiely B.
        • Cryan J.F.
        • Dinan T.G.
        Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression.
        Neuroscience. 2010; 170: 1179-1188
        • McKernan D.P.
        • Fitzgerald P.
        • Dinan T.G.
        • Cryan J.F.
        The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat.
        Neurogastroenterol Motil. 2010; 22 (e1268): 1029-1035
        • Finegold S.M.
        • Dowd S.E.
        • Gontcharova V.
        • Liu C.
        • Henley K.E.
        • Wolcott R.D.
        • et al.
        Pyrosequencing study of fecal microflora of autistic and control children.
        Anaerobe. 2010; 16: 444-453
        • Bravo J.A.
        • Forsythe P.
        • Chew M.V.
        • Escaravage E.
        • Savignac H.M.
        • Dinan T.G.
        • et al.
        Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve.
        Proc Natl Acad Sci U S A. 2011; 108: 16050-16055
        • Bercik P.
        • Park A.J.
        • Sinclair D.
        • Khoshdel A.
        • Lu J.
        • Huang X.
        • et al.
        The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication.
        Neurogastroenterol Motil. 2011; 23: 1132-1139
        • Messaoudi M.
        • Lalonde R.
        • Violle N.
        • Javelot H.
        • Desor D.
        • Nejdi A.
        • et al.
        Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects.
        Br J Nutr. 2011; 105: 755-764
        • Messaoudi M.
        • Violle N.
        • Bisson J.F.
        • Desor D.
        • Javelot H.
        • Rougeot C.
        Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers.
        Gut Microbes. 2011; 2: 256-261
        • Wang L.
        • Christophersen C.T.
        • Sorich M.J.
        • Gerber J.P.
        • Angley M.T.
        • Conlon M.A.
        Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder.
        Dig Dis Sci. 2012; 57: 2096-2102
        • D’Eufemia P.
        • Celli M.
        • Finocchiaro R.
        • Pacifico L.
        • Viozzi L.
        • Zaccagnini M.
        • et al.
        Abnormal intestinal permeability in children with autism.
        Acta Paediatr. 1996; 85: 1076-1079
        • Pavone L.
        • Fiumara A.
        • Bottaro G.
        • Mazzone D.
        • Coleman M.
        Autism and celiac disease: Failure to validate the hypothesis that a link might exist.
        Biol Psychiatry. 1997; 42: 72-75
        • Furlano R.I.
        • Anthony A.
        • Day R.
        • Brown A.
        • McGarvey L.
        • Thomson M.A.
        • et al.
        Colonic CD8 and gamma delta T-cell infiltration with epithelial damage in children with autism.
        J Pediatr. 2001; 138: 366-372
        • Torrente F.
        • Anthony A.
        • Heuschkel R.B.
        • Thomson M.A.
        • Ashwood P.
        • Murch S.H.
        Focal-enhanced gastritis in regressive autism with features distinct from Crohn’s and Helicobacter pylori gastritis.
        Am J Gastroenterol. 2004; 99: 598-605
        • Atladottir H.O.
        • Pedersen M.G.
        • Thorsen P.
        • Mortensen P.B.
        • Deleuran B.
        • Eaton W.W.
        • et al.
        Association of family history of autoimmune diseases and autism spectrum disorders.
        Pediatrics. 2009; 124: 687-694
        • de Magistris L.
        • Familiari V.
        • Pascotto A.
        • Sapone A.
        • Frolli A.
        • Iardino P.
        • et al.
        Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives.
        J Pediatr Gastroenterol Nutr. 2010; 51: 418-424
        • Coury D.L.
        • Ashwood P.
        • Fasano A.
        • Fuchs G.
        • Geraghty M.
        • Kaul A.
        • et al.
        Gastrointestinal conditions in children with autism spectrum disorder: Developing a research agenda.
        Pediatrics. 2012; 130: S160-S168
        • Ludvigsson J.F.
        • Reichenberg A.
        • Hultman C.M.
        • Murray J.A.
        A nationwide study of the association between celiac disease and the risk of autistic spectrum disorders. JAMA.
        Psychiatry. 2013; 70: 1224-1230
        • Lau N.M.
        • Green P.H.
        • Taylor A.K.
        • Hellberg D.
        • Ajamian M.
        • Tan C.Z.
        • et al.
        Markers of celiac disease and gluten sensitivity in children with autism.
        PLoS One. 2013; 8: e66155
        • Dalton N.
        • Chandler S.
        • Turner C.
        • Charman T.
        • Pickles A.
        • Loucas T.
        • et al.
        Gut permeability in autism spectrum disorders.
        Autism Res. 2014; 7: 305-313
        • Comi A.M.
        • Zimmerman A.W.
        • Frye V.H.
        • Law P.A.
        • Peeden J.N.
        Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism.
        J Child Neurol. 1999; 14: 388-394
        • Jyonouchi H.
        • Sun S.
        • Itokazu N.
        Innate immunity associated with inflammatory responses and cytokine production against common dietary proteins in patients with autism spectrum disorder.
        Neuropsychobiology. 2002; 46: 76-84
        • Connolly A.M.
        • Chez M.
        • Streif E.M.
        • Keeling R.M.
        • Golumbek P.T.
        • Kwon J.M.
        • et al.
        Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau-Kleffner syndrome, and epilepsy.
        Biol Psychiatry. 2006; 59: 354-363
        • Ashwood P.
        • Wakefield A.J.
        Immune activation of peripheral blood and mucosal CD3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms.
        J Neuroimmunol. 2006; 173: 126-134
        • Heuer L.
        • Ashwood P.
        • Schauer J.
        • Goines P.
        • Krakowiak P.
        • Hertz-Picciotto I.
        • et al.
        Reduced levels of immunoglobulin in children with autism correlates with behavioral symptoms.
        Autism Res. 2008; 1: 275-283
        • Braunschweig D.
        • Ashwood P.
        • Krakowiak P.
        • Hertz-Picciotto I.
        • Hansen R.
        • Croen L.A.
        • et al.
        Autism: Maternally derived antibodies specific for fetal brain proteins.
        Neurotoxicology. 2008; 29: 226-231
        • Enstrom A.
        • Krakowiak P.
        • Onore C.
        • Pessah I.N.
        • Hertz-Picciotto I.
        • Hansen R.L.
        • et al.
        Increased IgG4 levels in children with autism disorder.
        Brain Behav Immun. 2009; 23: 389-395
        • Wills S.
        • Cabanlit M.
        • Bennett J.
        • Ashwood P.
        • Amaral D.G.
        • Van de Water J.
        Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders.
        Brain Behav Immun. 2009; 23: 64-74
        • Rossi C.C.
        • Van de Water J.
        • Rogers S.J.
        • Amaral D.G.
        Detection of plasma autoantibodies to brain tissue in young children with and without autism spectrum disorders.
        Brain Behav Immun. 2011; 25: 1123-1135
        • Ashwood P.
        • Krakowiak P.
        • Hertz-Picciotto I.
        • Hansen R.
        • Pessah I.N.
        • Van de Water J.
        Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders.
        J Neuroimmunol. 2011; 232: 196-199
        • Ashwood P.
        • Krakowiak P.
        • Hertz-Picciotto I.
        • Hansen R.
        • Pessah I.
        • Van de Water J.
        Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome.
        Brain Behav Immun. 2011; 25: 40-45
        • Onore C.
        • Enstrom A.
        • Krakowiak P.
        • Hertz-Picciotto I.
        • Hansen R.
        • Van de Water J.
        • et al.
        Decreased cellular IL-23 but not IL-17 production in children with autism spectrum disorders.
        J Neuroimmunol. 2009; 216: 126-129
        • Jyonouchi H.
        • Geng L.
        • Streck D.L.
        • Toruner G.A.
        Immunological characterization and transcription profiling of peripheral blood (PB) monocytes in children with autism spectrum disorders (ASD) and specific polysaccharide antibody deficiency (SPAD): Case study.
        J Neuroinflammation. 2012; 9: 4
        • Akintunde M.E.
        • Rose M.
        • Krakowiak P.
        • Heuer L.
        • Ashwood P.
        • Hansen R.
        • et al.
        Increased production of IL-17 in children with autism spectrum disorders and co-morbid asthma.
        J Neuroimmunol. 2015; 286: 33-41