Advertisement

It’s All in the Brain: A Review of Available Functional Genomic Annotations

  • Sarah A. Gagliano
    Correspondence
    Address correspondence to Sarah A. Gagliano, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada;
    Affiliations
    Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Canada

    Department of Medical & Molecular Genetics, Guy’s Hospital, King’s College London, London, United Kingdom
    Search for articles by this author

      Abstract

      What makes the molecular study of psychiatric and other neurological conditions particularly challenging compared with other complex traits is the difficulty of accessing the relevant tissue. The Encyclopedia of DNA Elements (ENCODE) project was one of the earliest producers of brain-derived epigenetic functional genomic data, albeit initially from only two cancerous brain cell lines for a limited number of epigenetic marks. It has only been in very recent years that such data from human brain tissue have been made available from various sources. Yet, these data are scattered throughout the literature with no central organization. This review summarizes the availability and accessibility of brain epigenetic and functional genomic data as a single resource to allow investigators to easily access available brain annotations and thus incorporate this wealth of information into their research to make important advances in the field of neuroscience.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schizophrenia Working Group of the Psychiatric Genomics Consortium
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Griffiths A.
        • Wessler S.
        • Lewontin R.
        • Carroll S.
        Introduction to Genetic Analysis.
        9th ed. W.H. Freeman, New York2008
        • Landt S.G.
        • Marinov G.K.
        • Kundaje A.
        • Kheradpour P.
        • Pauli F.
        • Batzoglou S.
        • et al.
        ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia.
        Genome Res. 2012; 22: 1813-1831
        • Shlyueva D.
        • Stampfel G.
        • Stark A.
        Transcriptional enhancers: From properties to genome-wide predictions.
        Nat Rev Genet. 2014; 15: 272-286
        • Lister R.
        • Mukamel E.A.
        • Nery J.R.
        • Urich M.
        • Puddifoot C.A.
        • Johnson N.D.
        • et al.
        Global epigenomic reconfiguration during mammalian brain development.
        Science. 2013; 341: 1237905
        • Nicolae D.L.
        • Gamazon E.
        • Zhang W.
        • Duan S.
        • Dolan M.E.
        • Cox N.J.
        Trait-associated SNPs are more likely to be eQTLs: Annotation to enhance discovery from GWAS.
        PLoS Genet. 2010; 6: e1000888
        • Maurano M.T.
        • Humbert R.
        • Rynes E.
        • Thurman R.E.
        • Haugen E.
        • Wang H.
        • et al.
        Systematic localization of common disease-associated variation in regulatory DNA.
        Science. 2012; 337: 1190-1195
        • Farh K.K.-H.
        • Marson A.
        • Zhu J.
        • Kleinewietfeld M.
        • Housley W.J.
        • Beik S.
        • et al.
        Genetic and epigenetic fine mapping of causal autoimmune disease variants.
        Nature. 2015; 518: 337-343
        • Trynka G.
        • Sandor C.
        • Han B.
        • Xu H.
        • Stranger B.E.
        • Liu X.S.
        • Raychaudhuri S.
        Chromatin marks identify critical cell types for fine mapping complex trait variants.
        Nat Genet. 2013; 45: 124-130
        • Petes T.D.
        Meiotic recombination hot spots and cold spots.
        Nat Rev Genet. 2001; 2: 360-369
        • Finucane H.K.
        • Bulik-Sullivan B.
        • Gusev A.
        • Trynka G.
        • Reshef Y.
        • Loh P.-R.
        • et al.
        Partitioning heritability by functional annotation using genome-wide association summary statistics.
        Nat Genet. 2015; 47: 1228-1235
        • Illingworth R.S.
        • Gruenewald-Schneider U.
        • De Sousa D.
        • Webb S.
        • Merusi C.
        • Kerr A.R.W.
        • et al.
        Inter-individual variability contrasts with regional homogeneity in the human brain DNA methylome.
        Nucleic Acids Res. 2015; 43: 732-744
        • ENCODE Project Consortium
        A user’s guide to the encyclopedia of DNA elements (ENCODE).
        PLoS Biol. 2011; 9: e1001046
        • Meyer L.R.
        • Zweig A.S.
        • Hinrichs A.S.
        • Karolchik D.
        • Kuhn R.M.
        • Wong M.
        • et al.
        The UCSC Genome Browser database: Extensions and updates 2013.
        Nucleic Acids Res. 2013; 41: D64-D69
        • Karolchik D.
        • Hinrichs A.S.
        • Furey T.S.
        • Roskin K.M.
        • Sugnet C.W.
        • Haussler D.
        • Kent W.J.
        The UCSC Table Browser data retrieval tool.
        Nucleic Acids Res. 2004; 32: D493-D496
        • Kashyap C.
        • Tikka B.
        • Sharma S.
        • Kumari S.
        • Verma P.
        • Sharma S.
        • Arya V.
        Human cancer cell lines: A brief communication.
        J Chem Pharm Res. 2011; 3: 514-520
        • Kundaje A.
        • Meuleman W.
        • Ernst J.
        • Bilenky M.
        • Yen A.
        • et al.
        • Roadmap Epigenomics Consortium
        Integrative analysis of 111 reference human epigenomes.
        Nature. 2015; 518: 317-330
        • Yatabe Y.
        • Tavaré S.
        • Shibata D.
        Investigating stem cells in human colon by using methylation patterns.
        Proc Natl Acad Sci U S A. 2001; 98: 10839-10844
        • Akbarian S.
        • Liu C.
        • Knowles J.A.
        • Vaccarino F.M.
        • Farnham P.J.
        • Crawford G.E.
        • et al.
        The PsychENCODE project.
        Nat Neurosci. 2015; 18: 1707-1712
        • Hannon E.
        • Spiers H.
        • Viana J.
        • Pidsley R.
        • Burrage J.
        • Murphy T.M.
        • et al.
        Methylation QTLs in the developing brain and their enrichment in schizophrenia risk loci.
        Nat Neurosci. 2016; 19: 48-54
        • Jaffe A.E.
        • Gao Y.
        • Deep-Soboslay A.
        • Tao R.
        • Hyde T.M.
        • Weinberger D.R.
        • Kleinman J.E.
        Mapping DNA methylation across development, genotype and schizophrenia in the human frontal cortex.
        Nat Neurosci. 2016; 19: 40-47
        • Gagliano S.A.
        • Ptak C.
        • Mak D.Y.F.
        • Shamsi M.
        • Oh G.
        • Knight J.
        • et al.
        Allele-skewed DNA modification in the brain: Relevance to a schizophrenia GWAS.
        Am J Hum Genet. 2016; 98: 956-962
        • Gibbs J.R.
        • van der Brug M.P.
        • Hernandez D.G.
        • Traynor B.J.
        • Nalls M.A.
        • Lai S.L.
        • et al.
        Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain.
        PLoS Genet. 2010; 6: e1400952
        • GTEx Consortium
        The Genotype-Tissue Expression (GTEx) project.
        Nat Genet. 2013; 45: 580-585
        • Trabzuni D.
        • Ryten M.
        • Walker R.
        • Smith C.
        • Imran S.
        • Ramasamy A.
        • et al.
        Quality control parameters on a large dataset of regionally dissected human control brains for whole genome expression studies. J Neurochem.
        . 2011; 119: 275-282
        • Miller J.A.
        • Ding S.-L.
        • Sunkin S.M.
        • Smith K.A.
        • Ng L.
        • Szafer A.
        • et al.
        Transcriptional landscape of the prenatal human brain.
        Nature. 2014; 508: 199-206
        • Birdsill A.C.
        • Walker D.G.
        • Lue L.
        • Sue L.I.
        • Beach T.G.
        Postmortem interval effect on RNA and gene expression in human brain tissue.
        Cell Tissue Bank. 2011; 12: 311-318
        • Dodd P.R.
        • Hambley J.W.
        • Cowburn R.F.
        • Hardy J.A.
        A comparison of methodologies for the study of functional transmitter neurochemistry in human brain.
        J Neurochem. 1988; 50: 1333-1345
        • Lacar B.
        • Linker S.B.
        • Jaeger B.N.
        • Krishnaswami S.R.
        • Barron J.J.
        • Kelder M.J.E.
        • et al.
        Nuclear RNA-seq of single neurons reveals molecular signatures of activation.
        Nat Commun. 2016; 7: 11022
        • Heijmans B.T.
        • Tobi E.W.
        • Stein A.D.
        • Putter H.
        • Blauw G.J.
        • Susser E.S.
        • et al.
        Persistent epigenetic differences associated with prenatal exposure to famine in humans.
        Proc Natl Acad Sci U S A. 2008; 105: 17046-17049
        • Tobi E.W.
        • Lumey L.H.
        • Talens R.P.
        • Kremer D.
        • Putter H.
        • Stein A.D.
        • et al.
        DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific.
        Hum Mol Genet. 2009; 18: 4046-4053
        • Tobi E.W.
        • Slieker R.C.
        • Stein A.D.
        • Suchiman H.E.D.
        • Slagboom P.E.
        • van Zwet E.W.
        • et al.
        Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome.
        Int J Epidemiol. 2015; 44: 1211-1223
        • Spitz F.
        • Furlong E.E.
        Transcription factors: From enhancer binding to developmental control.
        Nat Rev Genet. 2012; 13: 613-626
        • Ramasamy A.
        • Trabzuni D.
        • Guelfi S.
        • Varghese V.
        • Smith C.
        • Walker R.
        • et al.
        Genetic variability in the regulation of gene expression in ten regions of the human brain.
        Nat Neurosci. 2014; 17: 1418-1428
        • Ardlie K.G.
        • Deluca D.S.
        • Segrè A.V.
        • Sullivan T.J.
        • Young T.R.
        • Gelfand E.T.
        • et al.
        The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans.
        Science. 2015; 348: 648-660