Advertisement

Nonsynonymous Variation in NKPD1 Increases Depressive Symptoms in European Populations

      Abstract

      Background

      Despite high heritability, little success was achieved in mapping genetic determinants of depression-related traits by means of genome-wide association studies.

      Methods

      To identify genes associated with depressive symptomology, we performed a gene-based association analysis of nonsynonymous variation captured using exome-sequencing and exome-chip genotyping in a genetically isolated population from the Netherlands (n = 1999). Finally, we reproduced our significant findings in an independent population-based cohort (n = 1604).

      Results

      We detected significant association of depressive symptoms with a gene NKPD1 (p = 3.7 × 10−08). Nonsynonymous variants in the gene explained 0.9% of sex- and age-adjusted variance of depressive symptoms in the discovery study, which is translated into 3.8% of the total estimated heritability (h2 = 0.24). Significant association of depressive symptoms with NKPD1 was also observed (n = 1604; p = 1.5 × 10−03) in the independent replication sample despite little overlap with the discovery cohort in the set of nonsynonymous genetic variants observed in the NKPD1 gene. Meta-analysis of the discovery and replication studies improved the association signal (p = 1.0 × 10−09).

      Conclusions

      Our study suggests that nonsynonymous variation in the gene NKPD1 affects depressive symptoms in the general population. NKPD1 is predicted to be involved in the de novo synthesis of sphingolipids, which have been implicated in the pathogenesis of depression.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Levinson D.F.
        • Mostafavi S.
        • Milaneschi Y.
        • Rivera M.
        • Ripke S.
        • Wray N.R.
        • et al.
        Genetic studies of major depressive disorder: Why are there no genome-wide association study findings and what can we do about it?.
        Biol Psychiatry. 2014; 76: 510-512
        • Hek K.
        • Demirkan A.
        • Lahti J.
        • Terracciano A.
        • Teumer A.
        • Cornelis M.C.
        • et al.
        A genome-wide association study of depressive symptoms.
        Biol Psychiatry. 2013; 73: 667-678
        • Sullivan P.F.
        • Neale M.C.
        • Kendler K.S.
        Genetic epidemiology of major depression: Review and meta-analysis.
        Am J Psychiatry. 2000; 157: 1552-1562
        • Dunn E.C.
        • Brown R.C.
        • Dai Y.
        • Rosand J.
        • Nugent N.R.
        • Amstadter A.B.
        • et al.
        Genetic determinants of depression: Recent findings and future directions.
        Harv Rev Psychiatry. 2015; 23: 1-18
        • Flint J.
        • Kendler K.S.
        The genetics of major depression.
        Neuron. 2014; 81: 484-503
        • CONVERGE Consortium
        Sparse whole-genome sequencing identifies two loci for major depressive disorder.
        Nature. 2015; 523: 588-591
        • Sullivan P.F.
        Genetics of disease: Associations with depression.
        Nature. 2015; 523: 539-540
        • Weissman M.M.
        • Wickramaratne P.
        • Nomura Y.
        • Warner V.
        • Pilowsky D.
        • Verdeli H.
        Offspring of depressed parents: 20 years later.
        Am J Psychiatry. 2006; 163: 1001-1008
        • Schizophrenia Working Group of the Psychiatric Genomics Consortium
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Lee S.H.
        • Ripke S.
        • Neale B.M.
        • Faraone S.V.
        • Purcell S.M.
        • et al.
        • Cross-Disorder Group of the Psychiatric Genomics Consortium
        Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs.
        Nat Genet. 2013; 45: 984-994
        • Ehret G.B.
        • Munroe P.B.
        • Rice K.M.
        • Bochud M.
        • Johnson A.D.
        • et al.
        • International Consortium for Blood Pressure Genome-Wide Association Studies
        Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
        Nature. 2011; 478: 103-109
        • Demirkan A.
        • Lahti J.
        • Direk N.
        • Viktorin A.
        • Lunetta K.L.
        • Terracciano A.
        • et al.
        Somatic, positive and negative domains of the Center for Epidemiological Studies Depression (CES-D) scale: A meta-analysis of genome-wide association studies.
        Psychol Med. 2016; 46: 1613-1623
        • Subaran R.L.
        • Odgerel Z.
        • Swaminathan R.
        • Glatt C.E.
        • Weissman M.M.
        Novel variants in ZNF34 and other brain-expressed transcription factors are shared among early-onset MDD relatives.
        Am J Med Genet B Neuropsychiatr Genet. 2016; 171B: 333-341
        • Pirooznia M.
        • Wang T.
        • Avramopoulos D.
        • Potash J.B.
        • Zandi P.P.
        • Goes F.S.
        High-throughput sequencing of the synaptome in major depressive disorder.
        Mol Psychiatry. 2016; 21: 650-655
        • Hatzikotoulas K.
        • Gilly A.
        • Zeggini E.
        Using population isolates in genetic association studies.
        Brief Funct Genomics. 2014; 13: 371-377
        • Heutink P.
        • Oostra B.A.
        Gene finding in genetically isolated populations.
        Hum Mol Genet. 2002; 11: 2507-2515
        • Aulchenko Y.S.
        • Heutink P.
        • Mackay I.
        • Bertoli-Avella A.M.
        • Pullen J.
        • Vaessen N.
        • et al.
        Linkage disequilibrium in young genetically isolated Dutch population.
        Eur J Hum Genet. 2004; 12: 527-534
        • Lopez-Leon S.
        • Choy W.C.
        • Aulchenko Y.S.
        • Claes S.J.
        • Oostra B.A.
        • Mackenbach J.P.
        • et al.
        Genetic factors influence the clustering of depression among individuals with lower socioeconomic status.
        PLoS One. 2009; 4: e5069
        • Pardo L.M.
        • MacKay I.
        • Oostra B.
        • van Duijn C.M.
        • Aulchenko Y.S.
        The effect of genetic drift in a young genetically isolated population.
        Ann Hum Genet. 2005; 69: 288-295
        • Radloff L.S.
        The CES-D scale: A self report depression scale for research in the general population.
        Appl Pshycol Measurement. 1977; : 385-401
        • Weissman M.M.
        • Sholomskas D.
        • Pottenger M.
        • Prusoff B.A.
        • Locke B.Z.
        Assessing depressive symptoms in five psychiatric populations: A validation study.
        Am J Epidemiol. 1977; 106: 203-214
        • Li H.
        • Durbin R.
        Fast and accurate short read alignment with Burrows-Wheeler transform.
        Bioinformatics. 2009; 25: 1754-1760
        • Brouwer R.W.
        • van den Hout M.C.
        • Grosveld F.G.
        • van Ijcken W.F.
        NARWHAL, a primary analysis pipeline for NGS data.
        Bioinformatics. 2012; 28: 284-285
        • McKenna A.
        • Hanna M.
        • Banks E.
        • Sivachenko A.
        • Cibulskis K.
        • Kernytsky A.
        • et al.
        The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data.
        Genome Res. 2010; 20: 1297-1303
        • Goldstein J.I.
        • Crenshaw A.
        • Carey J.
        • Grant G.B.
        • Maguire J.
        • Fromer M.
        • et al.
        zCall: A rare variant caller for array-based genotyping: Genetics and population analysis.
        Bioinformatics. 2012; 28: 2543-2545
        • Belonogova N.M.
        • Svishcheva G.R.
        • Axenovich T.I.
        FREGAT: An R library for region-based association analysis.
        Bioinformatics. 2016; 32: 2392-2393
        • Jiang D.
        • McPeek M.S.
        Robust rare variant association testing for quantitative traits in samples with related individuals.
        Genet Epidemiol. 2014; 38: 10-20
        • Wu M.C.
        • Lee S.
        • Cai T.
        • Li Y.
        • Boehnke M.
        • Lin X.
        Rare-variant association testing for sequencing data with the sequence kernel association test.
        Am J Hum Genet. 2011; 89: 82-93
        • Lee S.
        • Wu M.C.
        • Lin X.
        Optimal tests for rare variant effects in sequencing association studies.
        Biostatistics. 2012; 13: 762-775
        • Aulchenko Y.S.
        • Ripke S.
        • Isaacs A.
        • van Duijn C.M.
        GenABEL: An R library for genome-wide association analysis.
        Bioinformatics. 2007; 23: 1294-1296
        • Fisher R.A.
        Combining independent tests of significance.
        Am Stat. 1948; 2: 30
        • Zakharov S.
        • Wang X.
        • Liu J.
        • Teo Y.Y.
        Improving power for robust trans-ethnic meta-analysis of rare and low-frequency variants with a partitioning approach.
        Eur J Hum Genet. 2015; 23: 238-244
        • Pennisi E.
        Genomics. ENCODE project writes eulogy for junk DNA.
        Science. 2012; 337: 1159-1161
        • Hofman A.
        • Brusselle G.G.
        • Darwish Murad S.
        • van Duijn C.M.
        • Franco O.H.
        • Goedegebure A.
        • et al.
        The Rotterdam Study: 2016 objectives and design update.
        Eur J Epidemiol. 2015; 30: 661-708
        • Li H.
        • Handsaker B.
        • Wysoker A.
        • Fennell T.
        • Ruan J.
        • Homer N.
        • et al.
        The Sequence Alignment/Map format and SAMtools.
        Bioinformatics. 2009; 25: 2078-2079
        • Purcell S.
        • Neale B.
        • Todd-Brown K.
        • Thomas L.
        • Ferreira M.A.
        • Bender D.
        • et al.
        PLINK: A tool set for whole-genome association and population-based linkage analyses.
        Am J Hum Genet. 2007; 81: 559-575
        • van der Sluis S.
        • Posthuma D.
        • Nivard M.G.
        • Verhage M.
        • Dolan C.V.
        Power in GWAS: Lifting the curse of the clinical cut-off.
        Mol Psychiatry. 2013; 18: 2-3
        • Fehrmann R.S.
        • Karjalainen J.M.
        • Krajewska M.
        • Westra H.J.
        • Maloney D.
        • Simeonov A.
        • et al.
        Gene expression analysis identifies global gene dosage sensitivity in cancer.
        Nat Genet. 2015; 47: 115-125
        • Pinto C.S.
        • Jinnah H.A.
        • Shirley T.L.
        • Nyhan W.L.
        • Seifert R.
        Altered membrane NTPase activity in Lesch-Nyhan disease fibroblasts: Comparison with HPRT knockout mice and HPRT-deficient cell lines.
        J Neurochem. 2005; 93: 1579-1586
        • Nyhan W.L.
        • Wong D.F.
        New approaches to understanding Lesch-Nyhan disease.
        N Engl J Med. 1996; 334: 1602-1604
        • Causeret C.
        • Geeraert L.
        • Van der Hoeven G.
        • Mannaerts G.P.
        • Van Veldhoven P.P.
        Further characterization of rat dihydroceramide desaturase: Tissue distribution, subcellular localization, and substrate specificity.
        Lipids. 2000; 35: 1117-1125
        • Merrill Jr, A.H.
        Characterization of serine palmitoyltransferase activity in Chinese hamster ovary cells.
        Biochim Biophys Acta. 1983; 754: 284-291
        • Merrill Jr, A.H.
        • Williams R.D.
        Utilization of different fatty acyl-CoA thioesters by serine palmitoyltransferase from rat brain.
        J Lipid Res. 1984; 25: 185-188
        • Pewzner-Jung Y.
        • Ben-Dor S.
        • Futerman A.H.
        When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis.
        J Biol Chem. 2006; 281: 25001-25005
        • Pruett S.T.
        • Bushnev A.
        • Hagedorn K.
        • Adiga M.
        • Haynes C.A.
        • Sullards M.C.
        • et al.
        Biodiversity of sphingoid bases (“sphingosines”) and related amino alcohols.
        J Lipid Res. 2008; 49: 1621-1639
        • Zitomer N.C.
        • Mitchell T.
        • Voss K.A.
        • Bondy G.S.
        • Pruett S.T.
        • Garnier-Amblard E.C.
        • et al.
        Ceramide synthase inhibition by fumonisin B1 causes accumulation of 1-deoxysphinganine: A novel category of bioactive 1-deoxysphingoid bases and 1-deoxydihydroceramides biosynthesized by mammalian cell lines and animals.
        J Biol Chem. 2009; 284: 4786-4795
        • Osherovich L.
        Depressing sphingolipids.
        SciBX 6. 2013;
        • Gulbins E.
        • Palmada M.
        • Reichel M.
        • Luth A.
        • Bohmer C.
        • Amato D.
        • et al.
        Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs.
        Nat Med. 2013; 19: 934-938
        • Kornhuber J.
        • Tripal P.
        • Reichel M.
        • Muhle C.
        • Rhein C.
        • Muehlbacher M.
        • et al.
        Functional inhibitors of acid sphingomyelinase (FIASMAs): A novel pharmacological group of drugs with broad clinical applications.
        Cell Physiol Biochem. 2010; 26: 9-20
        • Demirkan A.
        • Isaacs A.
        • Ugocsai P.
        • Liebisch G.
        • Struchalin M.
        • Rudan I.
        • et al.
        Plasma phosphatidylcholine and sphingomyelin concentrations are associated with depression and anxiety symptoms in a Dutch family-based lipidomics study.
        J Psychiatr Res. 2013; 47: 357-362