Circuit-Based Corticostriatal Homologies Between Rat and Primate



      Understanding the neural mechanisms of psychiatric disorders requires the use of rodent models; however, frontal-striatal homologies between rodents and primates are unclear. In contrast, within the striatum, the shell of the nucleus accumbens, the hippocampal projection zone, and the amygdala projection zone (referred to as the striatal emotion processing network [EPN]) are conserved across species. We used the relationship between the EPN and projections from the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC) to assess network similarities across rats and monkeys.


      We first compared the location and extent of each major component of the EPN in rats and macaques. Next, we used anatomic cases with anterograde injections in ACC/OFC to determine the extent to which corticostriatal terminal fields overlapped with these components and with each other.


      The location and size of each component of the EPN were similar across species, containing projections primarily from infralimbic cortex in rats and area 25 in monkeys. Other ACC/OFC terminals overlapped extensively with infralimbic cortex/area 25 projections, supporting cross-species similarities in OFC topography. However, dorsal ACC had different connectivity profiles across species. These results were used to segment the monkey and rat striata according to ACC/OFC inputs.


      Based on connectivity with the EPN, and consistent with prior literature, the infralimbic cortex and area 25 are likely homologues. We also see evidence of OFC homologies. Along with segmenting the striatum and identifying striatal hubs of overlapping inputs, these results help to translate findings between rodent models and human pathology.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Mayberg H.S.
        • Brannan S.K.
        • Mahurin R.K.
        • Jerabek P.A.
        • Brickman J.S.
        • Tekell J.L.
        • et al.
        Cingulate function in depression: a potential predictor of treatment response.
        Neuroreport. 1997; 8: 1057-1061
        • Milad M.R.
        • Quirk G.J.
        Fear extinction as a model for translational neuroscience: Ten years of progress.
        Annu Rev Psychol. 2012; 63: 129-151
        • Volkow N.D.
        • Wang G.J.
        • Fowler J.S.
        • Tomasi D.
        • Telang F.
        Addiction: Beyond dopamine reward circuitry.
        Proc Natl Acad Sci U S A. 2011; 108: 15037-15042
        • Haber S.N.
        • Heilbronner S.R.
        Translational research in OCD: Circuitry and mechanisms.
        Neuropsychopharmacology. 2013; 38: 252-253
        • Petrides M.
        • Pandya D.N.
        Comparative architectonic analysis of the human and macaque frontal cortex.
        in: Boller F. Grafman J. Handbook of Neuropsychology. Elsevier, Amsterdam1994: 17-58
        • Sallet J.
        • Mars R.B.
        • Noonan M.P.
        • Neubert F.X.
        • Jbabdi S.
        • O’Reilly J.X.
        • et al.
        The organization of dorsal frontal cortex in humans and macaques.
        J Neurosci. 2013; 33: 12255-12274
        • Ongur D.
        • Price J.L.
        The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans.
        Cereb Cortex. 2000; 10: 206-219
        • Seamans J.K.
        • Lapish C.C.
        • Durstewitz D.
        Comparing the prefrontal cortex of rats and primates: Insights from electrophysiology.
        Neurotox Res. 2008; 14: 249-262
        • Kesner R.
        Subregional analysis of mnemonic functions of the prefrontal cortex in the rat.
        Psychobiology. 2000; 28: 219-228
        • Wise S.P.
        Forward frontal fields: phylogeny and fundamental function.
        Trends Neurosci. 2008; 31: 599-608
        • Price J.L.
        Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions.
        Ann N Y Acad Sci. 2007; 1121: 54-71
        • Preuss T.M.
        Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered.
        J Cogn Neurosci. 1995; 7: 1-24
        • Schoenbaum G.
        • Roesch M.R.
        • Stalnaker T.A.
        Orbitofrontal cortex, decision-making and drug addiction.
        Trends Neurosci. 2006; 29: 116-124
        • Kelley A.E.
        Functional specificity of ventral striatal compartments in appetitive behaviors.
        Ann N Y Acad Sci. 1999; 877: 71-90
        • Corbit L.H.
        • Muir J.L.
        • Balleine B.W.
        The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell.
        J Neurosci. 2001; 21: 3251-3260
        • Voorn P.
        • Gerfen C.R.
        • Groenewegen H.J.
        Compartmental organization of the ventral striatum of the rat: Immunohistochemical distribution of enkephalin, substance P, dopamine, and calcium-binding protein.
        J Comp Neurol. 1989; 289: 189-201
        • Meredith G.E.
        • Pattiselanno A.
        • Groenewegen H.J.
        • Haber S.N.
        Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28k.
        J Comp Neurol. 1996; 365: 628-639
        • Everitt B.J.
        • Cador M.
        • Robbins T.W.
        Interactions between the amygdala and ventral striatum in stimulus-reward associations: Studies using a second-order schedule of sexual reinforcement.
        Neuroscience. 1989; 30: 63-75
        • McDonald A.J.
        Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain.
        Neuroscience. 1991; 44: 15-33
        • Friedman D.P.
        • Aggleton J.P.
        • Saunders R.C.
        Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: Combined anterograde and retrograde tracing study in the Macaque brain.
        J Comp Neurol. 2002; 450: 345-365
        • Squire L.R.
        Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans.
        Psychol Rev. 1992; 99: 195-231
        • Insausti R.
        Comparative anatomy of the entorhinal cortex and hippocampus in mammals.
        Hippocampus. 1993; 3: 19-26
        • Goto Y.
        • Grace A.A.
        Limbic and cortical information processing in the nucleus accumbens.
        Trends Neurosci. 2008; 31: 552-558
        • Phelps E.A.
        • LeDoux J.E.
        Contributions of the amygdala to emotion processing: From animal models to human behavior.
        Neuron. 2005; 48: 175-187
        • Phelps E.A.
        Human emotion and memory: Interactions of the amygdala and hippocampal complex.
        Curr Opin Neurobiol. 2004; 14: 198-202
        • Zaborszky L.
        • Alheid G.F.
        • Beinfeld M.C.
        • Eiden L.E.
        • Heimer L.
        • Palkovits M.
        Cholecystokinin innervation of the ventral striatum: A morphological and radioimmunological study.
        Neuroscience. 1985; 14: 427-453
        • Heimer L.
        • Zahm D.S.
        • Churchill L.
        • Kalivas P.W.
        • Wohltmann C.
        Specificity in the projection patterns of accumbal core and shell in the rat.
        Neuroscience. 1991; 41: 89-125
        • Krettek J.E.
        • Price J.L.
        Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat.
        J Comp Neurol. 1978; 178: 225-254
        • Wright C.I.
        • Beijer A.V.J.
        • Groenewegen H.J.
        Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized.
        J Neurosci. 1996; 16: 1877-1893
        • Kelley A.E.
        • Domesick V.B.
        The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: An anterograde- and retrograde-horseradish peroxidase study.
        Neuroscience. 1982; 7: 2321-2335
        • Groenewegen H.J.
        • Vermeulen-Van der Zee E.
        • Te Kortschot A.
        • Witter M.P.
        Organization of the projections from the subiculum to the ventral striatum in the rat: A study using anterograde transport of Phaseolus vulgaris-leucoagglutinin.
        Neuroscience. 1987; 23: 103-120
        • Haber S.N.
        • McFarland N.R.
        The concept of the ventral striatum in nonhuman primates.
        Ann N Y Acad Sci. 1999; 877: 33-48
        • Averbeck B.B.
        • Lehman J.
        • Jacobson M.
        • Haber S.N.
        Estimates of projection overlap and zones of convergence within frontal-striatal circuits.
        J Neurosci. 2014; 34: 9497-9505
        • Calzavara R.
        • Mailly P.
        • Haber S.N.
        Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: An anatomical substrate for cognition to action.
        Eur J Neurosci. 2007; 26: 2005-2024
        • Haber S.N.
        • Kim K.S.
        • Mailly P.
        • Calzavara R.
        Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning.
        J Neurosci. 2006; 26: 8368-8376
        • Mailly P.
        • Aliane V.
        • Groenewegen H.J.
        • Haber S.N.
        • Deniau J.M.
        The rat prefrontostriatal system analyzed in 3D: Evidence for multiple interacting functional units.
        J Neurosci. 2013; 33: 5718-5727
        • Yeterian E.H.
        • Van Hoesen G.W.
        Cortico-striate projections in the rhesus monkey: The organization of certain cortico-caudate connections.
        Brain Res. 1978; 139: 43-63
        • Berendse H.W.
        • Galis-de Graaf Y.
        • Groenewegen H.J.
        Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat.
        J Comp Neurol. 1992; 316: 314-347
        • Schilman E.A.
        • Uylings H.B.
        • Galis-de Graaf Y.
        • Joel D.
        • Groenewegen H.J.
        The orbital cortex in rats topographically projects to central parts of the caudate-putamen complex.
        Neurosci Lett. 2008; 432: 40-45
        • Mailly P.
        • Haber S.N.
        • Groenewegen H.J.
        • Deniau J.M.
        A 3D multi-modal and multi-dimensional digital brain model as a framework for data sharing.
        J Neurosci Methods. 2010; 194: 56-63
        • Kremer J.R.
        • Mastronarde D.N.
        • McIntosh J.R.
        Computer visualization of three-dimensional image data using IMOD.
        J Struct Biol. 1996; 116: 71-76
        • Jongen-Relo A.L.
        • Docter G.J.
        • Jonker A.J.
        • Vreugdenhil E.
        • Groenewegen H.J.
        • Voorn P.
        Differential effects of dopamine depletion on the binding and mRNA levels of dopamine receptors in the shell and core of the rat nucleus accumbens.
        Brain Res Mol Brain Res. 1994; 25: 333-343
        • Fudge J.L.
        • Haber S.N.
        Bed nucleus of the stria terminalis and extended amygdala inputs to dopamine subpopulations in primates.
        Neuroscience. 2001; 104: 807-827
        • Zahm D.S.
        • Brog J.S.
        On the significance of subterritories in the "accumbens" part of the rat ventral striatum.
        Neuroscience. 1992; 50: 751-767
        • Brown P.
        • Molliver M.E.
        Dual serotonin (5-HT) projections to the nucleus accumbens core and shell: Relation of the 5-HT transporter to amphetamine-induced neurotoxicity.
        J Neurosci. 2000; 20: 1952-1963
        • Paxinos G.
        • Watson C.
        The Rat Brain in Stereotactic Coordinates.
        Academic, New York1986
        • Quirk G.J.
        • Beer J.S.
        Prefrontal involvement in the regulation of emotion: Convergence of rat and human studies.
        Curr Opin Neurobiol. 2006; 16: 723-727
        • Passingham R.E.
        • Wise S.P.
        The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight (No. 50).
        Oxford University Press, Oxford2012
        • Uylings H.B.
        • van Eden C.G.
        Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans.
        Prog Brain Res. 1990; 85: 31-62
        • Granon S.
        • Poucet B.
        Involvement of the rat prefrontal cortex in cognitive functions: A central role for the prelimbic area.
        Psychobiology. 2000; 28: 229-237
        • Milad M.R.
        • Quirk G.J.
        • Pitman R.K.
        • Orr S.P.
        • Fischl B.
        • Rauch S.L.
        A role for the human dorsal anterior cingulate cortex in fear expression.
        Biol Psychiatry. 2007; 62: 1191-1194
        • Mayberg H.S.
        • Liotti M.
        • Brannan S.K.
        • McGinnis S.
        • Mahurin R.K.
        • Jerabek P.A.
        • et al.
        Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness.
        Am J Psychiatry. 1999; 156: 675-682
        • Koenigs M.
        • Grafman J.
        The functional neuroanatomy of depression: Distinct roles for ventromedial and dorsolateral prefrontal cortex.
        Behav Brain Res. 2009; 201: 239-243
        • Goudriaan A.E.
        • De Ruiter M.B.
        • Van Den Brink W.
        • Oosterlaan J.
        • Veltman D.J.
        Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: An fMRI study.
        Addict Biol. 2010; 15: 491-503
        • Seo D.
        • Lacadie C.M.
        • Tuit K.
        • Hong K.I.
        • Constable R.T.
        • Sinha R.
        Disrupted ventromedial prefrontal function, alcohol craving, and subsequent relapse risk.
        JAMA Psychiatry. 2013; 70: 727-739
        • Nakao T.
        • Nakagawa A.
        • Yoshiura T.
        • Nakatani E.
        • Nabeyama M.
        • Yoshizato C.
        • et al.
        Brain activation of patients with obsessive-compulsive disorder during neuropsychological and symptom provocation tasks before and after symptom improvement: A functional magnetic resonance imaging study.
        Biol Psychiatry. 2005; 57: 901-910
        • Goldstein R.Z.
        • Volkow N.D.
        Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications.
        Nat Rev Neurosci. 2011; 12: 652-669
        • Pitman R.K.
        • Rasmusson A.M.
        • Koenen K.C.
        • Shin L.M.
        • Orr S.P.
        • Gilbertson M.W.
        • et al.
        Biological studies of post-traumatic stress disorder.
        Nat Rev Neurosci. 2012; 13: 769-787
        • Harrison B.J.
        • Soriano-Mas C.
        • Pujol J.
        • Ortiz H.
        • Lopez-Sola M.
        • Hernandez-Ribas R.
        • et al.
        Altered corticostriatal functional connectivity in obsessive-compulsive disorder.
        Arch Gen Psychiatry. 2009; 66: 1189-1200
        • Ahmari S.E.
        • Spellman T.
        • Douglass N.L.
        • Kheirbek M.A.
        • Simpson H.B.
        • Deisseroth K.
        • et al.
        Repeated cortico-striatal stimulation generates persistent OCD-like behavior.
        Science. 2013; 340: 1234-1239
        • Voorn P.
        • Vanderschuren L.J.
        • Groenewegen H.J.
        • Robbins T.W.
        • Pennartz C.M.
        Putting a spin on the dorsal-ventral divide of the striatum.
        Trends Neurosci. 2004; 27: 468-474
        • Belin D.
        • Everitt B.J.
        Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum.
        Neuron. 2008; 57: 432-441
        • Kelley A.E.
        Ventral striatal control of appetitive motivation: Role in ingestive behavior and reward-related learning.
        Neurosci Biobehav Rev. 2004; 27: 765-776
        • Featherstone R.E.
        • McDonald R.J.
        Dorsal striatum and stimulus-response learning: Lesions of the dorsolateral, but not dorsomedial, striatum impair acquisition of a stimulus-response-based instrumental discrimination task, while sparing conditioned place preference learning.
        Neuroscience. 2004; 124: 23-31
        • Thorn C.A.
        • Atallah H.
        • Howe M.
        • Graybiel A.M.
        Differential dynamics of activity changes in dorsolateral and dorsomedial striatal loops during learning.
        Neuron. 2010; 66: 781-795
        • Kim H.F.
        • Hikosaka O.
        Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards.
        Brain. 2015; 138: 1776-1800
        • Kim H.F.
        • Hikosaka O.
        Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values.
        Neuron. 2013; 79: 1001-1010
        • Yin H.H.
        • Ostlund S.B.
        • Knowlton B.J.
        • Balleine B.W.
        The role of the dorsomedial striatum in instrumental conditioning.
        Eur J Neurosci. 2005; 22: 513-523
        • Porrino L.J.
        • Lyons D.
        • Smith H.R.
        • Daunais J.B.
        • Nader M.A.
        Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains.
        J Neurosci. 2004; 24: 3554-3562
        • Yin H.H.
        • Knowlton B.J.
        • Balleine B.W.
        Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning.
        Eur J Neurosci. 2004; 19: 181-189
        • Mars R.B.
        • Jbabdi S.
        • Sallet J.
        • O’Reilly J.X.
        • Croxson P.L.
        • Olivier E.
        • et al.
        Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity.
        J Neurosci. 2011; 31: 4087-4100
        • Reep R.L.
        • Cheatwood J.L.
        • Corwin J.V.
        The associative striatum: Organization of cortical projections to the dorsocentral striatum in rats.
        J Comp Neurol. 2003; 467: 271-292
        • Hurley K.M.
        • Herbert H.
        • Moga M.M.
        • Saper C.B.
        Efferent projections of the infralimbic cortex of the rat.
        J Comp Neurol. 1991; 308: 249-276
        • Sesack S.R.
        • Deutch A.Y.
        • Roth R.H.
        • Bunney B.S.
        Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin.
        J Comp Neurol. 1989; 290: 213-242
        • Zeng D.
        • Stuesse S.L.
        Morphological heterogeneity within the cingulate cortex in rat: A horseradish peroxidase transport study.
        Brain Res. 1991; 565: 290-300
        • Hoover W.B.
        • Vertes R.P.
        Projections of the medial orbital and ventral orbital cortex in the rat.
        J Comp Neurol. 2011; 519: 3766-3801
        • Vertes R.P.
        Differential projections of the infralimbic and prelimbic cortex in the rat.
        Synapse. 2004; 51: 32-58
        • Cho Y.T.
        • Ernst M.
        • Fudge J.L.
        Cortico-amygdala-striatal circuits are organized as hierarchical subsystems through the primate amygdala.
        J Neurosci. 2013; 33: 14017-14030
        • Chiba T.
        • Kayahara T.
        • Nakano K.
        Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata.
        Brain Res. 2001; 888: 83-101
        • Ferry A.T.
        • Ongur D.
        • An X.
        • Price J.L.
        Prefrontal cortical projections to the striatum in macaque monkeys: Evidence for an organization related to prefrontal networks.
        J Comp Neurol. 2000; 425: 447-470
        • Paxinos G.
        • Huang X.F.
        • Toga A.W.
        The Rhesus Monkey in Stereotaxic Coordinates.
        Academic Press, San Diego2000

      Linked Article

      • Making the Right Connections
        Biological PsychiatryVol. 80Issue 7
        • Preview
          Recent years have seen the application of increasingly powerful transgenic, optogenetic, and chemogenetic methodologies in rodents. Armed with these tools, many studies have shown how perturbations of specific subregions of the rodent frontal cortex can elicit circumscribed behavioral phenotypes that resemble key aspects of psychiatric disorders. For example, the rodent frontal cortex can be broadly divided into motor, medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC) divisions; the mPFC can be further subdivided into prelimbic (PL), infralimbic (IL), and cingulate (Cg) cortices, while the OFC comprises the medial orbital (MO) and ventral and lateral orbital (VOLO) cortices.
        • Full-Text
        • PDF