Advertisement

7T Proton Magnetic Resonance Spectroscopy of Gamma-Aminobutyric Acid, Glutamate, and Glutamine Reveals Altered Concentrations in Patients With Schizophrenia and Healthy Siblings

      Abstract

      Background

      The N-methyl-D-aspartate receptor hypofunction model of schizophrenia predicts dysfunction in both glutamatergic and gamma-aminobutyric acidergic (GABAergic) transmission. We addressed this hypothesis by measuring GABA, glutamate, glutamine, and the sum of glutamine plus glutamate concentrations in vivo in patients with schizophrenia using proton magnetic resonance spectroscopy at 7T, which allows separation of metabolites that would otherwise overlap at lower field strengths. In addition, we investigated whether altered levels of GABA, glutamate, glutamine, and the sum of glutamine plus glutamate reflect genetic vulnerability to schizophrenia by including healthy first-degree relatives.

      Methods

      Proton magnetic resonance spectroscopy at 7T was performed in 21 patients with chronic schizophrenia who were taking medication, 23 healthy first-degree relatives of patients with schizophrenia, and 24 healthy nonrelatives. Glutamate, glutamine, and GABA were measured cortically and subcortically in bilateral basal ganglia and occipital cortex.

      Results

      Patients with schizophrenia had reduced cortical GABA compared with healthy relatives and the combined sample of healthy relatives and healthy nonrelatives, suggesting that altered GABAergic systems in schizophrenia are associated with either disease state or medication effects. Reduced cortical glutamine relative to healthy control subjects was observed in patients with schizophrenia and the combined sample of healthy relatives and patients with schizophrenia, suggesting that altered glutamatergic metabolite levels are associated with illness liability. No group differences were found in the basal ganglia.

      Conclusions

      Taken together, these findings are consistent with alterations in GABAergic and glutamatergic systems in patients with schizophrenia and provide novel insights into these systems in healthy relatives.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kantrowitz J.T.
        • Javitt D.C.
        N-methyl-D-aspartate (NMDA) receptor dysfunction or dysregulation: The final common pathway on the road to schizophrenia?.
        Brain Res Bull. 2010; 83: 108-121
        • Coyle J.T.
        NMDA receptor and schizophrenia: A brief history.
        Schizophr Bull. 2012; 38: 920-926
        • Krystal J.H.
        • Karper L.P.
        • Seibyl J.P.
        • Freeman G.K.
        • Delaney R.
        • Bremner J.D.
        • et al.
        Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
        Arch Gen Psychiatry. 1994; 51: 199-214
        • Javitt D.C.
        • Zukin S.R.
        Recent advances in the phencyclidine model of schizophrenia.
        Am J Psychiatry. 1991; 148: 1301-1308
        • Allen R.M.
        • Young S.J.
        Phencyclidine-induced psychosis.
        Am J Psychiatry. 1978; 135: 1081-1084
        • Luby E.D.
        • Gottlieb J.S.
        • Cohen B.D.
        • Rosenbaum G.
        • Domino E.F.
        Model psychoses and schizophrenia.
        Am J Psychiatry. 1962; 119: 61-67
        • Tsai G.E.
        • Lin P.Y.
        Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis.
        Curr Pharm Des. 2010; 16: 522-537
        • Coyle J.T.
        • Tsai G.
        • Goff D.
        Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia.
        Ann N Y Acad Sci. 2003; 1003: 318-327
        • Harrison P.J.
        • Owen M.J.
        Genes for schizophrenia? Recent findings and their pathophysiological implications.
        Lancet. 2003; 361: 417-419
        • Moghaddam B.
        • Adams B.
        • Verma A.
        • Daly D.
        Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex.
        J Neurosci. 1997; 17: 2921-2927
        • Jackson M.E.
        • Homayoun H.
        • Moghaddam B.
        NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex.
        Proc Natl Acad Sci U S A. 2004; 101: 8467-8472
        • Markram H.
        • Toledo-Rodriguez M.
        • Wang Y.
        • Gupta A.
        • Silberberg G.
        • Wu C.
        Interneurons of the neocortical inhibitory system.
        Nat Rev Neurosci. 2004; 5: 793-807
        • Farber N.B.
        • Wozniak D.F.
        • Price M.T.
        • Labruyere J.
        • Huss J.
        • St Peter H.
        • et al.
        Age-specific neurotoxicity in the rat associated with NMDA receptor blockade: Potential relevance to schizophrenia?.
        Biol Psychiatry. 1995; 38: 788-796
        • Grunze H.C.
        • Rainnie D.G.
        • Hasselmo M.E.
        • Barkai E.
        • Hearn E.F.
        • McCarley R.W.
        • et al.
        NMDA-dependent modulation of CA1 local circuit inhibition.
        J Neurosci. 1996; 16: 2034-2043
        • Stone J.M.
        • Dietrich C.
        • Edden R.
        • Mehta M.A.
        • De Simoni S.
        • Reed L.J.
        • et al.
        Ketamine effects on brain GABA and glutamate levels with 1H-MRS: Relationship to ketamine-induced psychopathology.
        Mol Psychiatry. 2012; 17: 664-665
        • Rowland L.M.
        • Bustillo J.R.
        • Mullins P.G.
        • Jung R.E.
        • Lenroot R.
        • Landgraf E.
        • et al.
        Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: A 4-T proton MRS study.
        Am J Psychiatry. 2005; 162: 394-396
        • Iltis I.
        • Koski D.M.
        • Eberly L.E.
        • Nelson C.D.
        • Deelchand D.K.
        • Valette J.
        • et al.
        Neurochemical changes in the rat prefrontal cortex following acute phencyclidine treatment: An in vivo localized 1H-MRS study.
        NMR Biomed. 2009; 22: 737-744
        • Napolitano A.
        • Shah K.
        • Schubert M.I.
        • Prokess V.
        • Fone K.C.F.
        • Auer D.P.
        In vivo neurometabolic profiling to characterize the effects of social isolation and ketamine-induced NMDA antagonism: A rodent study at 7.0T.
        Schizophr Res. 2014; 40: 566-574
        • Schwerk A.
        • Alves F.D.
        • Pouwels P.J.
        • van Amelsvoort T.
        Metabolic alterations associated with schizophrenia: A critical evaluation of proton magnetic resonance spectroscopy studies.
        J Neurochem. 2014; 128: 1-87
        • Marsman A.
        • van den Heuvel M.P.
        • Klomp D.W.
        • Kahn R.S.
        • Luijten P.R.
        • Hulshoff Pol H.E.
        Glutamate in schizophrenia: A focused review and meta-analysis of (1)H-MRS studies.
        Schizophr Bull. 2013; 39: 120-129
        • Wijtenburg S.A.
        • Yang S.
        • Fischer B.A.
        • Rowland L.M.
        In vivo assessment of neurotransmitters and modulators with magnetic resonance spectroscopy: Application to schizophrenia.
        Neurosci Biobehav Rev. 2015; 51: 276-295
        • Poels E.M.
        • Kegeles L.S.
        • Kantrowitz J.T.
        • Slifstein M.
        • Javitt D.C.
        • Lieberman J.A.
        • et al.
        Imaging glutamate in schizophrenia: Review of findings and implications for drug discovery.
        Mol Psychiatry. 2014; 19: 20-29
        • Aoyama N.
        • Theberge J.
        • Drost D.J.
        • Manchanda R.
        • Northcott S.
        • Neufeld R.W.
        • et al.
        Grey matter and social functioning correlates of glutamatergic metabolite loss in schizophrenia.
        Br J Psychiatry. 2011; 198: 448-456
        • Theberge J.
        • Williamson K.E.
        • Aoyama N.
        • Drost D.J.
        • Manchanda R.
        • Malla A.K.
        • et al.
        Longitudinal grey-matter and glutamatergic losses in first-episode schizophrenia.
        Br J Psychiatry. 2007; 191: 325-334
        • Theberge J.
        • Bartha R.
        • Drost D.J.
        • Menon R.S.
        • Malla A.
        • Takhar J.
        • et al.
        Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers.
        Am J Psychiatry. 2002; 159: 1944-1946
        • Stone J.M.
        • Day F.
        • Tsagaraki H.
        • Valli I.
        • McLean M.A.
        • Lythgoe D.J.
        • et al.
        Glutamate dysfunction in people with prodromal symptoms of psychosis: Relationship to gray matter volume.
        Biol Psychiatry. 2009; 66: 533-539
        • Egerton A.
        • Stone J.M.
        • Chaddock C.A.
        • Barker G.J.
        • Bonoldi I.
        • Howard R.M.
        • et al.
        Relationship between brain glutamate levels and clinical outcome in individuals at ultra high risk of psychosis.
        Neuropsychopharmacology. 2014; 39: 2891-2899
        • Valli I.
        • Stone J.
        • Mechelli A.
        • Bhattacharyya S.
        • Raffin M.
        • Allen P.
        • et al.
        Altered medial temporal activation related to local glutamate levels in subjects with prodromal signs of psychosis.
        Biol Psychiatry. 2011; 69: 97-99
        • Fusar-Poli P.
        • Stone J.M.
        • Broome M.R.
        • Valli I.
        • Mechelli A.
        • McLean M.A.
        • et al.
        Thalamic glutamate levels as a predictor of cortical response during executive functioning in subjects at high risk for psychosis.
        Arch Gen Psychiatry. 2011; 68: 881-890
        • de la Fuente-Sandoval C.
        • Leon-Ortiz P.
        • Azcarraga M.
        • Stephano S.
        • Favila R.
        • Diaz-Galvis L.
        • et al.
        Glutamate levels in the associative striatum before and after 4 weeks of antipsychotic treatment in first-episode psychosis: A longitudinal proton magnetic resonance spectroscopy study.
        JAMA Psychiatry. 2013; 70: 1057-1066
        • de la Fuente-Sandoval C.
        • Leon-Ortiz P.
        • Azcarraga M.
        • Favila R.
        • Stephano S.
        • Graff-Guerrero A.
        Striatal glutamate and the conversion to psychosis: A prospective 1H-MRS imaging study.
        Int J Neuropsychopharmacol. 2013; 16: 471-475
        • de la Fuente-Sandoval C.
        • Leon-Ortiz P.
        • Favila R.
        • Stephano S.
        • Mamo D.
        • Ramirez-Bermudez J.
        • et al.
        Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis.
        Neuropsychopharmacology. 2011; 36: 1781-1791
        • Goto N.
        • Yoshimura R.
        • Kakeda S.
        • Nishimura J.
        • Moriya J.
        • Hayashi K.
        • et al.
        Six-month treatment with atypical antipsychotic drugs decreased frontal-lobe levels of glutamate plus glutamine in early-stage first-episode schizophrenia.
        Neuropsychiatr Dis Treat. 2012; 8: 119-122
        • Yoon J.H.
        • Maddock R.J.
        • Rokem A.
        • Silver M.A.
        • Minzenberg M.J.
        • Ragland J.D.
        • et al.
        GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression.
        J Neurosci. 2010; 30: 3777-3781
        • Marsman A.
        • Mandl R.C.
        • Klomp D.W.
        • Bohlken M.M.
        • Boer V.O.
        • Andreychenko A.
        • et al.
        GABA and glutamate in schizophrenia: A 7 T (1)H-MRS study.
        Neuroimage Clin. 2014; 6: 398-407
        • Tayoshi S.
        • Sumitani S.
        • Taniguchi K.
        • Shibuya-Tayoshi S.
        • Numata S.
        • Iga J.
        • et al.
        Metabolite changes and gender differences in schizophrenia using 3-Tesla proton magnetic resonance spectroscopy (1H-MRS).
        Schizophr Res. 2009; 108: 69-77
        • Tayoshi S.
        • Nakataki M.
        • Sumitani S.
        • Taniguchi K.
        • Shibuya-Tayoshi S.
        • Numata S.
        • et al.
        GABA concentration in schizophrenia patients and the effects of antipsychotic medication: A proton magnetic resonance spectroscopy study.
        Schizophr Res. 2010; 117: 83-91
        • Hutcheson N.L.
        • Reid M.A.
        • White D.M.
        • Kraguljac N.V.
        • Avsar K.B.
        • Bolding M.S.
        • et al.
        Multimodal analysis of the hippocampus in schizophrenia using proton magnetic resonance spectroscopy and functional magnetic resonance imaging.
        Schizophr Res. 2012; 140: 136-142
        • Jessen F.
        • Fingerhut N.
        • Sprinkart A.M.
        • Kuhn K.U.
        • Petrovsky N.
        • Maier W.
        • et al.
        N-acetylaspartylglutamate (NAAG) and N-acetylaspartate (NAA) in patients with schizophrenia.
        Schizophr Bull. 2013; 39: 197-205
        • Ongur D.
        • Prescot A.P.
        • McCarthy J.
        • Cohen B.M.
        • Renshaw P.F.
        Elevated gamma-aminobutyric acid levels in chronic schizophrenia.
        Biol Psychiatry. 2010; 68: 667-670
        • Rowland L.M.
        • Spieker E.A.
        • Francis A.
        • Barker P.B.
        • Carpenter W.T.
        • Buchanan R.W.
        White matter alterations in deficit schizophrenia.
        Neuropsychopharmacology. 34. 2009: 1514-1522
        • Reid M.A.
        • Kraguljac N.V.
        • Avsar K.B.
        • White D.M.
        • den Hollander J.A.
        • Lahti A.C.
        Proton magnetic resonance spectroscopy of the substantia nigra in schizophrenia.
        Schizophr Res. 2013; 147: 348-354
        • Reid M.A.
        • Stoeckel L.E.
        • White D.M.
        • Avsar K.B.
        • Bolding M.S.
        • Akella N.S.
        • et al.
        Assessments of function and biochemistry of the anterior cingulate cortex in schizophrenia.
        Biol Psychiatry. 2010; 68: 625-633
        • Kraguljac N.V.
        • Reid M.A.
        • White D.M.
        • den Hollander J.
        • Lahti A.C.
        Regional decoupling of N-acetyl-aspartate and glutamate in schizophrenia.
        Neuropsychopharmacology. 2012; 37: 2635-2642
        • Wood S.J.
        • Yucel M.
        • Wellard R.M.
        • Harrison B.J.
        • Clarke K.
        • Fornito A.
        • et al.
        Evidence for neuronal dysfunction in the anterior cingulate of patients with schizophrenia: A proton magnetic resonance spectroscopy study at 3 T.
        Schizophr Res. 2007; 94: 328-331
        • Natsubori T.
        • Inoue H.
        • Abe O.
        • Takano Y.
        • Iwashiro N.
        • Aoki Y.
        • et al.
        Reduced frontal glutamate + glutamine and N-acetylaspartate levels in patients with chronic schizophrenia but not in those at clinical high risk for psychosis or with first-episode schizophrenia.
        Schizophr Bull. 2014; 40: 1128-1139
        • Rowland L.M.
        • Kontson K.
        • West J.
        • Edden R.A.
        • Zhu H.
        • Wijtenburg S.A.
        • et al.
        In vivo measurements of glutamate, GABA, and NAAG in schizophrenia.
        Schizophr Bull. 2013; 39: 1096-1104
        • Lutkenhoff E.S.
        • van Erp T.G.
        • Thomas M.A.
        • Therman S.
        • Manninen M.
        • Huttunen M.O.
        • et al.
        Proton MRS in twin pairs discordant for schizophrenia.
        Mol Psychiatry. 2010; 15: 308-318
        • Theberge J.
        • Al-Semaan Y.
        • Williamson P.C.
        • Menon R.S.
        • Neufeld R.W.
        • Rajakumar N.
        • et al.
        Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0-T proton MRS.
        Am J Psychiatry. 2003; 160: 2231-2233
        • Chang L.
        • Friedman J.
        • Ernst T.
        • Zhong K.
        • Tsopelas N.D.
        • Davis K.
        Brain metabolite abnormalities in the white matter of elderly schizophrenic subjects: Implication for glial dysfunction.
        Biol Psychiatry. 62. 2007: 1396-1404
        • Bustillo J.R.
        • Chen H.
        • Jones T.
        • Lemke N.
        • Abbott C.
        • Qualls C.
        • et al.
        Increased glutamine in patients undergoing long-term treatment for schizophrenia: A proton magnetic resonance spectroscopy study at 3 T.
        JAMA Psychiatry. 2014; 71: 265-272
        • Purdon S.E.
        • Valiakalayil A.
        • Hanstock C.C.
        • Seres P.
        • Tibbo P.
        Elevated 3T proton MRS glutamate levels associated with poor Continuous Performance Test (CPT-0X) scores and genetic risk for schizophrenia.
        Schizophr Res. 2008; 99: 218-224
        • Taylor S.F.
        • Tso I.F.
        GABA abnormalities in schizophrenia: A methodological review of in vivo studies.
        Schizophr Res. 2015; 167: 84-90
        • Kelemen O.
        • Kiss I.
        • Benedek G.
        • Keri S.
        Perceptual and cognitive effects of antipsychotics in first-episode schizophrenia: The potential impact of GABA concentration in the visual cortex.
        Prog Neuropsychopharmacol Bol Psychiatry. 2013; 47: 13-19
        • Rowland L.M.
        • Krause B.W.
        • Wijtenburg S.A.
        • McMahon R.P.
        • Chiappelli J.
        • Nugent K.L.
        • et al.
        Medial frontal GABA is lower in older schizophrenia: A MEGA-PRESS with macromolecule suppression study.
        Mol Psychiatry. 2016; 21: 198-204
        • Kegeles L.S.
        • Mao X.
        • Stanford A.D.
        • Girgis R.
        • Ojeil N.
        • Xu X.
        • et al.
        Elevated prefrontal cortex gamma-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy.
        Arch Gen Psychiatry. 2012; 69: 449-459
        • Kehrer C.
        • Maziashvili N.
        • Dugladze T.
        • Gloveli T.
        Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia.
        Front Mol Neurosci. 2008; 1: 6
        • Green M.F.
        • Lee J.
        • Wynn J.K.
        • Mathis K.I.
        Visual masking in schizophrenia: Overview and theoretical implications.
        Schizophr Bull. 2011; 37: 700-708
        • Yang E.
        • Tadin D.
        • Glasser D.M.
        • Hong S.W.
        • Blake R.
        • Park S.
        Visual context processing in schizophrenia.
        Clin Psychol Sci. 2013; 1: 5-15
        • Kiss I.
        • Fabian A.
        • Benedek G.
        • Keri S.
        When doors of perception open: Visual contrast sensitivity in never-medicated, first-episode schizophrenia.
        J Abnorm Psychol. 2010; 119: 586-593
        • Tadin D.
        • Kim J.
        • Doop M.L.
        • Gibson C.
        • Lappin J.S.
        • Blake R.
        • et al.
        Weakened center-surround interactions in visual motion processing in schizophrenia.
        J Neurosci. 2006; 26: 11403-11412
        • Butler P.D.
        • Zemon V.
        • Schechter I.
        • Saperstein A.M.
        • Hoptman M.J.
        • Lim K.O.
        • et al.
        Early-stage visual processing and cortical amplification deficits in schizophrenia.
        Arch Gen Psychiatry. 2005; 62: 495-504
        • Yeap S.
        • Kelly S.P.
        • Sehatpour P.
        • Magno E.
        • Javitt D.C.
        • Garavan H.
        • et al.
        Early visual sensory deficits as endophenotypes for schizophrenia: High-density electrical mapping in clinically unaffected first-degree relatives.
        Arch Gen Psychiatry. 63. 2006: 1180-1188
        • Brunelin J.
        • Fecteau S.
        • Suaud-Chagny M.F.
        Abnormal striatal dopamine transmission in schizophrenia.
        Curr Med Chem. 2013; 20: 397-404
        • Genetic Risk and Outcome in Psychosis (GROUP) Investigators
        Evidence that familial liability for psychosis is expressed as differential sensitivity to cannabis: An analysis of patient-sibling and sibling-control pairs.
        Arch Gen Psychiatry. 2011; 68: 138-147
        • Andreasen N.C.
        • Flaum M.
        • Arndt S.
        The Comprehensive Assessment of Symptoms and History (CASH). An instrument for assessing diagnosis and psychopathology.
        Arch Gen Psychiatry. 1992; 49: 615-623
        • Wing J.K.
        • Babor T.
        • Brugha T.
        • Burke J.
        • Cooper J.E.
        • Giel R.
        • et al.
        SCAN. Schedules for Clinical Assessment in Neuropsychiatry.
        Arch Gen Psychiatry. 1990; 47: 589-593
        • Woods S.W.
        Chlorpromazine equivalent doses for the newer atypical antipsychotics.
        J Clin Psychiatry. 2003; 64: 663-667
        • Kay S.R.
        • Fiszbein A.
        • Opler L.A.
        The Positive and Negative Syndrome Scale (PANSS) for schizophrenia.
        Schizophr Bull. 1987; 13: 261-276
        • Birchwood M.
        • Smith J.
        • Cochrane R.
        • Wetton S.
        • Copestake S.
        The Social Functioning Scale. The development and validation of a new scale of social adjustment for use in family intervention programmes with schizophrenic patients.
        Br J Psychiatry. 1990; 157: 853-859
        • Schmand B.A.
        • Bakker D.
        • Saan R.J.
        • Lourman J.
        De Nederlandse Leestest voor Volwassenen: Een maat voor het premorbide intelligentieniveau.
        Tijdschr Gerontol Geriatr. 1991; 22: 15-19
        • Oldfield R.C.
        The assessment and analysis of handedness: The Edinburgh inventory.
        Neuropyschologia. 1971; 9: 97-113
        • Boer V.O.
        • van Lier A.L.
        • Hoogduin J.M.
        • Wijnen J.P.
        • Luijten P.R.
        • Klomp D.W.
        7-T (1) H MRS with adiabatic refocusing at short TE using radiofrequency focusing with a dual-channel volume transmit coil.
        NMR Biomed. 2011; 24: 1038-1046
        • Andreychenko A.
        • Boer V.O.
        • Arteaga de Castro C.S.
        • Luijten P.R.
        • Klomp D.W.
        Efficient spectral editing at 7 T: GABA detection with MEGA-sLASER.
        Magn Reson Med. 2012; 68: 1018-1025
      1. de Graaf RA (1998): In Vivo NMR Spectroscopy. Chichester, England: John Wiley & Sons Ltd.

        • Pfeuffer J.
        • Tkác I.
        • Provencher S.W.
        • Gruetter R.
        Toward an in vivo neurochemical profile: Quantification of 18 metabolites in short-echo time (1)H NMR spectra of the rat brain.
        J Magn Reson. 1999; 141: 104-120
        • Duyn J.H.
        • Gillen J.
        • Sobering G.
        • van Zijl P.C.
        • Moonen C.T.
        Multisection proton MR spectroscopic imaging of the brain.
        Radiology. 1993; 188: 277-282
        • Boer V.O.
        • Klomp D.W.
        • Juchem C.
        • Luijten P.R.
        • de Graaf R.A.
        Multislice (1)H MRSI of the human brain at 7 T using dynamic B(0) and B(1) shimming.
        Magn Reson Med. 2012; 68: 662-670
        • Gerfen C.R.
        • Surmeier D.J.
        Modulation of striatal projection systems by dopamine.
        Annu Rev Neurosci. 2011; 34: 441-466
        • Howes O.D.
        • Bose S.K.
        • Turkheimer F.
        • Valli I.
        • Egerton A.
        • Valmaggia L.R.
        • et al.
        Dopamine synthesis capacity before onset of psychosis: A prospective [18F]-DOPA PET imaging study.
        Am J Psychiatry. 2011; 168: 1311-1317
        • Stagg C.J.
        • Bestmann S.
        • Constantinescu A.O.
        • Moreno L.M.
        • Allman C.
        • Mekle R.
        • et al.
        Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex.
        J Physiol. 2011; 589: 5845-5855
        • Erecinska M.
        • Silver I.A.
        Metabolism and role of glutamate in mammalian brain.
        Prog Neurobiol. 1990; 35: 245-296
        • Oni-Orisan A.
        • Kristiansen L.V.
        • Haroutunian V.
        • Meador-Woodruff J.H.
        • McCullumsmith R.E.
        Altered vesicular glutamate transporter expression in the anterior cingulate cortex in schizophrenia.
        Biol Psychiatry. 2008; 63: 766-775
        • Gluck M.R.
        • Thomas R.G.
        • Davis K.L.
        • Haroutunian V.
        Implications for altered glutamate and GABA metabolism in the dorsolateral prefrontal cortex of aged schizophrenic patients.
        Am J Psychiatry. 2002; 159: 1165-1173
        • Kegeles L.S.
        • Abi-Dargham A.
        • Zea-Ponce Y.
        • Rodenhiser-Hill J.
        • Mann J.J.
        • Van Heertum R.L.
        • et al.
        Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: Implications for schizophrenia.
        Biol Psychiatry. 2000; 48: 627-640
        • Cohen S.M.
        • Tsien R.W.
        • Goff D.C.
        • Halassa M.M.
        The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia.
        Schizophr Res. 2015; 167: 98-107
        • Bustillo J.R.
        • Rowland L.M.
        • Mullins P.
        • Jung R.
        • Chen H.
        • Qualls C.
        • et al.
        1H-MRS at 4 tesla in minimally treated early schizophrenia.
        Mol Psychiatry. 2010; 15: 629-636
        • Brans R.G.
        • van Haren N.E.
        • van Baal G.C.
        • Schnack H.G.
        • Kahn R.S.
        • Hulshoff Pol H.E.
        Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia.
        Arch Gen Psychiatry. 2008; 65: 1259-1268