Moving Toward Understanding the Proteome Involved in Substance Abuse

  • Sean P. Farris
    Address correspondence to Sean P. Farris, Ph.D., Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, TX 78712.
    Waggoner Center for Alcohol and Addiction Research and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, Texas
    Search for articles by this author
      Addiction to alcohol and other drugs of abuse is a persistent mental health disorder adversely affecting the individuals with the disorder as well as society at large. Initial substance use and subsequent chronic abuse affect multiple brain systems and biological pathways. The transition to a substance use disorder entails interacting molecular components within the central nervous system (CNS), forming a dense network of proteins capable of being usurped by abused substances. Deciphering the affected components throughout the life cycle of addiction is essential for understanding the neurobiological complexity of this mental health disorder and for rational design of pharmacotherapies.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Salling M.C.
        • Faccidomo S.P.
        • Li C.
        • Psilos K.
        • Galunas C.
        • Spanos M.
        • et al.
        Moderate alcohol drinking and the amygdala proteome: Identification and validation of calcium/calmodulin dependent kinase II and AMPA receptor activity as novel molecular mechanisms of the positive reinforcing effects of alcohol.
        Biol Psychiatry. 2016; 79: 430-442
        • Wilhelm M.
        • Schlegl J.
        • Hahne H.
        • Moghaddas Gholami A.
        • Lieberenz M.
        • Savitski M.M.
        • et al.
        Mass-spectrometry-based draft of the human proteome.
        Nature. 2014; 509: 582-587
        • Kim M.-S.
        • Pinto S.M.
        • Getnet D.
        • Nirujogi R.S.
        • Manda S.S.
        • Chaerkady R.
        • et al.
        A draft map of the human proteome.
        Nature. 2014; 509: 575-581
        • Uhlén M.
        • Fagerberg L.
        • Hallström B.M.
        • Lindskog C.
        • Oksvold P.
        • Mardinoglu A.
        • et al.
        Proteomics. Tissue-based map of the human proteome.
        Science. 2015; 347: 1260419
        • Xu Q.
        • Modrek B.
        • Lee C.
        Genome-wide detection of tissue-specific alternative splicing in the human transcriptome.
        Nucleic Acids Res. 2002; 30: 3754-3766
        • Ellis J.D.
        • Barrios-Rodiles M.
        • Colak R.
        • Irimia M.
        • Kim T.
        • Calarco J.A.
        • et al.
        Tissue-specific alternative splicing remodels protein-protein interaction networks.
        Mol Cell. 2012; 46: 884-892
        • Rolland T.
        • Tasan M.
        • Charloteaux B.
        • Pevzner S.J.
        • Zhong Q.
        • Sahni N.
        • et al.
        A proteome-scale map of the human interactome network.
        Cell. 2014; 159: 1212-1226
        • Wan C.
        • Borgeson B.
        • Phanse S.
        • Tu F.
        • Drew K.
        • Clark G.
        • et al.
        Panorama of ancient metazoan macromolecular complexes.
        Nature. 2015; 525: 339-344
        • Han S.
        • Yang B.-Z.
        • Kranzler H.R.
        • Liu X.
        • Zhao H.
        • Farrer L.A.
        • et al.
        Integrating GWASs and human protein interaction networks identifies a gene subnetwork underlying alcohol dependence.
        Am J Hum Genet. 2013; 93: 1027-1034
        • Baker E.J.
        • Jay J.J.
        • Bubier J.A.
        • Langston M.A.
        • Chesler E.J.
        GeneWeaver: A web-based system for integrative functional genomics.
        Nucleic Acids Res. 2012; 40: D1067-D1076

      Linked Article