Advertisement

Interactions Between Anandamide and Corticotropin-Releasing Factor Signaling Modulate Human Amygdala Function and Risk for Anxiety Disorders: An Imaging Genetics Strategy for Modeling Molecular Interactions

      Abstract

      Background

      Preclinical models reveal that stress-induced amygdala activity and impairment in fear extinction reflect reductions in anandamide driven by corticotropin-releasing factor receptor type 1 (CRF1) potentiation of the anandamide catabolic enzyme fatty acid amide hydrolase.

      Methods

      Here, we provide clinical translation for the importance of these molecular interactions using an imaging genetics strategy to examine whether interactions between genetic polymorphisms associated with differential anandamide (FAAH rs324420) and CRF1 (CRHR1 rs110402) signaling modulate amygdala function and anxiety disorder diagnosis.

      Results

      Analyses revealed that individuals with a genetic background predicting relatively high anandamide and CRF1 signaling exhibited blunted basolateral amygdala habituation, which further mediated increased risk for anxiety disorders among these same individuals.

      Conclusions

      The convergence of preclinical and clinical data suggests that interactions between anandamide and CRF1 represent a fundamental molecular mechanism regulating amygdala function and anxiety. Our results further highlight the potential of imaging genetics to powerfully translate complex preclinical findings to clinically meaningful human phenotypes.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gunduz-Cinar O.
        • MacPherson K.P.
        • Cinar R.
        • Gamble-George J.
        • Sugden K.
        • Williams B.
        • et al.
        Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity.
        Mol Psychiatry. 2013; 18: 813-823
        • Hill M.N.
        • McLaughlin R.J.
        • Bingham B.
        • Shrestha L.
        • Lee T.T.Y.
        • Gray J.M.
        • et al.
        Endogenous cannabinoid signaling is essential for stress adaptation.
        Proc Natl Acad Sci U S A. 2010; 107: 9406-9411
        • Hill M.N.
        • McLaughlin R.J.
        • Morrish A.C.
        • Viau V.
        • Floresco S.B.
        • Hillard C.J.
        • Gorzalka B.B.
        Suppression of amygdalar endocannabinoid signaling by stress contributes to activation of the hypothalamic-pituitary-adrenal axis.
        Neuropsychopharmacology. 2009; 34: 2733-2745
        • Gunduz-Cinar O.
        • Hill M.N.
        • McEwen B.S.
        • Holmes A.
        Amygdala FAAH and anandamide: Mediating protection and recovery from stress.
        Trends Pharmacol Sci. 2013; 34: 637-644
        • Haller J.
        • Barna I.
        • Barsvari B.
        • Gyimesi Pelczer K.
        • Yasar S.
        • Panlilio L.V.
        • Goldberg S.
        Interactions between environmental aversiveness and the anxiolytic effects of enhanced cannabinoid signaling by FAAH inhibition in rats.
        Psychopharmacology (Berl). 2009; 204: 607-616
        • Moreira F.A.
        • Kaiser N.
        • Monory K.
        • Lutz B.
        Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors.
        Neuropharmacology. 2008; 54: 141-150
        • Rademacher D.J.
        • Meier S.E.
        • Shi L.Y.
        • Ho W.S.V.
        • Jarrahian A.
        • Hillard C.J.
        Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice.
        Neuropharmacology. 2008; 54: 108-116
        • Patel S.
        • Roelke C.T.
        • Rademacher D.J.
        • Hillard C.J.
        Inhibition of restraint stress-induced neural and behavioural activation by endogenous cannabinoid signalling.
        Eur J Neurosci. 2005; 21: 1057-1069
        • Gray J.M.
        • Vecchiarelli H.A.
        • Morena M.
        • Lee T.T.
        • Hermanson D.J.
        • Kim A.B.
        • et al.
        Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety.
        J Neurosci. 2015; 35: 3879-3892
        • Sipe J.C.
        • Chiang K.
        • Gerber A.L.
        • Beutler E.
        • Cravatt B.F.
        A missense mutation in human fatty acid amide hydrolase associated with problem drug use.
        Proc Natl Acad Sci U S A. 2002; 99: 8394-8399
        • Chiang K.P.
        • Gerber A.L.
        • Sipe J.C.
        • Cravatt B.F.
        Reduced cellular expression and activity of the P129T mutant of human fatty acid amide hydrolase: Evidence for a link between defects in the endocannabinoid system and problem drug use.
        Hum Mol Genet. 2004; 13: 2113-2119
        • Hariri A.R.
        • Gorka A.
        • Hyde L.W.
        • Kimak M.
        • Halder I.
        • Ducci F.
        • et al.
        Divergent effects of genetic variation in endocannabinoid signaling on human threat- and reward-related brain function.
        Biol Psychiatry. 2009; 66: 9-16
        • Dincheva I.
        • Drysdale A.T.
        • Hartley C.A.
        • Johnson D.C.
        • Jing D.
        • King E.C.
        • et al.
        FAAH genetic variation enhances fronto-amygdala function in mouse and human.
        Nat Commun. 2015; 6: 6395
        • Tyrka A.R.
        • Price L.H.
        • Gelernter J.
        • Schepker C.
        • Anderson G.M.
        • Carpenter L.L.
        Interaction of childhood maltreatment with the corticotropin-releasing hormone receptor gene: Effects on hypothalamic-pituitary-adrenal axis reactivity.
        Biol Psychiatry. 2009; 66: 681-685
        • Heim C.
        • Bradley B.
        • Mletzko T.C.
        • Deveau T.C.
        • Musselman D.L.
        • Nemeroff C.B.
        • et al.
        Effect of childhood trauma on adult depression and neuroendocrine function: Sex-specific moderation by CRH receptor 1 gene.
        Front Behav Neurosci. 2009; 3: 41
        • Bradley R.G.
        • Binder E.B.
        • Epstein M.P.
        • Tang Y.
        • Nair H.P.
        • Liu W.
        • et al.
        Influence of child abuse on adult depression: Moderation by the corticotropin-releasing hormone receptor gene.
        Arch Gen Psychiatry. 2008; 65: 190-200
        • Cicchetti D.
        • Rogosch F.A.
        • Oshri A.
        Interactive effects of corticotropin releasing hormone receptor 1, serotonin transporter linked polymorphic region, and child maltreatment on diurnal cortisol regulation and internalizing symptomatology.
        Dev Psychopathol. 2011; 23: 1125-1138
        • Sumner J.A.
        • McLaughlin K.A.
        • Walsh K.
        • Sheridan M.A.
        • Koenen K.C.
        CRHR1 genotype and history of maltreatment predict cortisol reactivity to stress in adolescents.
        Psychoneuroendocrinology. 2014; 43: 71-80
        • Mahon P.B.
        • Zandi P.P.
        • Potash J.B.
        • Nestadt G.
        • Wand G.S.
        Genetic association of FKBP5 and CRHR1 with cortisol response to acute psychosocial stress in healthy adults.
        Psychopharmacology (Berl). 2013; 227: 231-241
        • Ahs F.
        • Kragel P.A.
        • Zielinski D.J.
        • Brady R.
        • LaBar K.S.
        Medial prefrontal pathways for the contextual regulation of extinguished fear in humans.
        Neuroimage. 2015; 122: 262-271
        • LaBar K.S.
        • Gatenby J.C.
        • Gore J.C.
        • LeDoux J.E.
        • Phelps E.A.
        Human amygdala activation during conditioned fear acquisition and extinction: A mixed-trial fMRI study.
        Neuron. 1998; 20: 937-945
        • Green S.A.
        • Hernandez L.
        • Tottenham N.
        • Krasileva K.
        • Bookheimer S.Y.
        • Dapretto M.
        Neurobiology of sensory overresponsivity in youth with autism spectrum disorders.
        JAMA Psychiatry. 2015; 72: 778-786
        • Swartz J.R.
        • Wiggins J.L.
        • Carrasco M.
        • Lord C.
        • Monk C.S.
        Amygdala habituation and prefrontal functional connectivity in youth with autism spectrum disorders.
        J Am Acad Child Adolesc Psychiatry. 2013; 52: 84-93
        • Blackford J.U.
        • Allen A.H.
        • Cowan R.L.
        • Avery S.N.
        Amygdala and hippocampus fail to habituate to faces in individuals with an inhibited temperament.
        Soc Cogn Affect Neurosci. 2013; 8: 143-150
        • Milad M.R.
        • Pitman R.K.
        • Ellis C.B.
        • Gold A.L.
        • Shin L.M.
        • Lasko N.B.
        • et al.
        Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder.
        Biol Psychiatry. 2009; 66: 1075-1082
        • Gunduz-Cinar O.
        • Flynn S.
        • Brockway E.
        • Kaugars K.
        • Baldi R.
        • Ramikie T.S.
        • et al.
        Fluoxetine facilitates fear extinction through amygdala endocannabinoids.
        Neuropsychopharmacology. 2015; 41: 1598-1609
        • Carey C.E.
        • Agrawal A.
        • Zhang B.
        • Conley E.D.
        • Degenhardt L.
        • Heath A.C.
        • et al.
        Monoacylglycerol lipase (MGLL) polymorphism rs604300 interacts with childhood adversity to predict cannabis dependence symptoms and amygdala habituation: Evidence from an endocannabinoid system-level analysis.
        J Abnorm Psychol. 2015; 124: 860-877
        • Sheehan D.V.
        • Lecrubier Y.
        • Sheehan K.H.
        • Amorim P.
        • Janavs J.
        • Weiller E.
        • et al.
        The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10.
        J Clin Psychiatry. 1998; 59 (quiz 34–57): 22-33
        • First M.B.
        • Gibbon M.
        • Spitzer R.L.
        • Williams JBW
        • Benjamin L.S.
        Structured Clinical Interview for DSM-IV Axis II Personality Disorders (SCID-II).
        American Psychiatric Press, Inc., Washington DC1997
        • Price A.L.
        • Patterson N.J.
        • Plenge R.M.
        • Weinblatt M.E.
        • Shadick N.A.
        • Reich D.
        Principal components analysis corrects for stratification in genome-wide association studies.
        Nat Genet. 2006; 38: 904-909
        • Ahs F.
        • Davis C.F.
        • Gorka A.X.
        • Hariri A.R.
        Feature-based representations of emotional facial expressions in the human amygdala.
        Soc Cogn Affect Neurosci. 2014; 9: 1372-1378
        • Carre J.M.
        • Fisher P.M.
        • Manuck S.B.
        • Hariri A.R.
        Interaction between trait anxiety and trait anger predict amygdala reactivity to angry facial expressions in men but not women.
        Soc Cogn Affect Neurosci. 2012; 7: 213-221
        • Ekman P
        • Friesen WV
        Constants across cultures in the face and emotion.
        J Pers Soc Psychol. 1971; 17: 124
        • Whitfield-Gabrieli S.
        Artifact Detection and QA Manual.
        MIT Press, Cambridge, MA2009
        • Maldjian J.A.
        • Laurienti P.J.
        • Kraft R.A.
        • Burdette J.H.
        An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets.
        Neuroimage. 2003; 19: 1233-1239
        • Amunts K.
        • Kedo O.
        • Kindler M.
        • Pieperhoff P.
        • Mohlberg H.
        • Shah N.J.
        • et al.
        Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: Intersubject variability and probability maps.
        Anat Embryol (Berl). 2005; 210: 343-352
        • Bogdan R.
        • Williamson D.E.
        • Hariri A.R.
        Mineralocorticoid receptor Iso/Val (rs5522) genotype moderates the association between previous childhood emotional neglect and amygdala reactivity.
        Am J Psychiatry. 2012; 169: 515-522
        • Nikolova Y.S.
        • Koenen K.C.
        • Galea S.
        • Wang C.M.
        • Seney M.L.
        • Sibille E.
        • et al.
        Beyond genotype: Serotonin transporter epigenetic modification predicts human brain function.
        Nat Neurosci. 2014; 17: 1153-1155
        • Swartz J.R.
        • Knodt A.R.
        • Radtke S.R.
        • Hariri A.R.
        A neural biomarker of psychological vulnerability to future life stress.
        Neuron. 2015; 85: 505-511
        • Hayes A.F.
        Introduction to mediation, moderation, and conditional process analysis: A regression-based approach.
        Guilford Press, New York2013
        • Keller M.C.
        Gene x environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution.
        Biol Psychiatry. 2014; 75: 18-24
        • Baas D.
        • Aleman A.
        • Kahn R.S.
        Lateralization of amygdala activation: A systematic review of functional neuroimaging studies.
        Brain Res Brain Res Rev. 2004; 45: 96-103
        • Stein M.B.
        • Simmons A.N.
        • Feinstein J.S.
        • Paulus M.P.
        Increased amygdala and insula activation during emotion processing in anxiety-prone subjects.
        Am J Psychiatry. 2007; 164: 318-327
        • Hill M.N.
        • Bierer L.M.
        • Makotkine I.
        • Golier J.A.
        • Galea S.
        • McEwen B.S.
        • et al.
        Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks.
        Psychoneuroendocrinology. 2013; 38: 2952-2961
        • Gaetani S.
        • Dipasquale P.
        • Romano A.
        • Righetti L.
        • Cassano T.
        • Piomelli D.
        • Cuomo V.
        The endocannabinoid system as a target for novel anxiolytic and antidepressant drugs.
        Int Rev Neurobiol. 2009; 85: 57-72
        • Hill M.N.
        • Gorzalka B.B.
        The endocannabinoid system and the treatment of mood and anxiety disorders.
        CNS Neurol Disord Drug Targets. 2009; 8: 451-458