Advertisement

It’s All in the Rhythm: The Role of Cannabinoids in Neural Oscillations and Psychosis

Published:December 18, 2015DOI:https://doi.org/10.1016/j.biopsych.2015.12.011

      Abstract

      Evidence has accumulated over the past several decades suggesting that both exocannabinoids and endocannabinoids play a role in the pathophysiology of schizophrenia. The current article presents evidence suggesting that one of the mechanisms whereby cannabinoids induce psychosis is through the alteration in synchronized neural oscillations. Neural oscillations, particularly in the gamma (30–80 Hz) and theta (4–7 Hz) ranges, are disrupted in schizophrenia and are involved in various areas of perceptual and cognitive function. Regarding cannabinoids, preclinical evidence from slice and local field potential recordings has shown that central cannabinoid receptor (cannabinoid receptor type 1) agonists decrease the power of neural oscillations, particularly in the gamma and theta bands. Further, the administration of cannabinoids during critical stages of neural development has been shown to disrupt the brain’s ability to generate synchronized neural oscillations in adulthood. In humans, studies examining the effects of chronic cannabis use (utilizing electroencephalography) have shown abnormalities in neural oscillations in a pattern similar to those observed in schizophrenia. Finally, recent studies in humans have also shown disruptions in neural oscillations after the acute administration of delta-9-tetrahydrocannabinol, the primary psychoactive constituent in cannabis. Taken together, these data suggest that both acute and chronic cannabinoids can disrupt the ability of the brain to generate synchronized oscillations at functionally relevant frequencies. Hence, this may represent one of the primary mechanisms whereby cannabinoids induce disruptions in attention, working memory, sensory-motor integration, and many other psychosis-related behavioral effects.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Stransky E.
        Zur Kenntnis gewisser erworbener Blödsinnsformen.
        in: Fritsch J. Jahrbücher für Psychiatrie und Neurologie. Franz Deuticke, Leipzig, Wien1903: 1-149
        • Bleuler E.
        Dementia praecox oder Gruppe der Schizophrenien.
        Franz Deuticke, Leipzig, Wien1911
        • Andreasen N.C.
        • Paradiso S.
        • O’Leary D.S.
        "Cognitive dysmetria" as an integrative theory of schizophrenia: A dysfunction in cortical-subcortical-cerebellar circuitry?.
        Schizophr Bull. 1998; 24: 203-218
        • Meehl P.E.
        Schizotaxia revisited.
        Arch Gen Psychiatry. 1989; 46: 935-944
        • Friston K.J.
        • Frith C.D.
        Schizophrenia: A disconnection syndrome?.
        Clin Neurosci. 1995; 3: 89-97
        • Matthysse S.
        • Levy D.L.
        • Wu Y.
        • Rubin D.B.
        • Holzman P.
        Intermittent degradation in performance in schizophrenia.
        Schizophr Res. 1999; 40: 131-146
        • Tononi G.
        • Edelman G.M.
        Schizophrenia and the mechanisms of conscious integration.
        Brain Res Brain Res Rev. 2000; 31: 391-400
        • Phillips W.A.
        • Silverstein S.M.
        Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia.
        Behav Brain Sci. 2003; 26 (discussion 82–137): 65-82
        • Kwon J.S.
        • O’Donnell B.F.
        • Wallenstein G.V.
        • Greene R.W.
        • Hirayasu Y.
        • Nestor P.G.
        • et al.
        Gamma frequency-range abnormalities to auditory stimulation in schizophrenia.
        Arch Gen Psychiatry. 1999; 56: 1001-1005
        • Spencer K.M.
        • Nestor P.G.
        • Niznikiewicz M.A.
        • Salisbury D.F.
        • Shenton M.E.
        • McCarley R.W.
        Abnormal neural synchrony in schizophrenia.
        J Neurosci. 2003; 23: 7407-7411
        • Uhlhaas P.J.
        • Singer W.
        Oscillations and neuronal dynamics in schizophrenia: The search for basic symptoms and translational opportunities.
        Biol Psychiatry. 2015; 77: 1001-1009
        • Gandal M.J.
        • Edgar J.C.
        • Klook K.
        • Siegel S.J.
        Gamma synchrony: Towards a translational biomarker for the treatment-resistant symptoms of schizophrenia.
        Neuropharmacology. 2012; 62: 1504-1518
        • Pittman-Polletta B.R.
        • Kocsis B.
        • Vijayan S.
        • Whittington M.A.
        • Kopell N.J.
        Brain rhythms connect impaired inhibition to altered cognition in schizophrenia.
        Biol Psychiatry. 2015; 77: 1020-1030
        • Engel A.K.
        • Singer W.
        Temporal binding and the neural correlates of awareness.
        Trends Cogn Sci. 2001; 5: 16-25
        • Varela F.
        • Lachaux J.P.
        • Rodriguez E.
        • Martinerie J.
        The brainweb: Phase synchronization and large-scale integration.
        Nat Rev Neurosci. 2001; 2: 229-239
        • Singer W.
        Neuronal synchrony: A versatile code for the definition of relations?.
        Neuron. 1999; 24: 111-125
        • Varela F.J.
        Resonant cell assemblies: A new approach to cognitive functions and neuronal synchrony.
        Biol Res. 1995; 28: 81-95
        • Singer W.
        • Gray C.M.
        Visual feature integration and the temporal correlation hypothesis.
        Annu Rev Neurosci. 1995; 18: 555-586
        • Tallon-Baudry C.
        Oscillatory synchrony and human visual cognition.
        J Physiol Paris. 2003; 97: 355-363
        • Lachaux J.-P.
        • Axmacher N.
        • Mormann F.
        • Halgren E.
        • Crone N.E.
        High-frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research.
        Prog Neurobiol. 2012; 98: 279-301
        • Blumenfeld L.D.
        • Clementz B.A.
        Response to the first stimulus determines reduced auditory evoked response suppression in schizophrenia: Single trials analysis using MEG.
        Clin Neurophysiol. 2001; 112: 1650-1659
        • Karakas S.
        • Basar E.
        Early gamma response is sensory in origin: A conclusion based on cross-comparison of results from multiple experimental paradigms.
        Int J Psychophysiol. 1998; 31: 13-31
        • Galambos R.
        • Makeig S.
        • Talmachoff P.J.
        A 40-Hz auditory potential recorded from the human scalp.
        Proc Natl Acad Sci U S A. 1981; 78: 2643-2647
        • Spencer K.M.
        • Niznikiewicz M.A.
        • Shenton M.E.
        • McCarley R.W.
        Sensory-evoked gamma oscillations in chronic schizophrenia.
        Biol Psychiatry. 2008; 63: 744-747
        • Edwards C.R.
        • Skosnik P.D.
        • Steinmetz A.B.
        • O’Donnell B.F.
        • Hetrick W.P.
        Sensory gating impairments in heavy cannabis users are associated with altered neural oscillations.
        Behav Neurosci. 2009; 123: 894-904
        • Brookes M.J.
        • Wood J.R.
        • Stevenson C.M.
        • Zumer J.M.
        • White T.P.
        • Liddle P.F.
        • Morris P.G.
        Changes in brain network activity during working memory tasks: A magnetoencephalography study.
        Neuroimage. 2011; 55: 1804-1815
        • Raghavachari S.
        • Kahana M.J.
        • Rizzuto D.S.
        • Caplan J.B.
        • Kirschen M.P.
        • Bourgeois B.
        • et al.
        Gating of human theta oscillations by a working memory task.
        J Neurosci. 2001; 21: 3175-3183
        • Meltzer J.A.
        • Zaveri H.P.
        • Goncharova II,
        • Distasio M.M.
        • Papademetris X.
        • Spencer S.S.
        • et al.
        Effects of working memory load on oscillatory power in human intracranial EEG.
        Cereb Cortex. 2008; 18: 1843-1855
        • Luck S.J.
        • Kappenman E.S.
        Oxford Handbook of Event-Related Potential Components.
        Oxford University Press, New York2012
        • Brenner C.A.
        • Sporns O.
        • Lysaker P.H.
        • O’Donnell B.F.
        EEG synchronization to modulated auditory tones in schizophrenia, schizoaffective disorder, and schizotypal personality disorder.
        Am J Psychiatry. 2003; 160: 2238-2240
        • Shin Y.W.
        • O’Donnell B.F.
        • Youn S.
        • Kwon J.S.
        Gamma oscillation in schizophrenia.
        Psychiatry Investig. 2011; 8: 288-296
        • Spencer K.M.
        The functional consequences of cortical circuit abnormalities on gamma oscillations in schizophrenia: Insights from computational modeling.
        Front Hum Neurosci. 2009; 3: 33
        • Spencer K.M.
        • Nestor P.G.
        • Perlmutter R.
        • Niznikiewicz M.A.
        • Klump M.C.
        • Frumin M.
        • et al.
        Neural synchrony indexes disordered perception and cognition in schizophrenia.
        Proc Natl Acad Sci U S A. 2004; 101: 17288-17293
        • Spencer K.M.
        • Niznikiewicz M.A.
        • Nestor P.G.
        • Shenton M.E.
        • McCarley R.W.
        Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia.
        BMC Neurosci. 2009; 10: 85
        • Spencer K.M.
        • Salisbury D.F.
        • Shenton M.E.
        • McCarley R.W.
        Gamma-band auditory steady-state responses are impaired in first episode psychosis.
        Biol Psychiatry. 2008; 64: 369-375
        • Light G.A.
        • Hsu J.L.
        • Hsieh M.H.
        • Meyer-Gomes K.
        • Sprock J.
        • Swerdlow N.R.
        • Braff D.L.
        Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients.
        Biol Psychiatry. 2006; 60: 1231-1240
        • Sun Y.
        • Farzan F.
        • Barr M.S.
        • Kirihara K.
        • Fitzgerald P.B.
        • Light G.A.
        • Daskalakis Z.J.
        Gamma oscillations in schizophrenia: Mechanisms and clinical significance.
        Brain Res. 2011; 1413: 98-114
        • Woo T.U.
        • Spencer K.
        • McCarley R.W.
        Gamma oscillation deficits and the onset and early progression of schizophrenia.
        Harv Rev Psychiatry. 2010; 18: 173-189
        • Ferrarelli F.
        • Massimini M.
        • Peterson M.J.
        • Riedner B.A.
        • Lazar M.
        • Murphy M.J.
        • et al.
        Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: A TMS/EEG study.
        Am J Psychiatry. 2008; 165: 996-1005
        • Bucci P.
        • Mucci A.
        • Merlotti E.
        • Volpe U.
        • Galderisi S.
        Induced gamma activity and event-related coherence in schizophrenia.
        Clin EEG Neurosci. 2007; 38: 96-104
        • Hong L.E.
        • Summerfelt A.
        • McMahon R.
        • Adami H.
        • Francis G.
        • Elliott A.
        • et al.
        Evoked gamma band synchronization and the liability for schizophrenia.
        Schizophr Res. 2004; 70: 293-302
        • Roach B.J.
        • Mathalon D.H.
        Event-related EEG time-frequency analysis: An overview of measures and an analysis of early gamma band phase locking in schizophrenia.
        Schizophr Bull. 2008; 34: 907-926
        • Symond M.P.
        • Harris A.W.
        • Gordon E.
        • Williams L.M.
        “Gamma synchrony” in first-episode schizophrenia: A disorder of temporal connectivity?.
        Am J Psychiatry. 2005; 162: 459-465
        • Uhlhaas P.J.
        • Linden D.E.
        • Singer W.
        • Haenschel C.
        • Lindner M.
        • Maurer K.
        • Rodriguez E.
        Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia.
        J Neurosci. 2006; 26: 8168-8175
        • Bates A.T.
        • Kiehl K.A.
        • Laurens K.R.
        • Liddle P.F.
        Low-frequency EEG oscillations associated with information processing in schizophrenia.
        Schizophr Res. 2009; 115: 222-230
        • Koenig T.
        • Lehmann D.
        • Saito N.
        • Kuginuki T.
        • Kinoshita T.
        • Koukkou M.
        Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-naive patients with schizophrenia: Preliminary results.
        Schizophr Res. 2001; 50: 55-60
        • Haig A.R.
        • Gordon E.
        • De Pascalis V.
        • Meares R.A.
        • Bahramali H.
        • Harris A.
        Gamma activity in schizophrenia: Evidence of impaired network binding?.
        Clin Neurophysiol. 2000; 111: 1461-1468
        • Picton T.W.
        • John M.S.
        • Dimitrijevic A.
        • Purcell D.
        Human auditory steady-state responses.
        Int J Audiol. 2003; 42: 177-219
        • Skosnik P.D.
        • D’Souza D.C.
        • Steinmetz A.B.
        • Edwards C.R.
        • Vollmer J.M.
        • Hetrick W.P.
        • O’Donnell B.F.
        The effect of chronic cannabinoids on broadband EEG neural oscillations in humans.
        Neuropsychopharmacology. 2012; 37: 2184-2193
        • Krishnan G.P.
        • Skosnik P.D.
        • Vohs J.L.
        • Busey T.A.
        • O’Donnell B.F.
        Relationship between steady-state and induced gamma activity to motion.
        Neuroreport. 2005; 16: 625-630
        • Lachaux J.P.
        • Rodriguez E.
        • Martinerie J.
        • Adam C.
        • Hasboun D.
        • Varela F.J.
        A quantitative study of gamma-band activity in human intracranial recordings triggered by visual stimuli.
        Eur J Neurosci. 2000; 12: 2608-2622
        • Muller M.M.
        • Junghofer M.
        • Elbert T.
        • Rochstroh B.
        Visually induced gamma-band responses to coherent and incoherent motion: A replication study.
        Neuroreport. 1997; 8: 2575-2579
        • Snowden R.J.
        • Treue S.
        • Erickson R.G.
        • Andersen R.A.
        The response of area MT and V1 neurons to transparent motion.
        J Neurosci. 1991; 11: 2768-2785
        • Andersen R.A.
        Neural mechanisms of visual motion perception in primates.
        Neuron. 1997; 18: 865-872
        • Tallon-Baudry C.
        • Bertrand O.
        • Delpuech C.
        • Pernier J.
        Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human.
        J Neurosci. 1996; 16: 4240-4249
        • Sun L.
        • Grutzner C.
        • Bolte S.
        • Wibral M.
        • Tozman T.
        • Schlitt S.
        • et al.
        Impaired gamma-band activity during perceptual organization in adults with autism spectrum disorders: Evidence for dysfunctional network activity in frontal-posterior cortices.
        J Neurosci. 2012; 32: 9563-9573
        • Grutzner C.
        • Uhlhaas P.J.
        • Genc E.
        • Kohler A.
        • Singer W.
        • Wibral M.
        Neuroelectromagnetic correlates of perceptual closure processes.
        J Neurosci. 2010; 30: 8342-8352
        • Trujillo L.T.
        • Peterson M.A.
        • Kaszniak A.W.
        • Allen J.J.
        EEG phase synchrony differences across visual perception conditions may depend on recording and analysis methods.
        Clin Neurophysiol. 2005; 116: 172-189
        • Uhlhaas P.J.
        • Haenschel C.
        • Nikolić D.
        • Singer W.
        The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia.
        Schizophr Bull. 2008; 34: 927-943
        • Pittman-Polletta B.R.
        • Kocsis B.
        • Vijayan S.
        • Whittington M.A.
        • Kopell N.J.
        Brain rhythms connect impaired inhibition to altered cognition in schizophrenia.
        Biol Psychiatry. 2015; 77: 1020-1030
        • Muller M.M.
        • Gruber T.
        • Keil A.
        Modulation of induced gamma band activity in the human EEG by attention and visual information processing.
        Int J Psychophysiol. 2000; 38: 283-299
        • Gross J.
        • Schmitz F.
        • Schnitzler I.
        • Kessler K.
        • Shapiro K.
        • Hommel B.
        • Schnitzler A.
        Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans.
        Proc Natl Acad Sci U S A. 2004; 101: 13050-13055
        • Womelsdorf T.
        • Fries P.
        • Mitra P.P.
        • Desimone R.
        Gamma-band synchronization in visual cortex predicts speed of change detection.
        Nature. 2006; 439: 733-736
        • Fries P.
        • Reynolds J.H.
        • Rorie A.E.
        • Desimone R.
        Modulation of oscillatory neuronal synchronization by selective visual attention.
        Science. 2001; 291: 1560-1563
        • Gruber T.
        • Muller M.M.
        • Keil A.
        • Elbert T.
        Selective visual-spatial attention alters induced gamma band responses in the human EEG.
        Clin Neurophysiol. 1999; 110: 2074-2085
        • Skosnik P.D.
        • Krishnan G.P.
        • O’Donnell B.F.
        The effect of selective attention on the gamma-band auditory steady-state response.
        Neurosci Lett. 2007; 420: 223-228
        • Lisman J.
        • Buzsaki G.
        A neural coding scheme formed by the combined function of gamma and theta oscillations.
        Schizophr Bull. 2008; 34: 974-980
        • Tallon-Baudry C.
        • Bertrand O.
        • Peronnet F.
        • Pernier J.
        Induced gamma-band activity during the delay of a visual short-term memory task in humans.
        J Neurosci. 1998; 18: 4244-4254
        • Tallon-Baudry C.
        • Bertrand O.
        • Delpuech C.
        • Permier J.
        Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans.
        J Neurosci. 1997; 17: 722-734
        • Pesaran B.
        • Pezaris J.S.
        • Sahani M.
        • Mitra P.P.
        • Andersen R.A.
        Temporal structure in neuronal activity during working memory in macaque parietal cortex.
        Nat Neurosci. 2002; 5: 805-811
        • Robbe D.
        • Buzsaki G.
        Alteration of theta timescale dynamics of hippocampal place cells by a cannabinoid is associated with memory impairment.
        J Neurosci. 2009; 29: 12597-12605
        • Robbe D.
        • Montgomery S.M.
        • Thome A.
        • Rueda-Orozco P.E.
        • McNaughton B.L.
        • Buzsaki G.
        Cannabinoids reveal importance of spike timing coordination in hippocampal function.
        Nat Neurosci. 2006; 9: 1526-1533
        • Benarroch E.E.
        Synaptic effects of cannabinoids: Complexity, behavioral effects, and potential clinical implications.
        Neurology. 2014; 83: 1958-1967
        • Pava M.J.
        • den Hartog C.R.
        • Blanco-Centurion C.
        • Shiromani P.J.
        • Woodward J.J.
        Endocannabinoid modulation of cortical up-states and NREM sleep.
        PLoS One. 2014; 9: e88672
        • Silvani A.
        • Berteotti C.
        • Bastianini S.
        • Lo Martire V.
        • Mazza R.
        • Pagotto U.
        • et al.
        Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.
        PLoS One. 2014; 9: e89432
        • Heitland I.
        • Kenemans J.L.
        • Bocker K.B.
        • Baas J.M.
        Genetic variability in the human cannabinoid receptor 1 is associated with resting state EEG theta power in humans.
        Behav Brain Res. 2014; 274: 344-348
        • Skosnik P.D.
        • D’Souza D.C.
        • Steinmetz A.B.
        • Edwards C.R.
        • Vollmer J.M.
        • Hetrick W.P.
        • O’Donnell B.F.
        The effect of chronic cannabinoids on broadband EEG neural oscillations in humans.
        Neuropsychopharmacology. 2012; 37: 2184-2193
        • Skosnik P.D.
        • Krishnan G.P.
        • Aydt E.E.
        • Kuhlenshmidt H.A.
        • O’Donnell B.F.
        Psychophysiological evidence of altered neural synchronization in cannabis use: Relationship to schizotypy.
        Am J Psychiatry. 2006; 163: 1798-1805
        • Skosnik P.D.
        • Krishnan G.P.
        • D’Souza D.C.
        • Hetrick W.P.
        • O’Donnell B.F.
        Disrupted gamma-band neural oscillations during coherent motion perception in heavy cannabis users.
        Neuropsychopharmacology. 2014; 39: 3087-3099
        • Cortes-Briones J.
        • Skosnik P.D.
        • Mathalon D.
        • Cahill J.
        • Pittman B.
        • Williams A.
        • et al.
        Delta-THC disrupts gamma (gamma)-band neural oscillations in humans.
        Neuropsychopharmacology. 2015; 40: 2124-2134
        • Morrison P.D.
        • Nottage J.
        • Stone J.M.
        • Bhattacharyya S.
        • Tunstall N.
        • Brenneisen R.
        • et al.
        Disruption of frontal theta coherence by Delta(9)-tetrahydrocannabinol is associated with positive psychotic symptoms.
        Neuropsychopharmacology. 2011; 36: 827-836
        • Bocker K.B.
        • Hunault C.C.
        • Gerritsen J.
        • Kruidenier M.
        • Mensinga T.T.
        • Kenemans J.L.
        Cannabinoid modulations of resting state EEG theta power and working memory are correlated in humans.
        J Cogn Neurosci. 2010; 22: 1906-1916
        • Ilan A.B.
        • Smith M.E.
        • Gevins A.
        Effects of marijuana on neurophysiological signals of working and episodic memory.
        Psychopharmacology (Berl). 2004; 176: 214-222
        • Ilan A.B.
        • Gevins A.
        • Coleman M.
        • ElSohly M.A.
        • de Wit H.
        Neurophysiological and subjective profile of marijuana with varying concentrations of cannabinoids.
        Behav Pharmacol. 2005; 16: 487-496
        • Buzsaki G.
        • Draguhn A.
        Neuronal oscillations in cortical networks.
        Science. 2004; 304: 1926-1929
        • Hajos M.
        Targeting information-processing deficit in schizophrenia: A novel approach to psychotherapeutic drug discovery.
        Trends Pharmacol Sci. 2006; 27: 391-398
        • Hajos M.
        • Hoffmann W.E.
        • Kocsis B.
        Activation of cannabinoid-1 receptors disrupts sensory gating and neuronal oscillation: Relevance to schizophrenia.
        Biol Psychiatry. 2008; 63: 1075-1083
        • Dissanayake D.W.
        • Zachariou M.
        • Marsden C.A.
        • Mason R.
        Auditory gating in rat hippocampus and medial prefrontal cortex: Effect of the cannabinoid agonist WIN55,212-2.
        Neuropharmacology. 2008; 55: 1397-1404
        • Kucewicz M.T.
        • Tricklebank M.D.
        • Bogacz R.
        • Jones M.W.
        Dysfunctional prefrontal cortical network activity and interactions following cannabinoid receptor activation.
        J Neurosci. 2011; 31: 15560-15568
        • Goonawardena A.V.
        • Riedel G.
        • Hampson R.E.
        Cannabinoids alter spontaneous firing, bursting, and cell synchrony of hippocampal principal cells.
        Hippocampus. 2011; 21: 520-531
        • Hajos N.
        • Katona I.
        • Naiem S.S.
        • MacKie K.
        • Ledent C.
        • Mody I.
        • Freund T.F.
        Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations.
        Eur J Neurosci. 2000; 12: 3239-3249
        • Sales-Carbonell C.
        • Rueda-Orozco P.E.
        • Soria-Gomez E.
        • Buzsaki G.
        • Marsicano G.
        • Robbe D.
        Striatal GABAergic and cortical glutamatergic neurons mediate contrasting effects of cannabinoids on cortical network synchrony.
        Proc Natl Acad Sci U S A. 2013; 110: 719-724
        • Eggan S.M.
        • Lewis D.A.
        Immunocytochemical distribution of the cannabinoid CB1 receptor in the primate neocortex: A regional and laminar analysis.
        Cereb Cortex. 2007; 17: 175-191
        • Raver S.M.
        • Haughwout S.P.
        • Keller A.
        Adolescent cannabinoid exposure permanently suppresses cortical oscillations in adult mice.
        Neuropsychopharmacology. 2013; 38: 2338-2347
        • Raver S.M.
        • Keller A.
        Permanent suppression of cortical oscillations in mice after adolescent exposure to cannabinoids: Receptor mechanisms.
        Neuropharmacology. 2014; 86: 161-173
        • Cass D.
        • Flores-Barrera E.
        • Thomases D.
        • Vital W.
        • Caballero A.
        • Tseng K.
        CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex.
        Mol Psychiatry. 2014; 19: 536-543
        • Buzsáki G.
        • Wang X.-J.
        Mechanisms of gamma oscillations.
        Annu Rev Neurosci. 2012; 35: 203-225
        • Herning R.I.
        • Better W.
        • Tate K.
        • Cadet J.L.
        EEG deficits in chronic marijuana abusers during monitored abstinence.
        Ann N Y Acad Sci. 2003; 993: 75-78
        • Hirvonen J.
        • Goodwin R.S.
        • Li C.T.
        • Terry G.E.
        • Zoghbi S.S.
        • Morse C.
        • et al.
        Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers.
        Mol Psychiatry. 2012; 17: 642-649
        • Morrison P.D.
        • Nottage J.
        • Stone J.M.
        • Bhattacharyya S.
        • Tunstall N.
        • Brenneisen R.
        • et al.
        Disruption of frontal theta coherence by [Delta]9-tetrahydrocannabinol is associated with positive psychotic symptoms.
        Neuropsychopharmacology. 2011; 36: 827-836
        • Stone J.M.
        • Morrison P.D.
        • Brugger S.
        • Nottage J.
        • Bhattacharyya S.
        • Sumich A.
        • et al.
        Communication breakdown: Delta-9 tetrahydrocannabinol effects on pre-speech neural coherence.
        Mol Psychiatry. 2012; 17: 568-569
        • Schlicker E.
        • Kathmann M.
        Modulation of transmitter release via presynaptic cannabinoid receptors.
        Trends Pharmacol Sci. 2001; 22: 565-572
        • Sohal V.S.
        Insights into cortical oscillations arising from optogenetic studies.
        Biol Psychiatry. 2012; 71: 1039-1045
        • Wang X.J.
        Neurophysiological and computational principles of cortical rhythms in cognition.
        Physiol Rev. 2010; 90: 1195-1268
        • Foldy C.
        • Aradi I.
        • Howard A.
        • Soltesz I.
        Diversity beyond variance: Modulation of firing rates and network coherence by GABAergic subpopulations.
        Eur J Neurosci. 2004; 19: 119-130
        • Ford J.M.
        • Mathalon D.H.
        Neural synchrony in schizophrenia.
        Schizophr Bull. 2008; 34: 904-906
        • Gonzalez-Burgos G.
        • Lewis D.A.
        GABA neurons and the mechanisms of network oscillations: Implications for understanding cortical dysfunction in schizophrenia.
        Schizophr Bull. 2008; 34: 944-961
        • Buzsaki G.
        • Wang X.J.
        Mechanisms of gamma oscillations.
        Annu Rev Neurosci. 2012; 35: 203-225
        • Uhlhaas P.J.
        • Singer W.
        Abnormal neural oscillations and synchrony in schizophrenia.
        Nat Rev Neurosci. 2010; 11: 100-113
        • Whittington M.A.
        • Traub R.D.
        • Jefferys J.G.
        Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation.
        Nature. 1995; 373: 612-615
        • Cobb S.R.
        • Buhl E.H.
        • Halasy K.
        • Paulsen O.
        • Somogyi P.
        Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons.
        Nature. 1995; 378: 75-78
        • Sohal V.S.
        • Zhang F.
        • Yizhar O.
        • Deisseroth K.
        Parvalbumin neurons and gamma rhythms enhance cortical circuit performance.
        Nature. 2009; 459: 698-702
        • Curley A.A.
        • Lewis D.A.
        Cortical basket cell dysfunction in schizophrenia.
        J Physiol. 2012; 590: 715-724
        • Freund T.F.
        Interneuron diversity series: Rhythm and mood in perisomatic inhibition.
        Trends Neurosci. 2003; 26: 489-495
        • Bacci A.
        • Huguenard J.R.
        • Prince D.A.
        Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids.
        Nature. 2004; 431: 312-316
        • Bodor A.L.
        • Katona I.
        • Nyiri G.
        • Mackie K.
        • Ledent C.
        • Hajos N.
        • Freund T.F.
        Endocannabinoid signaling in rat somatosensory cortex: Laminar differences and involvement of specific interneuron types.
        J Neurosci. 2005; 25: 6845-6856
        • Eggan S.M.
        • Melchitzky D.S.
        • Sesack S.R.
        • Fish K.N.
        • Lewis D.A.
        Relationship of cannabinoid CB1 receptor and cholecystokinin immunoreactivity in monkey dorsolateral prefrontal cortex.
        Neuroscience. 2010; 169: 1651-1661
        • Hill E.L.
        • Gallopin T.
        • Ferezou I.
        • Cauli B.
        • Rossier J.
        • Schweitzer P.
        • Lambolez B.
        Functional CB1 receptors are broadly expressed in neocortical GABAergic and glutamatergic neurons.
        J Neurophysiol. 2007; 97: 2580-2589
        • Katona I.
        • Sperlagh B.
        • Magloczky Z.
        • Santha E.
        • Kofalvi A.
        • Czirjak S.
        • et al.
        GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus.
        Neuroscience. 2000; 100: 797-804
        • Ali A.B.
        • Todorova M.
        Asynchronous release of GABA via tonic cannabinoid receptor activation at identified interneuron synapses in rat CA1.
        Eur J Neurosci. 2010; 31: 1196-1207
        • Foldy C.
        • Neu A.
        • Jones M.V.
        • Soltesz I.
        Presynaptic, activity-dependent modulation of cannabinoid type 1 receptor-mediated inhibition of GABA release.
        J Neurosci. 2006; 26: 1465-1469
        • Keimpema E.
        • Straiker A.
        • Mackie K.
        • Harkany T.
        • Hjerling-Leffler J.
        Sticking out of the crowd: The molecular identity and development of cholecystokinin-containing basket cells.
        J Physiol. 2012; 590: 703-714
        • Klausberger T.
        • Marton L.F.
        • O’Neill J.
        • Huck J.H.
        • Dalezios Y.
        • Fuentealba P.
        • et al.
        Complementary roles of cholecystokinin-and parvalbumin-expressing GABAergic neurons in hippocampal network oscillations.
        J Neurosci. 2005; 25: 9782-9793
        • Csicsvari J.
        • Jamieson B.
        • Wise K.D.
        • Buzsáki G.
        Mechanisms of gamma oscillations in the hippocampus of the behaving rat.
        Neuron. 2003; 37: 311-322
        • Tukker J.J.
        • Fuentealba P.
        • Hartwich K.
        • Somogyi P.
        • Klausberger T.
        Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo.
        J Neurosci. 2007; 27: 8184-8189
        • Klausberger T.
        • Somogyi P.
        Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations.
        Science. 2008; 321: 53-57
        • Bartos M.
        • Elgueta C.
        Functional characteristics of parvalbumin and cholecystokinin‐expressing basket cells.
        J Physiol. 2012; 590: 669-681
        • Karson M.A.
        • Tang A.H.
        • Milner T.A.
        • Alger B.E.
        Synaptic cross talk between perisomatic-targeting interneuron classes expressing cholecystokinin and parvalbumin in hippocampus.
        J Neurosci. 2009; 29: 4140-4154
        • Navarrete M.
        • Araque A.
        Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes.
        Neuron. 2010; 68: 113-126
        • Nagode D.A.
        • Tang A.H.
        • Yang K.
        • Alger B.E.
        Optogenetic identification of an intrinsic cholinergically driven inhibitory oscillator sensitive to cannabinoids and opioids in hippocampal CA1.
        J Physiol. 2014; 592: 103-123
        • Soria-Gomez E.
        • Busquets-Garcia A.
        • Hu F.
        • Mehidi A.
        • Cannich A.
        • Roux L.
        • et al.
        Habenular CB1 receptors control the expression of aversive memories.
        Neuron. 2015; 88: 306-313
        • Kocsis B.
        • Li S.
        • Hajos M.
        Behavior-dependent modulation of hippocampal EEG activity by the selective norepinephrine reuptake inhibitor reboxetine in rats.
        Hippocampus. 2007; 17: 627-633
        • Puig M.V.
        • Gener T.
        Serotonin modulation of prefronto-hippocampal rhythms in health and disease.
        ACS Chem Neurosci. 2015; 6: 1017-1025
        • Vandecasteele M.
        • Varga V.
        • Berenyi A.
        • Papp E.
        • Bartho P.
        • Venance L.
        • et al.
        Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus.
        Proc Natl Acad Sci U S A. 2014; 111: 13535-13540
        • Cortes-Briones J.A.
        • Cahill J.D.
        • Skosnik P.D.
        • Mathalon D.H.
        • Williams A.
        • Sewell R.A.
        • et al.
        The psychosis-like effects of Δ9-tetrahydrocannabinol are associated with increased cortical noise in healthy humans.
        Biol Psychiatry. 2015; 78: 805-813
        • Stephan K.E.
        • Friston K.J.
        • Frith C.D.
        Dysconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring.
        Schizophr Bull. 2009; 35: 509-527
        • Cho R.Y.
        • Walker C.P.
        • Polizzotto N.R.
        • Wozny T.A.
        • Fissell C.
        • Chen C.M.
        • Lewis D.A.
        Development of sensory gamma oscillations and cross-frequency coupling from childhood to early adulthood.
        Cereb Cortex. 2015; 25: 1509-1518
        • Neymotin S.A.
        • Lazarewicz M.T.
        • Sherif M.
        • Contreras D.
        • Finkel L.H.
        • Lytton W.W.
        Ketamine disrupts theta modulation of gamma in a computer model of hippocampus.
        J Neurosci. 2011; 31: 11733-11743
        • Soltesz I.
        • Alger B.E.
        • Kano M.
        • Lee S.H.
        • Lovinger D.M.
        • Ohno-Shosaku T.
        • Watanabe M.
        Weeding out bad waves: Towards selective cannabinoid circuit control in epilepsy.
        Nat Rev Neurosci. 2015; 16: 264-277
        • Cohen M.X.
        Assessing transient cross-frequency coupling in EEG data.
        J Neurosci Methods. 2008; 168: 494-499
        • Sanchez-Blazquez P.
        • Rodriguez-Munoz M.
        • Garzon J.
        The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: Implications in psychosis and schizophrenia.
        Front Pharmacol. 2014; 4: 169
        • Moghaddam B.
        • Krystal J.H.
        Capturing the angel in “angel dust”: Twenty years of translational neuroscience studies of NMDA receptor antagonists in animals and humans.
        Schizophr Bull. 2012; 38: 942-949