Advertisement

Prepartum and Postpartum Maternal Depressive Symptoms Are Related to Children’s Brain Structure in Preschool

  • Catherine Lebel
    Correspondence
    Address correspondence to: Catherine Lebel, Ph.D., University of Calgary, Alberta Children’s Hospital, Room B4-513, 2888 Shaganappi Trail NW, Calgary, Alberta T3B6A8, Canada.
    Affiliations
    Department of Radiology, University of Calgary, Calgary, Alberta, Canada

    Department of Child & Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada

    Department of Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
    Search for articles by this author
  • Matthew Walton
    Affiliations
    Department of Medical Sciences Program, University of Calgary, Calgary, Alberta, Canada

    Department of Child & Adolescent Imaging Research Program, University of Calgary, Calgary, Alberta, Canada

    Department of Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
    Search for articles by this author
  • Nicole Letourneau
    Affiliations
    Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada

    Department of Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada

    Department of Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
    Search for articles by this author
  • Gerald F. Giesbrecht
    Affiliations
    Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada

    Department of Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
    Search for articles by this author
  • Bonnie J. Kaplan
    Affiliations
    Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada

    Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada

    Department of Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
    Search for articles by this author
  • Deborah Dewey
    Affiliations
    Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada

    Department of Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
    Search for articles by this author
Published:December 14, 2015DOI:https://doi.org/10.1016/j.biopsych.2015.12.004

      Abstract

      Background

      Perinatal maternal depression is a serious health concern with potential lasting negative consequences for children. Prenatal depression is associated with altered brain gray matter in children, though relations between postpartum depression and children’s brains and the role of white matter are unclear.

      Methods

      We studied 52 women who provided Edinburgh Postnatal Depression Scale (EPDS) scores during each trimester of pregnancy and at 3 months postpartum and their children who underwent magnetic resonance imaging at age 2.6 to 5.1 years. Associations between maternal depressive symptoms and magnetic resonance imaging measures of cortical thickness and white matter structure in the children were investigated.

      Results

      Women’s second trimester EPDS scores negatively correlated with children’s cortical thickness in right inferior frontal and middle temporal regions and with radial and mean diffusivity in white matter emanating from the inferior frontal area. Cortical thickness, but not diffusivity, correlations survived correction for postpartum EPDS. Postpartum EPDS scores negatively correlated with children’s right superior frontal cortical thickness and with diffusivity in white matter originating from that region, even after correcting for prenatal EPDS.

      Conclusions

      Higher maternal depressive symptoms prenatally and postpartum are associated with altered gray matter structure in children; the observed white matter correlations appear to be uniquely related to the postpartum period. The reduced thickness and diffusivity suggest premature brain development in children exposed to higher maternal perinatal depressive symptoms. These results highlight the importance of ensuring optimal women’s mental health throughout the perinatal period, because maternal depressive symptoms appear to increase children’s vulnerability to nonoptimal brain development.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gavin N.I.
        • Gaynes B.N.
        • Lohr K.N.
        • Meltzer-Brody S.
        • Gartlehner G.
        • Swinson T.
        Perinatal depression: A systematic review of prevalence and incidence.
        Obstet Gynecol. 2005; 106: 1071-1083
        • Bennett H.A.
        • Einarson A.
        • Taddio A.
        • Koren G.
        • Einarson T.R.
        Prevalence of depression during pregnancy: Systematic review.
        Obstet Gynecol. 2004; 103: 698-709
        • Gaynes B.
        • Gavin N.
        • Meltzer-Brody S.
        • Lohr K.
        • Swinson T.
        • Gartlehner G.
        • et al.
        Perinatal Depression: Prevalence, Screening, Accuracy, and Screening Outcomes.
        Agency for Healthcare Research Quality, Research Triangle Park, NC2005
        • Evans J.
        • Melotti R.
        • Heron J.
        • Ramchandani P.
        • Wiles N.
        • Murray L.
        • Stein A.
        The timing of maternal depressive symptoms and child cognitive development: A longitudinal study.
        J Child Psychol Psychiatry. 2012; 53: 632-640
        • Gaynes B.N.
        • Gavin N.
        • Meltzer-Brody S.
        • Lohr K.N.
        • Swinson T.
        • Gartlehner G.
        • et al.
        Perinatal depression: Prevalence, screening accuracy, and screening outcomes.
        Evid Rep Technol Assess (Summ). 2005; 119: 1-8
        • Stein A.
        • Pearson R.M.
        • Goodman S.H.
        • Rapa E.
        • Rahman A.
        • McCallum M.
        • et al.
        Effects of perinatal mental disorders on the fetus and child.
        Lancet. 2014; 384: 1800-1819
        • Kersten-Alvarez L.E.
        • Hosman C.M.
        • Riksen-Walraven J.M.
        • van Doesum K.T.
        • Smeekens S.
        • Hoefnagels C.
        Early school outcomes for children of postpartum depressed mothers: Comparison with a community sample.
        Child Psychiatry Hum Dev. 2012; 43: 201-218
        • Verbeek T.
        • Bockting C.L.
        • van Pampus M.G.
        • Ormel J.
        • Meijer J.L.
        • Hartman C.A.
        • Burger H.
        Postpartum depression predicts offspring mental health problems in adolescence independently of parental lifetime psychopathology.
        J Affect Disord. 2012; 136: 948-954
        • Murray L.
        • Arteche A.
        • Fearon P.
        • Halligan S.
        • Goodyer I.
        • Cooper P.
        Maternal postnatal depression and the development of depression in offspring up to 16 years of age.
        J Am Acad Child Adolesc Psychiatry. 2011; 50: 460-470
        • Goodman S.H.
        • Rouse M.H.
        • Connell A.M.
        • Broth M.R.
        • Hall C.M.
        • Heyward D.
        Maternal depression and child psychopathology: A meta-analytic review.
        Clin Child Fam Psychol Rev. 2011; 14: 1-27
        • Letourneau N.L.
        • Tramonte L.
        • Willms J.D.
        Maternal depression, family functioning and children’s longitudinal development.
        J Pediatr Nurs. 2013; 28: 223-234
        • Waters C.S.
        • Hay D.F.
        • Simmonds J.R.
        • van Goozen S.H.
        Antenatal depression and children’s developmental outcomes: Potential mechanisms and treatment options.
        Eur Child Adolesc Psychiatry. 2014; 23: 957-971
        • Barker E.D.
        • Jaffee S.R.
        • Uher R.
        • Maughan B.
        The contribution of prenatal and postnatal maternal anxiety and depression to child maladjustment.
        Depress Anxiety. 2011; 28: 696-702
        • Hay D.F.
        • Pawlby S.
        • Waters C.S.
        • Perra O.
        • Sharp D.
        Mothers’ antenatal depression and their children’s antisocial outcomes.
        Child Dev. 2010; 81: 149-165
        • Hay D.F.
        • Mundy L.
        • Roberts S.
        • Carta R.
        • Waters C.S.
        • Perra O.
        • et al.
        Known risk factors for violence predict 12-month-old infants’ aggressiveness with peers.
        Psychol Sci. 2011; 22: 1205-1211
        • Davis E.P.
        • Snidman N.
        • Wadhwa P.D.
        • Dunkel Schetter C.
        • Glynn L.
        • Sandman C.A.
        Prenatal maternal anxiety and depression predict negative behavioral reactivity in infancy.
        Infancy. 2004; 6: 319-331
        • Buss C.
        • Davis E.P.
        • Shahbaba B.
        • Pruessner J.C.
        • Head K.
        • Sandman C.A.
        Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems.
        Proc Natl Acad Sci U S A. 2012; 109: E1312-E1319
        • Sandman C.A.
        • Glynn L.M.
        • Davis E.P.
        Is there a viability-vulnerability tradeoff? Sex differences in fetal programming.
        J Psychosom Res. 75. 2013: 327-335
        • Yong Ping E.
        • Laplante D.P.
        • Elgbeili G.
        • Hillerer K.M.
        • Brunet A.
        • O’Hara M.W.
        • King S.
        Prenatal maternal stress predicts stress reactivity at 2(1/2) years of age: The Iowa Flood Study.
        Psychoneuroendocrinology. 2015; 56: 62-78
        • Pearson R.M.
        • Evans J.
        • Kounali D.
        • Lewis G.
        • Heron J.
        • Ramchandani P.G.
        • et al.
        Maternal depression during pregnancy and the postnatal period: Risks and possible mechanisms for offspring depression at age 18 years.
        JAMA Psychiatry. 2013; 70: 1312-1319
        • Lovejoy M.C.
        • Graczyk P.A.
        • O’Hare E.
        • Neuman G.
        Maternal depression and parenting behavior: A meta-analytic review.
        Clin Psychol Rev. 2000; 20: 561-592
        • Brown T.T.
        • Kuperman J.M.
        • Chung Y.
        • Erhart M.
        • McCabe C.
        • Hagler Jr, D.J.
        • et al.
        Neuroanatomical assessment of biological maturity.
        Curr Biol. 2012; 22: 1693-1698
        • Hermoye L.
        • Saint-Martin C.
        • Cosnard G.
        • Lee S.K.
        • Kim J.
        • Nassogne M.C.
        • et al.
        Pediatric diffusion tensor imaging: Normal database and observation of the white matter maturation in early childhood.
        Neuroimage. 2006; 29: 493-504
        • Norton E.S.
        • Beach S.D.
        • Gabrieli J.D.
        Neurobiology of dyslexia.
        Curr Opin Neurobiol. 2015; 30: 73-78
        • Cao M.
        • Shu N.
        • Cao Q.
        • Wang Y.
        • He Y.
        Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder.
        Mol Neurobiol. 2014; 50: 1111-1123
        • Tseng W.L.
        • Leibenluft E.
        • Brotman M.A.
        A systems neuroscience approach to the pathophysiology of pediatric mood and anxiety disorders.
        Curr Top Behav Neurosci. 2014; 16: 297-317
        • Rifkin-Graboi A.
        • Bai J.
        • Chen H.
        • Hameed W.B.
        • Sim L.W.
        • Tint M.T.
        • et al.
        Prenatal maternal depression associates with microstructure of right amygdala in neonates at birth.
        Biol Psychiatry. 2013; 74: 837-844
        • Rifkin-Graboi A.
        • Meaney M.J.
        • Chen H.
        • Bai J.
        • Hameed W.B.
        • Tint M.T.
        • et al.
        Antenatal maternal anxiety predicts variations in neural structures implicated in anxiety disorders in newborns.
        J Am Acad Child Adolesc Psychiatry. 2015; 54 (e312): 313-321
        • Sandman C.A.
        • Buss C.
        • Head K.
        • Davis E.P.
        Fetal exposure to maternal depressive symptoms is associated with cortical thickness in late childhood.
        Biol Psychiatry. 2015; 77: 324-334
        • Deoni S.C.
        • Dean 3rd, D.C.
        • O’Muircheartaigh J.
        • Dirks H.
        • Jerskey B.A.
        Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping.
        Neuroimage. 2012; 63: 1038-1053
        • Weitzman C.
        • Wegner L.
        • Section on Developmental and Behavioral Pediatrics, Committee on Psychosocial Aspects of Child and Family Health, Council on Early Childhood, Society for Developmental and Behavioral Pediatrics, American Academy of Pediatrics
        Promoting optimal development: Screening for behavioral and emotional problems.
        Pediatrics. 2015; 135: 384-395
        • Kaplan B.J.
        • Giesbrecht G.F.
        • Leung B.M.
        • Field C.J.
        • Dewey D.
        • Bell R.C.
        • et al.
        The Alberta Pregnancy Outcomes and Nutrition (APrON) cohort study: Rationale and methods.
        Matern Child Nutr. 2014; 10: 44-60
        • Cox J.L.
        • Holden J.M.
        • Sagovsky R.
        Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale.
        Br J Psychiatry. 1987; 150: 782-786
        • Adouard F.
        • Glangeaud-Freudenthal N.M.
        • Golse B.
        Validation of the Edinburgh Postnatal Depression Scale (EPDS) in a sample of women with high-risk pregnancies in France.
        Arch Womens Ment Health. 2005; 8: 89-95
        • Kozinszky Z.
        • Dudas R.B.
        Validation studies of the Edinburgh Postnatal Depression Scale for the antenatal period.
        J Affect Disord. 2015; 176: 95-105
        • Fischl B.
        FreeSurfer.
        Neuroimage. 2012; 62: 774-781
      1. Wang R, Benner T, Sorensen AG, Wedeen VJ. (2007): Diffusion Toolkit: A Software Package for Diffusion Imaging Data Processing and Tractography. Presented at the 15th Annual Meeting of the International Society for Magnetic Resonance in Medicine. Berlin, May 2007.

        • Zhou D.
        • Lebel C.
        • Treit S.
        • Evans A.
        • Beaulieu C.
        Accelerated longitudinal cortical thinning in adolescence.
        Neuroimage. 2015; 104: 138-145
        • Lebel C.
        • Beaulieu C.
        Longitudinal development of human brain wiring continues from childhood into adulthood.
        J Neurosci. 2011; 31: 10937-10947
        • Huttenlocher P.R.
        Synaptic density in human frontal cortex - developmental changes and effects of aging.
        Brain Res. 1979; 163: 195-205
        • Yakovlev P.I.
        • Lecours A.-R.
        The myelogenetic cycles of regional maturation of the brain.
        in: Minkowski A. Regional Development of the Brain Early in Life. Blackwell Scientific Publications Inc., Boston1967: 3-70
        • Ellis B.J.
        Timing of pubertal maturation in girls: An integrated life history approach.
        Psychol Bull. 2004; 130: 920-958
        • Chisholm J.S.
        • Quinlivan J.A.
        • Petersen R.W.
        • Coall D.A.
        Early stress predicts age at menarche and first birth, adult attachment, and expected lifespan.
        Hum Nat. 2005; 16: 233-265
        • Hulanicka B.
        • Gronkiewicz L.
        • Koniarek J.
        Effect of familial distress on growth and maturation of girls: A longitudinal study.
        Am J Hum Biol. 2001; 13: 771-776
        • Ono M.
        • Kikusui T.
        • Sasaki N.
        • Ichikawa M.
        • Mori Y.
        • Murakami-Murofushi K.
        Early weaning induces anxiety and precocious myelination in the anterior part of the basolateral amygdala of male Balb/c mice.
        Neuroscience. 2008; 156: 1103-1110
        • Gee D.G.
        • Gabard-Durnam L.J.
        • Flannery J.
        • Goff B.
        • Humphreys K.L.
        • Telzer E.H.
        • et al.
        Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation.
        Proc Natl Acad Sci U S A. 2013; 110: 15638-15643
        • Vara A.S.
        • Pang E.W.
        • Vidal J.
        • Anagnostou E.
        • Taylor M.J.
        Neural mechanisms of inhibitory control continue to mature in adolescence.
        Dev Cogn Neurosci. 2014; 10: 129-139
        • Liddle P.F.
        • Kiehl K.A.
        • Smith A.M.
        Event-related fMRI study of response inhibition.
        Hum Brain Mapp. 2001; 12: 100-109
        • Rubia K.
        • Smith A.B.
        • Brammer M.J.
        • Taylor E.
        Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection.
        Neuroimage. 2003; 20: 351-358
        • Konishi S.
        • Nakajima K.
        • Uchida I.
        • Kikyo H.
        • Kameyama M.
        • Miyashita Y.
        Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI.
        Brain. 1999; 122: 981-991
        • Hampshire A.
        • Chamberlain S.R.
        • Monti M.M.
        • Duncan J.
        • Owen A.M.
        The role of the right inferior frontal gyrus: Inhibition and attentional control.
        Neuroimage. 2010; 50: 1313-1319
        • Marrus N.
        • Belden A.
        • Nishino T.
        • Handler T.
        • Tilak Ratnanather J.
        • Miller M.
        • et al.
        Ventromedial prefrontal cortex thinning in preschool-onset depression.
        J Affect Disord. 2015; 180: 79-86
        • Peterson B.S.
        • Warner V.
        • Bansal R.
        • Zhu H.
        • Hao X.
        • Liu J.
        • et al.
        Cortical thinning in persons at increased familial risk for major depression.
        Proc Natl Acad Sci U S A. 2009; 106: 6273-6278
        • Foland-Ross L.C.
        • Gilbert B.L.
        • Joormann J.
        • Gotlib I.H.
        Neural markers of familial risk for depression: An investigation of cortical thickness abnormalities in healthy adolescent daughters of mothers with recurrent depression.
        J Abnorm Psychol. 2015; 124: 476-485
        • Ducharme S.
        • Albaugh M.D.
        • Hudziak J.J.
        • Botteron K.N.
        • Nguyen T.V.
        • Truong C.
        • et al.
        Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults.
        Cereb Cortex. 2014; 24: 2941-2950
        • Boes A.D.
        • McCormick L.M.
        • Coryell W.H.
        • Nopoulos P.
        Rostral anterior cingulate cortex volume correlates with depressed mood in normal healthy children.
        Biol Psychiatry. 2008; 63: 391-397
        • Field T.
        • Diego M.
        • Hernandez-Reif M.
        • Figueiredo B.
        • Deeds O.
        • Ascencio A.
        • et al.
        Comorbid depression and anxiety effects on pregnancy and neonatal outcome.
        Infant Behav Dev. 2010; 33: 23-29
        • Dawson G.
        • Ashman S.B.
        • Panagiotides H.
        • Hessl D.
        • Self J.
        • Yamada E.
        • Embry L.
        Preschool outcomes of children of depressed mothers: Role of maternal behavior, contextual risk, and children’s brain activity.
        Child Dev. 2003; 74: 1158-1175
        • Aghajani M.
        • Veer I.M.
        • van Lang N.D.
        • Meens P.H.
        • van den Bulk B.G.
        • Rombouts S.A.
        • et al.
        Altered white-matter architecture in treatment-naive adolescents with clinical depression.
        Psychol Med. 2014; 44: 2287-2298
        • Sarkar S.
        • Craig M.C.
        • Dell’Acqua F.
        • O’Connor T.G.
        • Catani M.
        • Deeley Q.
        • et al.
        Prenatal stress and limbic-prefrontal white matter microstructure in children aged 6-9 years: A preliminary diffusion tensor imaging study.
        World J Biol Psychiatry. 2014; 15: 346-352
        • Ugwu I.D.
        • Amico F.
        • Carballedo A.
        • Fagan A.J.
        • Frodl T.
        Childhood adversity, depression, age and gender effects on white matter microstructure: A DTI study.
        Brain Struct Funct. 2015; 220: 1997-2009
        • Buss C.
        • Davis E.P.
        • Muftuler L.T.
        • Head K.
        • Sandman C.A.
        High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6-9-year-old children.
        Psychoneuroendocrinology. 2010; 35: 141-153
        • Widjaja E.
        • Geibprasert S.
        • Mahmoodabadi S.Z.
        • Blaser S.
        • Brown N.E.
        • Shannon P.
        Alteration of human fetal subplate layer and intermediate zone during normal development on MR and diffusion tensor imaging.
        AJNR Am J Neuroradiol. 2010; 31: 1091-1099
        • Bendersky M.
        • Musolino P.L.
        • Rugilo C.
        • Schuster G.
        • Sica R.E.
        Normal anatomy of the developing fetal brain. Ex vivo anatomical-magnetic resonance imaging correlation.
        J Neurol Sci. 2006; 250: 20-26
        • Garel C.
        • Chantrel E.
        • Elmaleh M.
        • Brisse H.
        • Sebag G.
        Fetal MRI: Normal gestational landmarks for cerebral biometry, gyration and myelination.
        Childs Nerv Syst. 2003; 19: 422-425
        • Rajagopalan V.
        • Scott J.
        • Habas P.A.
        • Kim K.
        • Corbett-Detig J.
        • Rousseau F.
        • et al.
        Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero.
        J Neurosci. 2011; 31: 2878-2887
        • Giedd J.N.
        • Blumenthal J.
        • Jeffries N.O.
        • Castellanos F.X.
        • Liu H.
        • Zijdenbos A.
        • et al.
        Brain development during childhood and adolescence: A longitudinal MRI study.
        Nat Neurosci. 1999; 2: 861-863
        • Barkovich A.J.
        • Kjos B.O.
        • Jackson Jr, D.E.
        • Norman D.
        Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T.
        Radiology. 1988; 166: 173-180
        • Matsuzawa J.
        • Matsui M.
        • Konishi T.
        • Noguchi K.
        • Gur R.C.
        • Bilker W.
        • Miyawaki T.
        Age-related volumetric changes of brain gray and white matter in healthy infants and children.
        Cereb Cortex. 2001; 11: 335-342
        • McEwen B.S.
        Physiology and neurobiology of stress and adaptation: Central role of the brain.
        Physiol Rev. 2007; 87: 873-904
        • Dirlikov B.
        • Shiels Rosch K.
        • Crocetti D.
        • Denckla M.B.
        • Mahone E.M.
        • Mostofsky S.H.
        Distinct frontal lobe morphology in girls and boys with ADHD.
        Neuroimage Clin. 2015; 7: 222-229
        • Onnink A.M.
        • Zwiers M.P.
        • Hoogman M.
        • Mostert J.C.
        • Kan C.C.
        • Buitelaar J.
        • Franke B.
        Brain alterations in adult ADHD: Effects of gender, treatment and comorbid depression.
        Eur Neuropsychopharmacol. 2014; 24: 397-409
        • Mahone E.M.
        • Ranta M.E.
        • Crocetti D.
        • O’Brien J.
        • Kaufmann W.E.
        • Denckla M.B.
        • Mostofsky S.H.
        Comprehensive examination of frontal regions in boys and girls with attention-deficit/hyperactivity disorder.
        J Int Neuropsychol Soc. 2011; 17: 1047-1057
        • Almeida Montes L.G.
        • Prado Alcantara H.
        • Martinez Garcia R.B.
        • De La Torre L.B.
        • Avila Acosta D.
        • Duarte M.G.
        Brain cortical thickness in ADHD: Age, sex, and clinical correlations.
        J Atten Disord. 2013; 17: 641-654
        • Davis E.P.
        • Glynn L.M.
        • Waffarn F.
        • Sandman C.A.
        Prenatal maternal stress programs infant stress regulation.
        J Child Psychol Psychiatry. 2011; 52: 119-129
        • Sandman C.A.
        • Davis E.P.
        • Buss C.
        • Glynn L.M.
        Prenatal programming of human neurological function.
        Int J Pept. 2011; 2011: 837596
        • Davis E.P.
        • Pfaff D.
        Sexually dimorphic responses to early adversity: Implications for affective problems and autism spectrum disorder.
        Psychoneuroendocrinology. 2014; 49: 11-25
        • Lenroot R.K.
        • Gogtay N.
        • Greenstein D.K.
        • Wells E.M.
        • Wallace G.L.
        • Clasen L.S.
        • et al.
        Sexual dimorphism of brain developmental trajectories during childhood and adolescence.
        Neuroimage. 2007; 36: 1065-1073
        • Seunarine K.K.
        • Clayden J.D.
        • Jentschke S.
        • Munoz M.
        • Cooper J.M.
        • Chadwick M.J.
        • et al.
        Sexual dimorphism in white matter developmental trajectories using tract-based spatial statistics.
        Brain Connect. 2015; 6: 37-47
        • Lebel C.
        • Mattson S.N.
        • Riley E.P.
        • Jones K.L.
        • Adnams C.M.
        • May P.A.
        • et al.
        A longitudinal study of the long-term consequences of drinking during pregnancy: Heavy in utero alcohol exposure disrupts the normal processes of brain development.
        J Neurosci. 2012; 32: 15243-15251
        • Gold P.W.
        The organization of the stress system and its dysregulation in depressive illness.
        Mol Psychiatry. 2015; 20: 32-47
        • Giesbrecht G.F.
        • Campbell T.
        • Letourneau N.
        • Kooistra L.
        • Kaplan B.
        • APrON Study Team
        Psychological distress and salivary cortisol covary within persons during pregnancy.
        Psychoneuroendocrinology. 2012; 37: 270-279
        • Sanchez M.M.
        • Ladd C.O.
        • Plotsky P.M.
        Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models.
        Dev Psychopathol. 2001; 13: 419-449
        • Kaplan B.J.
        • Crawford S.G.
        • Field C.J.
        • Simpson J.S.
        Vitamins, minerals, and mood.
        Psychol Bull. 2007; 133: 747-760
        • Beard J.L.
        • Hendricks M.K.
        • Perez E.M.
        • Murray-Kolb L.E.
        • Berg A.
        • Vernon-Feagans L.
        • et al.
        Maternal iron deficiency anemia affects postpartum emotions and cognition.
        J Nutr. 2005; 135: 267-272
        • Wojcik J.
        • Dudek D.
        • Schlegel-Zawadzka M.
        • Grabowska M.
        • Marcinek A.
        • Florek E.
        • et al.
        Antepartum/postpartum depressive symptoms and serum zinc and magnesium levels.
        Pharmacol Rep. 2006; 58: 571-576
        • Ojha S.
        • Fainberg H.P.
        • Sebert S.
        • Budge H.
        • Symonds M.E.
        Maternal health and eating habits: Metabolic consequences and impact on child health.
        Trends Mol Med. 2015; 21: 126-133
        • Steer C.D.
        • Lattka E.
        • Koletzko B.
        • Golding J.
        • Hibbeln J.R.
        Maternal fatty acids in pregnancy, FADS polymorphisms, and child intelligence quotient at 8 y of age.
        Am J Clin Nutr. 2013; 98: 1575-1582
        • Deoni S.C.
        • Dean 3rd, D.C.
        • Piryatinsky I.
        • O’Muircheartaigh J.
        • Waskiewicz N.
        • Lehman K.
        • et al.
        Breastfeeding and early white matter development: A cross-sectional study.
        Neuroimage. 2013; 82: 77-86
        • Grigoriadis S.
        • VonderPorten E.H.
        • Mamisashvili L.
        • Tomlinson G.
        • Dennis C.L.
        • Koren G.
        • et al.
        The impact of maternal depression during pregnancy on perinatal outcomes: A systematic review and meta-analysis.
        J Clin Psychiatry. 2013; 74: e321-e341
        • Lenroot R.K.
        • Schmitt J.E.
        • Ordaz S.J.
        • Wallace G.L.
        • Neale M.C.
        • Lerch J.P.
        • et al.
        Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence.
        Hum Brain Mapp. 2009; 30: 163-174
        • Chiang M.C.
        • McMahon K.L.
        • de Zubicaray G.I.
        • Martin N.G.
        • Hickie I.
        • Toga A.W.
        • et al.
        Genetics of white matter development: A DTI study of 705 twins and their siblings aged 12 to 29.
        Neuroimage. 2011; 54: 2308-2317
        • Smoller J.W.
        The genetics of stress-related disorders: PTSD, depression, and anxiety disorders.
        Neuropsychopharmacology. 2016; 41: 297-319

      Linked Article