Advertisement

Posttraumatic Stress Disorder as a Catalyst for the Association Between Metabolic Syndrome and Reduced Cortical Thickness

  • Erika J. Wolf
    Correspondence
    Address correspondence to: Erika J. Wolf, Ph.D., National Center for PTSD (116B-2), VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA 02130.
    Affiliations
    National Center for PTSD, Boston, Massachusetts

    Department of Psychiatry, Boston, Massachusetts
    Search for articles by this author
  • Naomi Sadeh
    Affiliations
    National Center for PTSD, Boston, Massachusetts

    Department of Psychiatry, Boston, Massachusetts
    Search for articles by this author
  • Elizabeth C. Leritz
    Affiliations
    Behavioral Science Division, Neuroimaging Research for Veterans Center, Boston, Massachusetts

    Geriatric Research, Education and Clinical Center, Boston, Massachusetts

    Translational Research Center for TBI and Stress Disorders, Boston, Massachusetts

    Biomedical Genetics, Boston University School of Medicine, Boston, Massachusetts

    Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
    Search for articles by this author
  • Mark W. Logue
    Affiliations
    Research Service, VA Boston Healthcare System, Boston, Massachusetts

    Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
    Search for articles by this author
  • Tawni B. Stoop
    Affiliations
    Boston VA Research Institute, Inc, Boston, Massachusetts
    Search for articles by this author
  • Regina McGlinchey
    Affiliations
    Geriatric Research, Education and Clinical Center, Boston, Massachusetts

    Translational Research Center for TBI and Stress Disorders, Boston, Massachusetts

    Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
    Search for articles by this author
  • William Milberg
    Affiliations
    Geriatric Research, Education and Clinical Center, Boston, Massachusetts

    Translational Research Center for TBI and Stress Disorders, Boston, Massachusetts

    Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
    Search for articles by this author
  • Mark W. Miller
    Affiliations
    National Center for PTSD, Boston, Massachusetts

    Department of Psychiatry, Boston, Massachusetts

    Biomedical Genetics, Boston University School of Medicine, Boston, Massachusetts
    Search for articles by this author
Published:December 08, 2015DOI:https://doi.org/10.1016/j.biopsych.2015.11.023

      Abstract

      Background

      Metabolic syndrome (MetS), defined by a constellation of cardiometabolic pathologies, is highly prevalent among veterans, especially veterans with posttraumatic stress disorder (PTSD), and poses a major risk for adverse health outcomes, including neurodegeneration and mortality. Given this, we evaluated 1) the association between MetS and neural integrity, indexed by cortical thickness; 2) the relationship between PTSD and MetS; and 3) whether PTSD was associated with cortical thickness indirectly through MetS.

      Methods

      The sample consisted of 346 U.S. military veterans (89.3% male; 71.4% white) who deployed to Iraq, Afghanistan, or both. Neuroimaging data were available for 274 participants.

      Results

      In whole-brain analyses, MetS was negatively associated with cortical thickness in two left and four right hemisphere regions, as follows: bilateral temporal lobe, including temporal pole, fusiform gyrus, and insula, and extending into occipital cortex (left hemisphere) and orbitofrontal cortex (right hemisphere); bilateral precuneus, posterior cingulate, calcarine, and occipital-parietal cortex; and right rostral anterior cingulate cortex and central sulcus/postcentral gyrus. Path models showed that PTSD predicted MetS (β = .19, p < .001), which was associated with reduced cortical thickness (β = −.29 to −.43, all p < .001).

      Conclusions

      Results from this young veteran sample provide evidence that PTSD confers risk for cardiometabolic pathology and neurodegeneration and raise concern that this cohort may be aging prematurely and at risk for substantial medical and cognitive decline. This study highlights the need to identify the molecular mechanisms linking PTSD to MetS and effective interventions to reduce PTSD-related health comorbidities.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lakka H.M.
        • Laaksonen D.E.
        • Lakka T.A.
        • Niskanen L.K.
        • Kumpusalo E.
        • Tuomilehto J.
        • Salonen J.T.
        The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men.
        JAMA. 2002; 288: 2709-2716
        • Wilson P.W.
        • D’Agostino R.B.
        • Parise H.
        • Sullivan L.
        • Meigs J.B.
        Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus.
        Circulation. 2005; 112: 3066-3072
        • Meigs J.B.
        • Wilson P.W.
        • Fox C.S.
        • Vasan R.S.
        • Nathan D.M.
        • Sullivan L.M.
        • D’Agostino R.B.
        Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease.
        J Clin Endocrinol Metab. 2006; 91: 2906-2912
        • Esposito K.
        • Chiodini P.
        • Colao A.
        • Lenzi A.
        • Giugliano D.
        Metabolic syndrome and risk of cancer: A systematic review and meta-analysis.
        Diabetes Care. 2012; 35: 2402-2411
        • Yaffe K.
        • Kanaya A.
        • Lindquist K.
        • Simonsick E.M.
        • Harris T.
        • Shorr R.I.
        • et al.
        The metabolic syndrome, inflammation, and risk of cognitive decline.
        JAMA. 2004; 292: 2237-2242
        • Yaffe K.
        Metabolic syndrome and cognitive disorders: Is the sum greater than its parts?.
        Alzheimer Dis Assoc Disord. 2007; 21: 167-171
        • Malik S.
        • Wong N.D.
        • Franklin S.S.
        • Kamath T.V.
        • L’Italien G.J.
        • Pio J.R.
        • Williams G.R.
        Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults.
        Circulation. 2004; 110: 1245-1250
        • Grundy S.M.
        • Cleeman J.I.
        • Daniels S.R.
        • Donato K.A.
        • Eckel R.H.
        • Franklin B.A.
        • et al.
        Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement: Executive summary.
        Crit Pathw Cardiol. 2005; 4: 198-203
        • National Cholesterol Education Program (NCEP)
        Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III).
        JAMA. 2001; 285: 2486-2497
        • Reilly M.P.
        • Rader D.J.
        The metabolic syndrome: More than the sum of its parts?.
        Circulation. 2003; 108: 1546-1551
        • Räikkönen K.
        • Matthews K.A.
        • Kuller L.H.
        The relationship between psychological risk attributes and the metabolic syndrome in healthy women: Antecedent or consequence?.
        Metabolism. 2002; 51: 1573-1577
        • Vitaliano P.P.
        • Scanlan J.M.
        • Zhang J.
        • Savage M.V.
        • Hirsch I.B.
        • Siegler I.C.
        A path model of chronic stress, the metabolic syndrome, and coronary heart disease.
        Psychosom Med. 2002; 64: 418-435
        • Levine A.B.
        • Levine L.M.
        • Levine T.B.
        Posttraumatic stress disorder and cardiometabolic disease.
        Cardiology. 2014; 127: 1-19
        • Kyrou I.
        • Tsigos C.
        Stress mechanisms and metabolic complications.
        Horm Metab Res. 2007; 39: 430-438
        • Chandola T.
        • Brunner E.
        • Marmot M.
        Chronic stress at work and the metabolic syndrome: Prospective study.
        BMJ. 2006; 332: 521-525
        • Rosmond R.
        Role of stress in the pathogenesis of the metabolic syndrome.
        Psychoneuroendocrinology. 2005; 30: 1-10
        • Kibler J.L.
        • Tursich M.
        • Ma M.
        • Malcolm L.
        • Greenbarg R.
        Metabolic, autonomic and immune markers for cardiovascular disease in posttraumatic stress disorder.
        World J Cardiol. 2014; 6: 455-461
        • Brudey C.
        • Park J.
        • Wiaderkiewicz J.
        • Kobayashi I.
        • Mellman T.A.
        • Marvar P.J.
        Autonomic and inflammatory consequences of posttraumatic stress disorder (PTSD) and the link to cardiovascular disease.
        Am J Physiol Regul Integr Comp Physiol. 2015; 309: R315-R321
        • Epel E.S.
        Psychological and metabolic stress: A recipe for accelerated cellular aging?.
        Hormones (Athens). 2009; 8: 7-22
        • Bonomini F.
        • Rodella L.F.
        • Rezzani R.
        Metabolic syndrome, aging and involvement of oxidative stress.
        Aging Dis. 2015; 6: 109-120
        • Treviño S.
        • Aguilar-Alonso P.
        • Flores Hernandez J.A.
        • Brambila E.
        • Guevara J.
        • Flores G.
        • et al.
        A high calorie diet causes memory loss, metabolic syndrome and oxidative stress into hippocampus and temporal cortex of rats.
        Synapse. 2015; 69: 421-433
        • Grattagliano I.
        • Palmieri V.O.
        • Portincasa P.
        • Moschetta A.
        • Palasciano G.
        Oxidative stress-induced risk factors associated with metabolic syndrome: A unifying hypothesis.
        J Nutr Biochem. 2008; 19: 491-504
        • Rosenbaum S.
        • Stubbs B.
        • Ward P.B.
        • Steel Z.
        • Lederman O.
        • Vancampfort D.
        The prevalence and risk of metabolic syndrome and its components among people with posttraumatic stress disorder: A systematic review and meta-analysis.
        Metabolism. 2015; 64: 926-933
        • Bartoli F.
        • Carrà G.
        • Crocamo C.
        • Caretta D.
        • Clerici M.
        Metabolic syndrome in people suffering from posttraumatic stress disorder: A systematic review and meta-analysis.
        Metab Syndr Relat Disord. 2013; 11: 301-308
        • Heppner P.S.
        • Lohr J.B.
        • Kash T.P.
        • Jin H.
        • Wang H.
        • Baker D.G.
        Metabolic syndrome: Relative risk associated with post-traumatic stress disorder (PTSD) severity and antipsychotic medication use.
        Psychosomatics. 2012; 53: 550-558
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        5th ed. American Psychiatric Association, Washington, DC2013
        • Fulton J.J.
        • Calhoun P.S.
        • Wagner H.R.
        • Schry A.R.
        • Hair L.P.
        • Feeling N.
        • et al.
        The prevalence of posttraumatic stress disorder in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veterans: A meta-analysis.
        J Anxiety Disord. 2015; 31: 98-107
        • Kessler R.C.
        Posttraumatic stress disorder: The burden to the individual and to society.
        J Clin Psychiatry. 2000; 61: 4-12
        • Tanielian T.
        • Jaycox L.H.
        Invisible Wounds of War: Psychological and Cognitive Injuries.
        Their Consequences, and Services to Assist Recovery. RAND Corporation, Santa Monica, CA2008
        • Williamson J.B.
        • Porges E.C.
        • Lamb D.G.
        • Porges S.W.
        Maladaptive autonomic regulations in PTSD accelerates physiological aging.
        Front Psychol. 2015; 5: 1571
        • Yehuda R.
        • Boisoneau D.
        • Lowy M.T.
        • Giller Jr, E.L.
        Dose-response changes in plasma cortisol and lymphocyte glucocorticoid receptors following dexamethasone administration in combat veterans with and without posttraumatic stress disorder.
        Arch Gen Psychiatry. 1995; 52: 583-593
        • Hoge E.A.
        • Brandstetter K.
        • Moshier S.
        • Pollack M.H.
        • Wong K.K.
        • Simon N.M.
        Broad spectrum of cytokine abnormalities in panic disorder and posttraumatic stress disorder.
        Depress Anxiety. 2009; 26: 447-455
        • Lindqvist D.
        • Wolkowitz O.M.
        • Mellon S.
        • Yehuda R.
        • Flory J.D.
        • Henn-Haase C.
        • et al.
        Proinflammatory milieu in combat-related PTSD is independent of depression and early life stress.
        Brain Behav Immun. 2014; 42: 81-88
        • Miller M.W.
        • Sadeh N.
        Traumatic stress, oxidative stress and post-traumatic stress disorder: Neurodegeneration and the accelerated-aging hypothesis.
        Mol Psychiatry. 2014; 19: 1156-1162
        • Lohr J.B.
        • Palmer B.W.
        • Eidt C.A.
        • Aailaboyina S.
        • Mausbach B.T.
        • Wolkowitz O.M.
        • et al.
        Is post-traumatic stress disorder associated with premature senescence? A review of the literature.
        Am J Geriatr Psychiatry. 2015; 23: 709-725
        • Moreno-Villanueva M.
        • Morath J.
        • Vanhooren V.
        • Elbert T.
        • Kolassa S.
        • Libert C.
        • et al.
        N-glycosylation profiling of plasma provides evidence for accelerated physiological aging in post-traumatic stress disorder.
        Transl Psychiatry. 2013; 3: e320
        • Farr O.M.
        • Ko B.J.
        • Joung K.E.
        • Zaichenko L.
        • Usher N.
        • Tsoukas M.
        • et al.
        Posttraumatic stress disorder, alone or additively with early life adversity, is associated with obesity and cardiometabolic risk.
        Nutr Metab Cardiovasc Dis. 2015; 25: 479-488
        • Francis M.M.
        • Nikulina V.
        • Widom C.S.
        A prospective examination of the mechanisms linking childhood physical abuse to body mass index in adulthood.
        Child Maltreat. 2015; 20: 203-213
        • Ahmadi N.
        • Hajsadeghi F.
        • Mirshkarlo H.B.
        • Budoff M.
        • Yehuda R.
        • Ebrahimi R.
        Post-traumatic stress disorder, coronary atherosclerosis, and mortality.
        Am J Cardiol. 2011; 108: 29-33
        • Wentworth B.A.
        • Stein M.B.
        • Redwine L.S.
        • Xue Y.
        • Taub P.R.
        • Clopton P.
        • et al.
        Post-traumatic stress disorder: A fast track to premature cardiovascular disease?.
        Cardiol Rev. 2013; 21: 16-22
        • Turner J.H.
        • Neylan T.C.
        • Schiller N.B.
        • Li Y.
        • Cohen B.E.
        Objective evidence of myocardial ischemia in patients with posttraumatic stress disorder.
        Biol Psychiatry. 2013; 74: 861-866
        • Roy S.S.
        • Foraker R.E.
        • Girton R.A.
        • Mansfield A.J.
        Posttraumatic stress disorder and incident heart failure among a community-based sample of US veterans.
        Am J Public Health. 2015; 105: 757-763
        • Sumner J.A.
        • Kubzansky L.D.
        • Elkind M.S.
        • Roberts A.L.
        • Agnew-Blais J.
        • Chen Q.
        • et al.
        Trauma exposure and posttraumatic stress disorder symptoms predict onset of cardiovascular events in women.
        Circulation. 2015; 132: 251-259
        • Roberts A.L.
        • Agnew-Blais J.C.
        • Spiegelman D.
        • Kubzansky L.D.
        • Mason S.M.
        • Galea S.
        • et al.
        Posttraumatic stress disorder and incidence of type 2 diabetes mellitus in a sample of women: A 22-year longitudinal study.
        JAMA Psychiatry. 2015; 72: 203-210
        • Yaffe K.
        • Vittinghoff E.
        • Lindquist K.
        • Barnes D.
        • Covinsky K.E.
        • Neylan T.
        • et al.
        Posttraumatic stress disorder and risk of dementia among US veterans.
        Arch Gen Psychiatry. 2010; 67: 608-613
        • Siervo M.
        • Ruggiero D.
        • Sorice R.
        • Nutile T.
        • Aversano M.
        • Stephan B.C.
        • Ciullo M.
        Angiogenesis and biomarkers of cardiovascular risk in adults with metabolic syndrome.
        J Intern Med. 2010; 268: 338-347
        • Taguchi A.
        Vascular factors in diabetes and Alzheimer’s disease.
        J Alzheimers Dis. 2009; 16: 859-864
        • Fischl B.
        • Dale A.M.
        Measuring the thickness of the human cerebral cortex from magnetic resonance images.
        Proc Natl Acad Sci U S A. 2000; 97: 11050-11055
        • Salat D.H.
        • Buckner R.L.
        • Snyder A.Z.
        • Greve D.N.
        • Desikan R.S.
        • Busa E.
        • et al.
        Thinning of the cerebral cortex in aging.
        Cereb Cortex. 2004; 14: 721-730
        • Kaur S.
        • Gonzales M.M.
        • Strasser B.
        • Pasha E.
        • McNeely J.
        • Tanaka H.
        • Haley A.P.
        Central adiposity and cortical thickness in midlife.
        Psychosom Med. 2015; 77: 671-678
        • Veit R.
        • Kullmann S.
        • Heni M.
        • Machann J.
        • Häring H.U.
        • Fritsche A.
        • Preissl H.
        Reduced cortical thickness associated with visceral fat and BMI.
        Neuroimage Clin. 2014; 6: 307-311
        • Marqués-Iturria I.
        • Pueyo R.
        • Garolera M.
        • Segura B.
        • Junqué C.
        • García-García I.
        • et al.
        Frontal cortical thinning and subcortical volume reductions in early adulthood obesity.
        Psychiatry Res. 2013; 214: 109-115
        • Hassenstab J.J.
        • Sweet L.H.
        • Del Parigi A.
        • McCaffery J.M.
        • Haley A.P.
        • Demos K.E.
        • et al.
        Cortical thickness of the cognitive control network in obesity and successful weight loss maintenance: A preliminary MRI study.
        Psychiatry Res. 2012; 202: 77-79
        • Walhovd K.B.
        • Sorsve A.B.
        • Westlye L.T.
        • Drevon C.A.
        • Fjell A.M.
        Blood markers of fatty acids and vitamin D, cardiovascular measures, body mass index, and physical activity relate to longitudinal cortical thinning in normal aging.
        Neurobiol Aging. 2014; 35: 1055-1064
        • Leritz E.C.
        • Salat D.H.
        • Williams V.J.
        • Schnyer D.M.
        • Rudolph J.L.
        • Lipsitz L.
        • et al.
        Thickness of the human cerebral cortex is associated with metrics of cerebrovascular health in a normative sample of community dwelling older adults.
        Neuroimage. 2011; 54: 2659-2671
        • Alosco M.L.
        • Gunstad J.
        • Xu X.
        • Clark U.S.
        • Labbe D.R.
        • Riskin-Jones H.H.
        • et al.
        The impact of hypertension on cerebral perfusion and cortical thickness in older adults.
        J Am Soc Hypertens. 2014; 8: 561-570
        • Brundel M.
        • van den Heuvel M.
        • de Bresser J.
        • Kappelle L.J.
        • Biessels G.J.
        • Utrecht Diabetic Encephalopathy Study Group
        Cerebral cortical thickness in patients with type 2 diabetes.
        J Neurol Sci. 2010; 299: 126-130
        • Chen Z.
        • Sun J.
        • Yang Y.
        • Lou X.
        • Wang Y.
        • Wang Y.
        • Ma L.
        Cortical thinning in type 2 diabetes mellitus and recovering effects of insulin therapy.
        J Clin Neurosci. 2015; 22: 275-279
        • Tchistiakova E.
        • Anderson N.D.
        • Greenwood C.E.
        • MacIntosh B.J.
        Combined effects of type 2 diabetes and hypertension associated with cortical thinning and impaired cerebrovascular reactivity relative to hypertension alone in older adults.
        Neuroimage Clin. 2014; 5: 36-41
        • Krishnadas R.
        • McLean J.
        • Batty D.G.
        • Burns H.
        • Deans K.A.
        • Ford I.
        • et al.
        Cardio-metabolic risk factors and cortical thickness in a neurologically healthy male population: Results from the psychological, social and biological determinants of ill health (pSoBid) study.
        Neuroimage Clin. 2013; 2: 646-657
        • Song S.W.
        • Chung J.H.
        • Rho J.S.
        • Lee Y.A.
        • Lim H.K.
        • Kang S.G.
        • et al.
        Regional cortical thickness and subcortical volume changes in patients with metabolic syndrome.
        Brain Imaging Behav. 2015; 9: 588-596
        • Lindemer E.R.
        • Salat D.H.
        • Leritz E.C.
        • McGlinchey R.E.
        • Milberg W.P.
        Reduced cortical thickness with increased lifetime burden of PTSD in OEF/OIF Veterans and the impact of comorbid TBI.
        Neuroimage Clin. 2013; 2: 601-611
        • Blake D.D.
        • Weathers F.W.
        • Nagy L.M.
        • Kaloupek D.G.
        • Gusman F.D.
        • Charney D.S.
        • Keane T.M.
        The development of a Clinician-Administered PTSD Scale.
        J Trauma Stress. 1995; 8: 75-90
        • Muthèn L.K.
        • Muthèn B.O.
        Mplus user’s guide.
        Muthèn & Muthèn, Los Angeles2012
        • Hu L.
        • Bentler P.M.
        Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives.
        Structural Equation Modeling. 1999; 6: 1-55
        • Solomon S.D.
        • Davidson J.R.
        Trauma: Prevalence, impairment, service use, and cost.
        J Clin Psychiatry. 1997; 58: 5-11
        • Kullmann S.
        • Schweizer F.
        • Veit R.
        • Fritsche A.
        • Preissl H.
        Compromised white matter integrity in obesity.
        Obes Rev. 2015; 16: 273-281
        • Bolzenius J.D.
        • Laidlaw D.H.
        • Cabeen R.P.
        • Conturo T.E.
        • McMichael A.R.
        • Lane E.M.
        • et al.
        Brain structure and cognitive correlates of body mass index in healthy older adults.
        Behav Brain Res. 2015; 278: 342-347
        • Bolzenius J.D.
        • Laidlaw D.H.
        • Cabeen R.P.
        • Conturo T.E.
        • McMichael A.R.
        • Lane E.M.
        • et al.
        Impact of body mass index on neuronal fiber bundle lengths among healthy older adults.
        Brain Imaging Behav. 2013; 7: 300-306
        • Willeumier K.
        • Taylor D.V.
        • Amen D.G.
        Elevated body mass in National Football League players linked to cognitive impairment and decreased prefrontal cortex and temporal pole activity.
        Transl Psychiatry. 2012; 2: e68
        • Kullmann S.
        • Heni M.
        • Veit R.
        • Ketterer C.
        • Schick F.
        • Häring H.U.
        • et al.
        The obese brain: Association of body mass index and insulin sensitivity with resting state: Network functional connectivity.
        Hum Brain Mapp. 2012; 33: 1052-1061
        • Gustafson D.
        • Lissner L.
        • Bengtsson C.
        • Björkelund C.
        • Skoog I.
        A 24-year follow-up of body mass index and cerebral atrophy.
        Neurology. 2004; 63: 1876-1881
        • Gazdzinski S.
        • Kornak J.
        • Weiner M.W.
        • Meyerhoff D.J.
        Body mass index and magnetic resonance markers of brain integrity in adults.
        Ann Neurol. 2008; 63: 652-657
        • Stranahan A.M.
        Models and mechanisms for hippocampal dysfunction in obesity and diabetes.
        Neuroscience. 2015; 309: 125-139
        • Okabayashi S.
        • Shimozawa N.
        • Yasutomi Y.
        • Yanagisawa K.
        • Kimura N.
        Diabetes mellitus accelerates Aβ pathology in brain accompanied by enhanced GAβ generation in nonhuman primates.
        PLoS One. 2015; 10: e0117362
        • McKhann G.M.
        • Knopman D.S.
        • Chertkow H.
        • Hyman B.T.
        • Jack Jr, C.R.
        • Kawas C.H.
        • et al.
        The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease.
        Alzheimers Dement. 2011; 7: 263-269
        • Bing X.
        • Ming-Guo Q.
        • Ye Z.
        • Jing-Na Z.
        • Min L.
        • Han C.
        • et al.
        Alterations in the cortical thickness and the amplitude of low-frequency fluctuation in patients with post-traumatic stress disorder.
        Brain Res. 2013; 1490: 225-232
        • Woodward S.H.
        • Schaer M.
        • Kaloupek D.G.
        • Cediel L.
        • Eliez S.
        Smaller global and regional cortical volume in combat-related posttraumatic stress disorder.
        Arch Gen Psychiatry. 2009; 66: 1373-1382
        • Geuze E.
        • Westenberg H.G.
        • Heinecke A.
        • de Kloet C.S.
        • Goebel R.
        • Vermetten E.
        Thinner prefrontal cortex in veterans with posttraumatic stress disorder.
        Neuroimage. 2008; 41: 675-681
        • Dedert E.A.
        • Calhoun P.S.
        • Watkins L.L.
        • Sherwood A.
        • Beckham J.C.
        Posttraumatic stress disorder, cardiovascular, and metabolic disease: A review of the evidence.
        Ann Behav Med. 2010; 39: 61-78
        • Hall K.S.
        • Hoerster K.D.
        • Yancy Jr, W.S.
        Post-traumatic stress disorder, physical activity, and eating behaviors.
        Epidemiol Rev. 2015; 37: 103-115
        • Zannas A.S.
        • Provençal N.
        • Binder E.B.
        Epigenetics of posttraumatic stress disorder: Current evidence, challenges, and future directions.
        Biol Psychiatry. 2015; 78: 327-335
        • Yara S.
        • Lavoie J.C.
        • Levy E.
        Oxidative stress and DNA methylation regulation in the metabolic syndrome.
        Epigenomics. 2015; 7: 283-300
        • Yang R.
        • Daigle Jr, B.J.
        • Muhie S.Y.
        • Hammamieh R.
        • Jett M.
        • Petzold L.
        • Doyle 3rd, F.J.
        Core modular blood and brain biomarkers in social defeat mouse model for posttraumatic stress disorder.
        BMC Syst Biol. 2013; 7: 80
        • Tucsek Z.
        • Toth P.
        • Sosnowska D.
        • Gautam T.
        • Mitschelen M.
        • Koller A.
        • et al.
        Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: Effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease.
        J Gerontol A Biol Sci Med Sci. 2014; 69: 1212-1226
        • Mauro C.
        • De Rosa V.
        • Marelli-Berg F.
        • Solito E.
        Metabolic syndrome and the immunological affair with the blood-brain barrier.
        Front Immunol. 2015; 5: 677
        • Wolf E.J.
        • Logue M.W.
        • Hayes J.P.
        • Sadeh N.
        • Schichman S.A.
        • Stone A.
        • et al.
        Accelerated DNA methylation age: Associations with PTSD and neural integrity.
        Psychoneuroendocrinology. 2016; 63: 155-162
        • Jergovic M.
        • Tomicevic M.
        • Vidovic A.
        • Bendelja K.
        • Savic A.
        • Vojvoda V.
        • et al.
        Telomere shortening and immune activity in war veterans with posttraumatic stress disorder.
        Prog Neuropsychopharmacol Biol Psychiatry. 2014; 54: 275-283
        • Ladwig K.H.
        • Brockhaus A.C.
        • Baumert J.
        • Lukaschek K.
        • Emeny R.T.
        • Kruse J.
        • et al.
        Posttraumatic stress disorder and not depression is associated with shorter leukocyte telomere length: Findings from 3,000 participants in the population-based KORA F4 study.
        PLoS One. 2013; 8: e64762
        • O’Donovan A.
        • Epel E.
        • Lin J.
        • Wolkowitz O.
        • Cohen B.
        • Maguen S.
        • et al.
        Childhood trauma associated with short leukocyte telomere length in posttraumatic stress disorder.
        Biol Psychiatry. 2011; 70: 465-471
        • Tyrka A.R.
        • Parade S.H.
        • Price L.H.
        • Kao H.T.
        • Porton B.
        • Philip N.S.
        • et al.
        Alterations of mitochondrial DNA copy number and telomere length with early adversity and psychopathology.
        Biol Psychiatry. 2016; 79: 78-86
        • Zhang L.
        • Hu X.Z.
        • Benedek D.M.
        • Fullerton C.S.
        • Forsten R.D.
        • Naifeh J.A.
        • et al.
        The interaction between stressful life events and leukocyte telomere length is associated with PTSD.
        Mol Psychiatry. 2014; 19: 855-856
        • Belsky D.W.
        • Caspi A.
        • Houts R.
        • Cohen H.J.
        • Corcoran D.L.
        • Danese A.
        • et al.
        Quantification of biological aging in young adults.
        Proc Natl Acad Sci U S A. 2015; 112: E4104-E4110
        • Rosenbaum S.
        • Sherrington C.
        • Tiedemann A.
        Exercise augmentation compared with usual care for post-traumatic stress disorder: A randomized controlled trial.
        Acta Psychiatr Scand. 2015; 131: 350-359
        • Fetzner M.G.
        • Asmundson G.J.
        Aerobic exercise reduces symptoms of posttraumatic stress disorder: A randomized controlled trial.
        Cogn Behav Ther. 2015; 44: 301-313
        • Belsky D.W.
        • Caspi A.
        • Goldman-Mellor S.
        • Meier M.H.
        • Ramrakha S.
        • Poulton R.
        • Moffitt T.E.
        Is obesity associated with a decline in intelligence quotient during the first half of the life course?.
        Am J Epidemiol. 2013; 179: 1461-1468
        • Batty G.D.
        • Gale C.R.
        • Mortensen L.H.
        • Langenberg C.
        • Shipley M.J.
        • Deary I.J.
        Pre-morbid intelligence, the metabolic syndrome and mortality: The Vietnam Experience Study.
        Diabetologia. 2008; 51: 436-443
        • Koenen K.C.
        • Moffitt T.E.
        • Poulton R.
        • Martin J.
        • Caspi A.
        Early childhood factors associated with the development of post-traumatic stress disorder: Results from a longitudinal birth cohort.
        Psychol Med. 2007; 37: 181-192
        • Povel C.M.
        • Beulens J.W.
        • van der Schouw Y.T.
        • Dollé M.E.
        • Spijkerman A.M.
        • Verschuren W.M.
        • et al.
        Metabolic syndrome model definitions predicting type 2 diabetes and cardiovascular disease.
        Diabetes Care. 2013; 36: 362-368
        • Institute of Medicine
        Treatment for posttraumatic stress disorder in military and veteran populations: Final assessment.
        The National Academies Press, Washington, DC2014
        • Keane J.
        • Meier J.L.
        • Noth R.H.
        • Swislocki A.L.
        Computer-based screening of veterans for metabolic syndrome.
        Metab Syndr Relat Disord. 2009; 7: 557-561
        • Sullivan P.W.
        • Ghushchyan V.
        • Wyatt H.R.
        • Hill J.O.
        The medical cost of cardiometabolic risk factor clusters in the United States.
        Obesity (Silver Spring). 2007; 15: 3150-3158
        • Alberti K.G.
        • Zimmet P.
        • Shaw J.
        • IDF Epidemiology Task Force Consensus Group
        The metabolic syndrome—a new worldwide definition.
        Lancet. 2005; 366: 1059-1062