Advertisement

Therapeutic Potential of Cannabinoids in Psychosis

  • F. Markus Leweke
    Correspondence
    Address correspondence to F. Markus Leweke, M.D., Heidelberg University, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, J5, Mannheim, BW 68159, Germany.
    Affiliations
    Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
    Search for articles by this author
  • Juliane K. Mueller
    Affiliations
    Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
    Search for articles by this author
  • Bettina Lange
    Affiliations
    Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
    Search for articles by this author
  • Cathrin Rohleder
    Affiliations
    Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
    Search for articles by this author
Published:November 28, 2015DOI:https://doi.org/10.1016/j.biopsych.2015.11.018

      Abstract

      Over recent years, the interest in the endocannabinoid system (ECS) as a new target for the treatment of schizophrenia has evolved. The ECS represents one of the most relevant neurotransmitter systems in the brain and mainly fulfills a homeostatic role in terms of neurotransmission but also with respect to inflammatory processes. Two main approaches to the modulation of endocannabinoid functioning have been chosen so far. First, the selective blockade or inverse agonism of the type 1 cannabinoid receptor has been tested for the improvement of acute psychotic symptoms, as well as for the improvement of cognitive functions in schizophrenia. This was not effective in either case. Second, the modulation of endocannabinoid levels by use of the phytocannabinoid cannabidiol and selective fatty acid amide hydrolase inhibitors has been proposed, and the antipsychotic properties of cannabidiol are currently being investigated in humans. Unfortunately, for most of these trials that have focused on psychopathological and cognitive effects of cannabidiol, no published data are available. However, there is first evidence that cannabidiol may ameliorate psychotic symptoms with a superior side-effect profile compared with established antipsychotics. In conclusion, several clinical trials targeting the ECS in acute schizophrenia have either been completed or are underway. Although publicly available results are currently limited, preliminary data indicate that selected compounds modulating the ECS may be effective in acute schizophrenia. Nevertheless, so far, sample sizes of patients investigated are not sufficient to come to a final judgment, and no maintenance studies are available to ensure long-term efficacy and safety.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Moreau de Tours J.-J.
        Du hachisch et de l’aliénation Mentale.
        Paris: Fortin et Masson, Études Psychologiques1845
        • Beringer K.
        • von Baeyer W.
        • Marx H.
        Zur Klinik des Haschischrausches.
        Nervenarzt. 1932; 5: 337-350
        • Adams R.
        Marihuana.
        Bull N Y Acad Med. 1942; 18: 705-730
        • Todd A.R.
        Hashish.
        Experientia. 1946; 2: 55-60
        • Allentuck S.
        • Bowman K.M.
        The psychiatric aspects of marihuana intoxication.
        Am J Psychiatry. 1942; 99: 248-251
        • Gaoni Y.
        • Mechoulam R.
        Isolation, structure and partial synthesis of an active constituent of hashish.
        J Am Chem Soc. 1964; 86: 1646-1647
        • Devane W.A.
        • Dysarz III, F.A.
        • Johnson M.R.
        • Melvin L.S.
        • Howlett A.C.
        Determination and characterization of a cannabinoid receptor in rat brain.
        Mol Pharmacol. 1988; 34: 605-613
        • Matsuda L.A.
        • Lolait S.J.
        • Brownstein M.J.
        • Young A.C.
        • Bonner T.I.
        Structure of a cannabinoid receptor and functional expression of the cloned cDNA.
        Nature. 1990; 346: 561-564
        • Munro S.
        • Thomas K.L.
        • Abu Shaar M.
        Molecular characterization of a peripheral receptor for cannabinoids.
        Nature. 1993; 365: 61-65
        • Devane W.A.
        • Hanus L.
        • Breuer A.
        • Pertwee R.G.
        • Stevenson L.A.
        • Griffin G.
        • et al.
        Isolation and structure of a brain constituent that binds to the cannabinoid receptor.
        Science. 1992; 258: 1946-1949
        • Mechoulam R.
        • Ben-Shabat S.
        • Hanus L.
        • Ligumsky M.
        • Kaminski N.E.
        • Schatz A.R.
        • et al.
        Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors.
        Biochem Pharmacol. 1995; 50: 83-90
        • Stella N.
        • Schweitzer P.
        • Piomelli D.
        A second endogenous cannabinoid that modulates long-term potentiation.
        Nature. 1997; 388: 773-778
        • Lutz B.
        • Marsicano G.
        • Maldonado R.
        • Hillard C.J.
        The endocannabinoid system in guarding against fear, anxiety and stress.
        Nat Rev Neurosci. 2015; 16: 705-718
        • Adams R.
        • Hunt M.
        • Clark J.H.
        Structure of cannabidiol, a product isolated from the marihuana extract of Minnesota wild hemp.
        J Am Chem Soc. 1940; 62: 196-200
        • Emrich H.M.
        • Leweke F.M.
        • Schneider U.
        Towards a cannabinoid hypothesis of schizophrenia: Cognitive impairments due to a dysregulation of the endogenous cannabinoid system.
        Pharmacol Biochem Behav. 1997; 56: 803-807
        • Schwarcz G.
        • Karajgi B.
        • McCarthy R.
        Synthetic delta-9-tetrahydrocannabinol (dronabinol) can improve the symptoms of schizophrenia.
        J Clin Psychopharmacol. 2009; 29: 255-258
        • Roser P.
        • Vollenweider F.X.
        • Kawohl W.
        Potential antipsychotic properties of central cannabinoid (CB1) receptor antagonists.
        World J Biol Psychiatry. 2010; 11: 208-219
        • Leweke F.M.
        • Giuffrida A.
        • Wurster U.
        • Emrich H.M.
        • Piomelli D.
        Elevated endogenous cannabinoids in schizophrenia.
        Neuroreport. 1999; 10: 1665-1669
        • Giuffrida A.
        • Leweke F.M.
        • Gerth C.W.
        • Schreiber D.
        • Koethe D.
        • Faulhaber J.
        • et al.
        Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms.
        Neuropsychopharmacology. 2004; 29: 2108-2114
        • Scatton B.
        • Sanger D.J.
        Pharmacological and molecular targets in the search for novel antipsychotics.
        Behav Pharmacol. 2000; 11: 243-256
        • Poncelet M.
        • Barnouin M.-C.
        • Breliere J.-C.
        • Le Fur G.
        • Soubrie P.
        Blockade of cannabinoid (CB1) receptors by SR 141716 selectively antagonizes drug-induced reinstatement of exploratory behaviour in gerbils.
        Psychopharmacology (Berl). 1999; 144: 144-150
        • Alonso R.
        • Voutsinos B.
        • Fournier M.
        • Labie C.
        • Steinberg R.
        • Souilhac J.
        • et al.
        Blockade of cannabinoid receptors by SR141716 selectively increases Fos expression in rat mesocorticolimbic areas via reduced dopamine D2 function.
        Neuroscience. 1999; 91: 607-620
        • Meltzer H.Y.
        • Arvanitis L.
        • Bauer D.
        • Rein W.
        Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder.
        Am J Psychiatry. 2004; 161: 975-984
        • Dean B.
        • Sundram S.
        • Bradbury R.
        • Scarr E.
        • Copolov D.
        Studies on [3H]CP-55940 binding in the human central nervous system: Regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use.
        Neuroscience. 2001; 103: 9-15
        • Zavitsanou K.
        • Garrick T.
        • Huang X.F.
        Selective antagonist [3H]SR141716A binding to cannabinoid CB1 receptors is increased in the anterior cingulate cortex in schizophrenia.
        Prog Neuropsychopharmacol Biol Psychiatry. 2004; 28: 355-360
        • Newell K.A.
        • Deng C.
        • Huang X.F.
        Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia.
        Exp Brain Res. 2006; 172: 556-560
        • Dalton V.S.
        • Long L.E.
        • Weickert C.S.
        • Zavitsanou K.
        Paranoid schizophrenia is characterized by increased CB1 receptor binding in the dorsolateral prefrontal cortex.
        Neuropsychopharmacology. 2011; 36: 1620-1630
        • Koethe D.
        • Llenos I.C.
        • Dulay J.R.
        • Hoyer C.
        • Torrey E.F.
        • Leweke F.M.
        • Weis S.
        Expression of CB1 cannabinoid receptor in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression.
        J Neural Transm (Vienna). 2007; 114: 1055-1063
        • Uriguen L.
        • Garcia-Fuster M.J.
        • Callado L.F.
        • Morentin B.
        • La Harpe R.
        • Casado V.
        • et al.
        Immunodensity and mRNA expression of A2A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: Effect of antipsychotic treatment.
        Psychopharmacology (Berl). 2009; 206: 313-324
        • Eggan S.M.
        • Hashimoto T.
        • Lewis D.A.
        Reduced cortical cannabinoid 1 receptor messenger RNA and protein expression in schizophrenia.
        Arch Gen Psychiatry. 2008; 65: 772-784
        • Eggan S.M.
        • Stoyak S.R.
        • Verrico C.D.
        • Lewis D.A.
        Cannabinoid CB1 receptor immunoreactivity in the prefrontal cortex: Comparison of schizophrenia and major depressive disorder.
        Neuropsychopharmacology. 2010; 35: 2060-2071
        • Coutts A.A.
        • Anavi-Goffer S.
        • Ross R.A.
        • MacEwan D.J.
        • Mackie K.
        • Pertwee R.G.
        • Irving J.
        Agonist-induced internalization and trafficking of cannabinoid CB1 receptors in hippocampal neurons.
        J Neurosci. 2001; 21: 2425-2433
        • Price M.R.
        • Baillie G.L.
        • Thomas A.
        • Stevenson L.A.
        • Easson M.
        • Goodwin R.
        • et al.
        Allosteric modulation of the cannabinoid CB1 receptor.
        Mol Pharmacol. 2005; 68: 1484-1495
        • Volk D.W.
        • Eggan S.M.
        • Horti A.G.
        • Wong D.F.
        • Lewis D.A.
        Reciprocal alterations in cortical cannabinoid receptor 1 binding relative to protein immunoreactivity and transcript levels in schizophrenia.
        Schizophr Res. 2014; 159: 124-129
        • Bodor A.L.
        • Katona I.
        • Nyiri G.
        • Mackie K.
        • Ledent C.
        • Hajos N.
        • Freund T.F.
        Endocannabinoid signaling in rat somatosensory cortex: Laminar differences and involvement of specific interneuron types.
        J Neurosci. 2005; 25: 6845-6856
        • Trettel J.
        • Fortin D.A.
        • Levine E.S.
        Endocannabinoid signalling selectively targets perisomatic inhibitory inputs to pyramidal neurones in juvenile mouse neocortex.
        J Physiol. 2004; 556: 95-107
        • Galarreta M.
        • Erdelyi F.
        • Szabo G.
        • Hestrin S.
        Electrical coupling among irregular-spiking GABAergic interneurons expressing cannabinoid receptors.
        J Neurosci. 2004; 24: 9770-9778
        • Lewis D.A.
        • Sweet R.A.
        Schizophrenia from a neural circuitry perspective: Advancing toward rational pharmacological therapies.
        J Clin Invest. 2009; 119: 706-716
        • Wong D.F.
        • Kuwabara H.
        • Horti A.G.
        • Raymont V.
        • Brasic J.
        • Guevara M.
        • et al.
        Quantification of cerebral cannabinoid receptors subtype 1 (CB1) in healthy subjects and schizophrenia by the novel PET radioligand [11C]OMAR.
        Neuroimage. 2010; 52: 1505-1513
        • Ceccarini J.
        • De Hert M.
        • Van Winkel R.
        • Peuskens J.
        • Bormans G.
        • Kranaster L.
        • et al.
        Increased ventral striatal CB1 receptor binding is related to negative symptoms in drug-free patients with schizophrenia.
        Neuroimage. 2013; 79: 304-312
        • Boggs D.L.
        • Kelly D.L.
        • McMahon R.P.
        • Gold J.M.
        • Gorelick D.A.
        • Linthicum J.
        • et al.
        Rimonabant for neurocognition in schizophrenia: A 16-week double blind randomized placebo controlled trial.
        Schizophr Res. 2012; 134: 207-210
      1. Sanofi (2009): Efficacy and Safety of AVE1625 as a Co-treatment With Antipsychotic Therapy in Schizophrenia (CONNECT). Available at: http://ClinicalTrials.gov/show/NCT00439634 NLM Identifier: NCT00439634. Accessed March 31, 2015.

        • Nuechterlein K.H.
        • Green M.F.
        • Kern R.S.
        • Baade L.E.
        • Barch D.M.
        • Cohen J.D.
        • et al.
        The MATRICS Consensus Cognitive Battery, part 1: Test selection, reliability, and validity.
        Am J Psychiatry. 2008; 165: 203-213
        • Kelly D.L.
        • Gorelick D.A.
        • Conley R.R.
        • Boggs D.L.
        • Linthicum J.
        • Liu F.
        • et al.
        Effects of the cannabinoid-1 receptor antagonist rimonabant on psychiatric symptoms in overweight people with schizophrenia: a randomized, double-blind, pilot study.
        J Clin Psychopharmacol. 2011; 31: 86-91
        • Warren K.R.
        • Buchanan R.W.
        • Feldman S.
        • Conley R.R.
        • Linthicum J.
        • Ball M.P.
        • et al.
        Effects of the cannabinoid-1 receptor antagonist/inverse agonist rimonabant on satiety signaling in overweight people with schizophrenia: A randomized, double-blind, pilot study.
        J Clin Psychopharmacol. 2013; 33: 118-120
        • Moore T.H.
        • Zammit S.
        • Lingford-Hughes A.
        • Barnes T.R.
        • Jones P.B.
        • Burke M.
        • Lewis G.
        Cannabis use and risk of psychotic or affective mental health outcomes: A systematic review.
        Lancet. 2007; 370: 319-328
        • Morgan C.J.A.
        • Curran H.V.
        Effects of cannabidiol on schizophrenia-like symptoms in people who use cannabis.
        Br J Psychiatry. 2008; 192: 306-307
        • Di Forti M.
        • Morgan C.
        • Dazzan P.
        • Pariante C.
        • Mondelli V.
        • Marques T.R.
        • et al.
        High-potency cannabis and the risk of psychosis.
        Br J Psychiatry. 2009; 195: 488-491
        • Leweke F.M.
        • Gerth C.W.
        • Klosterkötter J.
        Cannabis-associated psychosis: Current status of research.
        CNS Drugs. 2004; 18: 895-910
        • Leweke F.M.
        • Giuffrida A.
        • Koethe D.
        • Schreiber D.
        • Nolden B.M.
        • Kranaster L.
        • et al.
        Anandamide levels in cerebrospinal fluid of first-episode schizophrenic patients: Impact of cannabis use.
        Schizophr Res. 2007; 94: 29-36
        • Bossong M.G.
        • van Berckel B.N.
        • Boellaard R.
        • Zuurman L.
        • Schuit R.C.
        • Windhorst A.D.
        • et al.
        Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum.
        Neuropsychopharmacology. 34. 2009: 759-766
        • Wilson R.I.
        • Nicoll R.A.
        Endocannabinoid signaling in the brain.
        Science. 2002; 296: 678-682
        • D’Souza D.C.
        • Abi-Saab W.M.
        • Madonick S.
        • Forselius-Bielen K.
        • Doersch A.
        • Braley G.
        • et al.
        Delta-9-tetrahydrocannabinol effects in schizophrenia: Implications for cognition, psychosis, and addiction.
        Biol Psychiatry. 2005; 57: 594-608
        • Leweke F.M.
        • Piomelli D.
        • Pahlisch F.
        • Muhl D.
        • Gerth C.W.
        • Hoyer C.
        • et al.
        Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia.
        Transl Psychiatry. 2012; 2: e94
        • Bisogno T.
        • MacCarrone M.
        • De Petrocellis L.
        • Jarrahian A.
        • Finazzi-Agro A.
        • Hillard C.
        • Di Marzo V.
        The uptake by cells of 2-arachidonoylglycerol, an endogenous agonist of cannabinoid receptors.
        Eur J Biochem. 2001; 268: 1982-1989
        • Showalter V.M.
        • Compton D.R.
        • Martin B.R.
        • Abood M.E.
        Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): Identification of cannabinoid receptor subtype selective ligands.
        J Pharmacol Exp Ther. 1996; 278: 989-999
        • Thomas B.F.
        • Gilliam A.F.
        • Burch D.F.
        • Roche M.J.
        • Seltzman H.H.
        Comparative receptor binding analyses of cannabinoid agonists and antagonists.
        J Pharmacol Exp Ther. 1998; 285: 285-292
        • Jones N.A.
        • Hill A.J.
        • Smith I.
        • Bevan S.A.
        • Williams C.M.
        • Whalley B.J.
        • Stephens G.J.
        Cannabidiol displays antiepileptiform and antiseizure properties in vitro and in vivo.
        J Pharmacol Exp Ther. 2010; 332: 569-577
        • Petitet F.
        • Jeantaud B.
        • Reibaud M.
        • Imperato A.
        • Dubroeucq M.-C.
        Complex pharmacology of natural cannabinoids: Evidence for partial agonist activity of delta-9-tetrahydrocannabinol and antagonist activity of cannabidiol on rat brain cannabinoid receptors.
        Life Sci. 1998; 63: PL1-PL6
        • Breivogel C.S.
        • Griffin G.
        • Di Marzo V.
        • Martin B.R.
        Evidence for a new G protein-coupled cannabinoid receptor in mouse brain.
        Mol Pharmacol. 2001; 60: 155-163
        • Pertwee R.G.
        • Ross R.A.
        • Craib S.J.
        • Thomas A.
        (-)-Cannabidiol antagonizes cannabinoid receptor agonists and noradrenaline in the mouse vas deferens.
        Eur J Pharmacol. 2002; 456: 99-106
        • Bisogno T.
        • Hanus L.
        • De Petrocellis L.
        • Tchilibon S.
        • Ponde D.E.
        • Brandi I.
        • et al.
        Molecular targets for cannabidiol and its synthetic analogues: Effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide.
        Br J Pharmacol. 2001; 134: 845-852
        • Zuardi A.W.
        • Morais S.L.
        • Guimaraes F.S.
        • Mechoulam R.
        Antipsychotic effect of cannabidiol.
        J Clin Psychiatry. 1995; 56: 485-486
        • Zuardi A.W.
        • Hallak J.E.
        • Dursun S.M.
        • Morais S.L.
        • Faria Sanches R.
        • Musty R.E.
        • Crippa J.A.
        Cannabidiol monotherapy for treatment-resistant schizophrenia.
        J Psychopharmacol. 2006; 20: 683-686
        • Leucht S.
        • Pitschel-Walz G.
        • Engel R.R.
        • Kissling W.
        Amisulpride, an unusual "atypical" antipsychotic: A meta-analysis of randomized controlled trials.
        Am J Psychiatry. 2002; 159: 180-190
        • Kay S.R.
        • Fiszbein A.
        • Opler L.A.
        The Positive and Negative Syndrome Scale (PANSS) for schizophrenia.
        Schizophr Bull. 1987; 13: 261-276
      2. University of Cologne (2008): A Clinical Trial on the Antipsychotic Properties of Cannabidiol. Available at: http://ClinicalTrials.gov/show/NCT00309413 NLM Identifier: NCT00309413. Accessed March 31, 2015.

      3. Yale University (2009): Cannabidiol Treatment of Cognitive Dysfunction in Schizophrenia. Available at: http://ClinicalTrials.gov/show/NCT00588731 NLM Identifier: NCT00588731. Accessed March 31, 2015.

      4. G. W. Research Ltd (2013): A Study of GWP42003 as Adjunctive Therapy in the First Line Treatment of Schizophrenia or Related Psychotic Disorder. Available at: http://ClinicalTrials.gov/show/NCT02006628 NLM Identifier: NCT02006628. Accessed March 31, 2015.

      5. GW Pharmaceuticals plc (2015): GW Pharmaceuticals Announces Positive Proof of Concept Data in Schizophrenia. Available at: http://globenewswire.com/news-release/2015/09/15/768364/10149367/en/GW-Pharmaceuticals-Announces-Positive-Proof-of-Concept-Data-in-Schizophrenia.html?f=22&fvtc=3&fvtv=4000. Accessed: October 1, 2015.

      6. Central Institute of Mental Health (2015): A Four-week Clinical Trial Investigating Efficacy and Safety of Cannabidiol as a Treatment for Acutely Ill Schizophrenic Patients. Available at: http://ClinicalTrials.gov/show/NCT02088060 NLM Identifier: NCT02088060. Accessed March 31, 2015.

      7. King’s College London (2013): Cannabidiol as an add-on therapy in treatment-refractory psychotic disorders (CBD_ADD_IN). Available at: https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-000240-26/GB. EudraCT Number: 2013-000240-26. Accessed March 31, 2015.

        • Li G.L.
        • Winter H.
        • Arends R.
        • Jay G.W.
        • Le V.
        • Young T.
        • Huggins J.P.
        Assessment of the pharmacology and tolerability of PF-04457845, an irreversible inhibitor of fatty acid amide hydrolase-1, in healthy subjects.
        Br J Clin Pharmacol. 2012; 73: 706-716
        • Boileau I.
        • Rusjan P.M.
        • Williams B.
        • Mansouri E.
        • Mizrahi R.
        • De Luca V.
        • et al.
        Blocking of fatty acid amide hydrolase activity with PF-04457845 in human brain: A positron emission tomography study with the novel radioligand [(11)C]CURB.
        J Cereb Blood Flow Metab. 2015; 35: 1827-1835
        • Leweke F.M.
        Anandamide dysfunction in prodromal and established psychosis.
        Curr Pharm Des. 2012; 18: 5188-5193
        • Koethe D.
        • Giuffrida A.
        • Schreiber D.
        • Hellmich M.
        • Schultze-Lutter F.
        • Ruhrmann S.
        • et al.
        Anandamide elevation in cerebrospinal fluid of initial prodromal states of psychosis.
        Br J Psychiatry. 2009; 194: 371-372
        • Thomas A.
        • Baillie G.L.
        • Phillips A.M.
        • Razdan R.K.
        • Ross R.A.
        • Pertwee R.G.
        Cannabidiol displays unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro.
        Br J Pharmacol. 2007; 150: 613-623
        • Watanabe K.
        • Kayano Y.
        • Matsunaga T.
        • Yamamoto I.
        • Yoshimura H.
        Inhibition of anandamide amidase activity in mouse brain microsomes by cannabinoids.
        Biol Pharm Bull. 1996; 19: 1109-1111
        • Ligresti A.
        • Moriello A.S.
        • Starowicz K.
        • Matias I.
        • Pisanti S.
        • De Petrocellis L.
        • et al.
        Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma.
        J Pharmacol Exp Ther. 2006; 318: 1375-1387
        • De Petrocellis L.
        • Ligresti A.
        • Moriello A.S.
        • Allara M.
        • Bisogno T.
        • Petrosino S.
        • et al.
        Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes.
        Br J Pharmacol. 2011; 163: 1479-1494
        • Rakhshan F.
        • Day T.A.
        • Blakely R.D.
        • Barker E.L.
        Carrier-mediated uptake of the endogenous cannabinoid anandamide in RBL-2H3 cells.
        J Pharmacol Exp Ther. 2000; 292: 960-967
        • Fu J.
        • Bottegoni G.
        • Sasso O.
        • Bertorelli R.
        • Rocchia W.
        • Masetti M.
        • et al.
        A catalytically silent FAAH-1 variant drives anandamide transport in neurons.
        Nat Neurosci. 2012; 15: 64-69
        • O’Sullivan S.E.
        • Sun Y.
        • Bennett A.J.
        • Randall M.D.
        • Kendall D.A.
        Time-dependent vascular actions of cannabidiol in the rat aorta.
        Eur J Pharmacol. 2009; 612: 61-68
        • Holmes E.
        • Tsang T.M.
        • Huang J.T.
        • Leweke F.M.
        • Koethe D.
        • Gerth C.W.
        • et al.
        Metabolic profiling of CSF: Evidence that early intervention may impact on disease progression and outcome in schizophrenia.
        PLoS Med. 2006; 3: e327
        • Gururajan A.
        • Taylor D.A.
        • Malone D.T.
        Effect of cannabidiol in a MK-801-rodent model of aspects of schizophrenia.
        Behav Brain Res. 2011; 222: 299-308
        • Liu L.
        • Simon S.A.
        Capsazepine, a vanilloid receptor antagonist, inhibits nicotinic acetylcholine receptors in rat trigeminal ganglia.
        Neurosci Lett. 1997; 228: 29-32
        • Docherty R.J.
        • Yeats J.C.
        • Piper A.S.
        Capsazepine block of voltage-activated calcium channels in adult rat dorsal root ganglion neurones in culture.
        Br J Pharmacol. 1997; 121: 1461-1467
        • Leweke F.M.
        • Schneider U.
        • Radwan M.
        • Schmidt E.
        • Emrich H.M.
        Different effects of nabilone and cannabidiol on binocular depth inversion in man.
        Pharmacol Biochem Behav. 2000; 66: 175-181
        • Tzavara E.T.
        • Li D.L.
        • Moutsimilli L.
        • Bisogno T.
        • Di Marzo V.
        • Phebus L.A.
        • et al.
        Endocannabinoids activate transient receptor potential vanilloid 1 receptors to reduce hyperdopaminergia-related hyperactivity: Therapeutic implications.
        Biol Psychiatry. 2006; 59: 508-515
        • Fawley J.A.
        • Hofmann M.E.
        • Andresen M.C.
        Cannabinoid 1 and transient receptor potential vanilloid 1 receptors discretely modulate evoked glutamate separately from spontaneous glutamate transmission.
        J Neurosci. 2014; 34: 8324-8332
        • Russo E.B.
        • Burnett A.
        • Hall B.
        • Parker K.K.
        Agonistic properties of cannabidiol at 5-HT1a receptors.
        Neurochem Res. 2005; 30: 1037-1043
        • Rock E.M.
        • Bolognini D.
        • Limebeer C.L.
        • Cascio M.G.
        • Anavi-Goffer S.
        • Fletcher P.J.
        • et al.
        Cannabidiol, a non-psychotropic component of cannabis, attenuates vomiting and nausea-like behaviour via indirect agonism of 5-HT(1A) somatodendritic autoreceptors in the dorsal raphe nucleus.
        Br J Pharmacol. 2012; 165: 2620-2634
        • McPartland J.M.
        • Duncan M.
        • Di Marzo V.
        • Pertwee R.
        Are cannabidiol and Delta (9)-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review.
        Br J Pharmacol. 2015; 172: 737-753
        • Soltesz I.
        • Alger B.E.
        • Kano M.
        • Lee S.-H.
        • Lovinger D.M.
        • Ohno-Shosaku T.
        • Watanabe M.
        Weeding out bad waves: Towards selective cannabinoid circuit control in epilepsy.
        Nat Rev Neurosci. 2015; 16: 264-277
        • Kathuria S.
        • Gaetani S.
        • Fegley D.
        • Valino F.
        • Duranti A.
        • Tontini A.
        • et al.
        Modulation of anxiety through blockade of anandamide hydrolysis.
        Nat Med. 2003; 9: 76-81
        • Long J.Z.
        • Nomura D.K.
        • Vann R.E.
        • Walentiny D.M.
        • Booker L.
        • Jin X.
        • et al.
        Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo.
        Proc Natl Acad Sci U S A. 2009; 106: 20270-20275
        • Palkovits M.
        • Harvey-White J.
        • Liu J.
        • Kovacs Z.S.
        • Bobest M.
        • Lovas G.
        • et al.
        Regional distribution and effects of postmortal delay on endocannabinoid content of the human brain.
        Neuroscience. 2008; 152: 1032-1039
        • Leweke F.M.
        • Odorfer T.M.
        • Bumb J.M.
        Medical needs in the treatment of psychotic disorders.
        Handb Exp Pharmacol. 2012; 212: 165-185
        • Rohleder C.
        • Leweke F.M.
        Cannabinoids and schizophrenia.
        in: Fattore L. Cannabinoids in Neurologic and Mental Disease. Academic Press, San Diego2015: 193-204
        • Leweke F.M.
        • Koethe D.
        Cannabis and psychiatric disorders: it is not only addiction.
        Addict Biol. 2008; 13: 264-275