Advertisement
Archival Report| Volume 80, ISSUE 3, P216-225, August 01, 2016

Download started.

Ok

Cannabinoid Transmission in the Hippocampus Activates Nucleus Accumbens Neurons and Modulates Reward and Aversion-Related Emotional Salience

      Abstract

      Background

      Cannabinoid receptor transmission strongly influences emotional processing, and disturbances in cannabinoid signaling are associated with various neuropsychiatric disorders. The mammalian ventral hippocampus (vHipp) is a critical neural region controlling mesolimbic activity via glutamatergic projections to the nucleus accumbens. Furthermore, vHipp abnormalities are linked to schizophrenia-related psychopathology. Nevertheless, the mechanisms by which intra-vHipp cannabinoid signaling may modulate mesolimbic activity states and emotional processing are not currently understood.

      Methods

      Using an integrative combination of in vivo electrophysiological recordings and behavioral pharmacologic assays in rats, we tested whether activation of cannabinoid type 1 receptors (CB1R) in the vHipp may modulate neuronal activity in the shell subregion of the nucleus accumbens (NASh). We next examined how vHipp CB1R signaling may control the salience of rewarding or aversive emotional memory formation and social interaction/recognition behaviors via intra-NASh glutamatergic transmission.

      Results

      We demonstrate for the first time that vHipp CB1R transmission can potently modulate NASh neuronal activity and can differentially control the formation of context-dependent and context-independent forms of rewarding or aversion-related emotional associative memories. In addition, we found that activation of vHipp CB1R transmission strongly disrupts normal social behavior and cognition. Finally, we report that these behavioral effects are dependent upon intra-NASh alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid/N-methyl-D-aspartate receptor transmission.

      Conclusions

      Together, these findings demonstrate a critical role for hippocampal cannabinoid signaling in the modulation of mesolimbic neuronal activity states and suggest that dysregulation of CB1R transmission in the vHipp→NASh circuit may underlie hippocampal-mediated affective and social behavioral disturbances present in neuropsychiatric disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tan H.
        • Ahmad T.
        • Loureiro M.
        • Zunder J.
        • Laviolette S.R.
        The role of cannabinoid transmission in emotional memory formation: Implications for addiction and schizophrenia.
        Front Psychiatry. 2014; 5: 73
        • Burns J.K.
        Pathways from cannabis to psychosis: A review of the evidence.
        Front Psychiatry. 2013; 4: 128
        • Marco E.M.
        • García-Gutiérrez M.S.
        • Bermúdez-Silva F.J.
        • Moreira F.A.
        • Guimarães F.
        • Manzanares J.
        • Viveros M.P.
        Endocannabinoid system and psychiatry: In search of a neurobiological basis for detrimental and potential therapeutic effects.
        Front Behav Neurosci. 2011; 5: 63
        • Loureiro M.
        • Lecourtier L.
        • Engeln M.
        • Lopez J.
        • Cosquer B.
        • Geiger K.
        • et al.
        The ventral hippocampus is necessary for expressing a spatial memory.
        Brain Struct Funct. 2012; 217: 93-106
        • Gothelf D.
        • Soreni N.
        • Nachman R.P.
        • Tyano S.
        • Hiss Y.
        • Reiner O.
        • Weizman A.
        Evidence for the involvement of the hippocampus in the pathophysiology of schizophrenia.
        Eur Neuropsychopharmacol. 2000; 10: 389-395
        • Grace A.
        Ventral hippocampus, interneurons, and schizophrenia: A new understanding of the pathophysiology of schizophrenia and its implications for treatment and prevention.
        Curr Dir Psychol Sci. 2010; 19: 232-237
        • Ito R.
        • Robbins T.W.
        • Pennartz C.M.
        • Everitt B.J.
        Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning.
        J Neurosci. 2008; 28: 6950-6959
        • Stopper C.M.
        • Khayambashi S.
        • Floresco S.B.
        Receptor-specific modulation of risk-based decision making by nucleus accumbens dopamine.
        Neuropsychopharmacology. 2012; 38: 715-728
        • Berridge K.C.
        • Kringelbach M.L.
        Neuroscience of affect: Brain mechanisms of pleasure and displeasure.
        Curr Opin Neurobiol. 2013; 23: 294-303
        • Britt J.P.
        • Benaliouad F.
        • McDevitt R.A.
        • Stuber G.D.
        • Wise R.A.
        • Bonci A.
        Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens.
        Neuron. 2012; 76: 790-803
        • Robbins T.W.
        • Everitt B.J.
        Neurobehavioural mechanisms of reward and motivation.
        Curr Opin Neurobiol. 1996; 6: 228-236
        • Friedman D.P.
        • Aggleton J.P.
        • Saunders R.C.
        Comparison of hippocampal, amygdala, and perirhinal projections to the nucleus accumbens: Combined anterograde and retrograde tracing study in the macaque brain.
        J Comp Neurol. 2002; 450: 345-365
        • Phillipson O.T.
        • Griffiths A.C.
        The topographic order of inputs to nucleus accumbens in the rat.
        Neuroscience. 1985; 16: 275-296
        • Cahill E.
        • Pascoli V.
        • Trifilieff P.
        • Savoldi D.
        • Kappès V.
        • Lüscher C.
        • et al.
        D1R/GluN1 complexes in the striatum integrate dopamine and glutamate signalling to control synaptic plasticity and cocaine-induced responses.
        Mol Psychiatry. 2014; 19: 1295-1304
        • Pascoli V.
        • Terrier J.
        • Espallergues J.
        • Valjent E.
        • O’Connor E.C.
        • Lüscher C.
        Contrasting forms of cocaine-evoked plasticity control components of relapse.
        Nature. 2014; 509: 459-464
        • Paxinos G.
        • Watson C.
        The Rat Brain Atlas in Stereotaxic Coordinates.
        Academic Press, San Diego2007
        • Tan H.
        • Lauzon N.M.
        • Bishop S.F.
        • Chi N.
        • Bechard M.
        • Laviolette S.R.
        Cannabinoid transmission in the basolateral amygdala modulates fear memory formation via functional inputs to the prelimbic cortex.
        J Neurosci. 2011; 31: 5300-5312
        • Loureiro M.
        • Renard J.
        • Zunder J.
        • Laviolette S.R.
        Hippocampal cannabinoid transmission modulates dopamine neuron activity: Impact on rewarding memory formation and social interaction.
        Neuropsychopharmacology. 2014; 40: 1436-1447
        • Bannerman D.M.
        • Rawlins J.N.P.
        • McHugh S.B.
        • Deacon R.M.J.
        • Yee B.K.
        • Bast T.
        • et al.
        Regional dissociations within the hippocampus - memory and anxiety.
        Neurosci Biobehav Rev. 2004; 28: 273-283
        • Takács V.T.
        • Szonyi A.
        • Freund T.F.
        • Nyiri G.
        • Gulyás A.I.
        Quantitative ultrastructural analysis of basket and axo-axonic cell terminals in the mouse hippocampus.
        Brain Struct Funct. 2014; 220: 919-940
        • Hájos N.
        • Freund T.F.
        Distinct cannabinoid sensitive receptors regulate hippocampal excitation and inhibition.
        Chem Phys Lipids. 2002; 121: 73-82
        • Legault M.
        • Rompré P.P.
        • Wise R.A.
        Chemical stimulation of the ventral hippocampus elevates nucleus accumbens dopamine by activating dopaminergic neurons of the ventral tegmental area.
        J Neurosci. 2000; 20: 1635-1642
        • Grace A.A.
        Ventral hippocampus, interneurons, and schizophrenia: A new understanding of the pathophysiology of schizophrenia and its implications for treatment and prevention.
        Curr Dir Psychol Sci. 2010; 19: 232-237
        • O’Donnell P.
        • Grace A.A.
        Synaptic interactions among excitatory afferents to nucleus accumbens neurons: Hippocampal gating of prefrontal cortical input.
        J Neurosci. 1995; 15: 3622-3639
        • Belujon P.
        • Grace A.A.
        Critical role of the prefrontal cortex in the regulation of hippocampus-accumbens information flow.
        J Neurosci. 2008; 28: 9797-9805
        • Sun N.
        • Chi N.
        • Lauzon N.
        • Bishop S.
        • Tan H.
        • Laviolette S.R.
        Acquisition, extinction, and recall of opiate reward memory are signaled by dynamic neuronal activity patterns in the prefrontal cortex.
        Cereb Cortex. 2011; 21: 2665-2680
        • Sun N.
        • Laviolette S.R.
        • Addiction Research Group
        Dopamine receptor blockade modulates the rewarding and aversive properties of nicotine via dissociable neuronal activity patterns in the nucleus accumbens.
        Neuropsychopharmacology. 2014; 39: 2799-2815
        • Laviolette S.R.
        • Grace A.
        The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: Implications for schizophrenia and addiction.
        Cell Mol Life Sci. 2006; 63: 1597-1613
        • Lintas A.
        • Chi N.
        • Lauzon N.M.
        • Bishop S.F.
        • Gholizadeh S.
        • Sun N.
        • et al.
        Identification of a dopamine receptor-mediated opiate reward memory switch in the basolateral amygdala-nucleus accumbens circuit.
        J Neurosci. 2011; 31: 11172-11183
        • Lintas A.
        • Chi N.
        • Lauzon N.M.
        • Bishop S.F.
        • Sun N.
        • Tan H.
        • Laviolette S.R.
        Inputs from the basolateral amygdala to the nucleus accumbens shell control opiate reward magnitude via differential dopamine D1 or D2 receptor transmission.
        Eur J Neurosci. 2012; 35: 279-290
        • Draycott B.
        • Loureiro M.
        • Ahmad T.
        • Tan H.
        • Zunder J.
        • Laviolette S.R.
        Cannabinoid transmission in the prefrontal cortex bi-phasically controls emotional memory formation via functional interactions with the ventral tegmental area.
        J Neurosci. 2014; 34: 13096-13109
        • Puighermanal E.
        • Busquets-Garcia A.
        • Maldonado R.
        • Ozaita A.
        Cellular and intracellular mechanisms involved in the cognitive impairment of cannabinoids.
        Philos Trans R Soc Lond B Biol Sci. 2012; 367: 3254-3263
        • Davies S.N.
        • Pertwee R.G.
        • Riedel G.
        Functions of cannabinoid receptors in the hippocampus.
        Neuropharmacology. 2002; 42: 993-1007
        • Carlson G.
        • Wang Y.
        • Alger B.E.
        Endocannabinoids facilitate the induction of LTP in the hippocampus.
        Nat Neurosci. 2002; 5: 723-724
        • Ahmad T.
        • Lauzon N.M.
        • de Jaeger X.
        • Laviolette S.R.
        Cannabinoid transmission in the prelimbic cortex bidirectionally controls opiate reward and aversion signaling through dissociable kappa versus μ-opiate receptor dependent mechanisms.
        J Neurosci. 2013; 33: 15642-15651
        • Bossert J.M.
        • Adhikary St, S.
        • Laurent R.
        • Marchant N.J.
        • Wang H.-L.
        • Morales M.
        • Shaham Y.
        Role of projections from ventral subiculum to nucleus accumbens shell in context-induced reinstatement of heroin seeking in rats.
        Psychopharmacology (Berl). 2016; 233: 1991-2004
        • Milekic M.H.
        • Brown S.D.
        • Castellini C.
        • Alberini C.M.
        Persistent disruption of an established morphine conditioned place preference.
        J Neurosci. 2006; 26: 3010-3020
        • Zhai T.Y.
        • Shao Y.C.
        • Xie C.M.
        • Ye E.M.
        • Zou F.
        • Fu L.P.
        • et al.
        Altered intrinsic hippocampus declarative memory network and its association with impulsivity in abstinent heroin dependent subjects.
        Behav Brain Res. 2014; 272: 209-217
        • Quintero G.C.
        Role of nucleus accumbens glutamatergic plasticity in drug addiction.
        Neuropsychiatr Dis Treat. 2013; 9: 1499-1512
        • Chartoff E.H.
        • Connery H.S.
        It’s MORe exciting than mu: Crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system.
        Front Pharmacol. 2014; 5: 116
        • Rashidy-Pour A.
        • Pahlevani P.
        • Vaziri A.
        • Shaigani P.
        • Zarepour L.
        • Vafaei A.A.
        • Haghparast A.
        Involvement of CB1 receptors in the ventral tegmental area in the potentiation of morphine rewarding properties in acquisition but not expression in the conditioned place preference model.
        Behav Brain Res. 2013; 247: 259-267
        • Ellgren M.
        • Spano S.M.
        • Hurd Y.L.
        Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats.
        Neuropsychopharmacology. 2007; 32: 607-615
        • Moser P.
        Evaluating negative-symptom-like behavioural changes in developmental models of schizophrenia.
        Eur Neuropsychopharmacol. 2014; 24: 774-787
        • Wakabayashi K.T.
        • Kiyatkin E.A.
        Rapid changes in extracellular glutamate induced by natural arousing stimuli and intravenous cocaine in the nucleus accumbens shell and core.
        J Neurophysiol. 2012; 108: 285-299
        • Renard J.
        • Krebs M.O.
        • Jay T.M.
        • Le Pen G.
        Long-term cognitive impairments induced by chronic cannabinoid exposure during adolescence in rats: A strain comparison.
        Psychopharmacology (Berl). 2013; 225: 781-790