Advertisement

Neuron-Targeted Caveolin-1 Improves Molecular Signaling, Plasticity, and Behavior Dependent on the Hippocampus in Adult and Aged Mice

      Abstract

      Background

      Studies in vitro demonstrate that neuronal membrane/lipid rafts (MLRs) establish cell polarity by clustering progrowth receptors and tethering cytoskeletal machinery necessary for neuronal sprouting. However, the effect of MLR and MLR-associated proteins on neuronal aging is unknown.

      Methods

      Here, we assessed the impact of neuron-targeted overexpression of an MLR scaffold protein, caveolin-1 (Cav-1) (via a synapsin promoter, SynCav1), in the hippocampus in vivo in adult (6-month-old) and aged (20-month-old) mice on biochemical, morphologic, and behavioral changes.

      Results

      SynCav1 resulted in increased expression of Cav-1, MLRs, and MLR-localization of Cav-1 and tropomyosin-related kinase B receptor independent of age and time post gene transfer. Cav-1 overexpression in adult mice enhanced dendritic arborization within the apical dendrites of hippocampal cornu ammonis 1 and granule cell neurons, effects that were also observed in aged mice, albeit to a lesser extent, indicating preserved impact of Cav-1 on structural plasticity of hippocampal neurons with age. Cav-1 overexpression enhanced contextual fear memory in adult and aged mice demonstrating improved hippocampal function.

      Conclusions

      Neuron-targeted overexpression of Cav-1 in the adult and aged hippocampus enhances functional MLRs with corresponding roles in cell signaling and protein trafficking. The resultant structural alterations in hippocampal neurons in vivo are associated with improvements in hippocampal-dependent learning and memory. Our findings suggest Cav-1 as a novel therapeutic strategy in disorders involving impaired hippocampal function.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kamiguchi H.
        The region-specific activities of lipid rafts during axon growth and guidance.
        J Neurochem. 2006; 98: 330-335
        • Fantini J.
        • Barrantes F.J.
        Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function.
        Biochim Biophys Acta. 2009; 1788: 2345-2361
        • Head B.P.
        • Patel H.H.
        • Insel P.A.
        Interaction of membrane/lipid rafts with the cytoskeleton: Impact on signaling and function: Membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling.
        Biochim Biophys Acta. 2014; 1838: 532-545
        • Da Silva J.S.
        • Hasegawa T.
        • Miyagi T.
        • Dotti C.G.
        • Abad-Rodriguez J.
        Asymmetric membrane ganglioside sialidase activity specifies axonal fate.
        Nat Neurosci. 2005; 8: 606-615
        • Denny J.B.
        Molecular mechanisms, biological actions, and neuropharmacology of the growth-associated protein GAP-43.
        Curr Neuropharmacol. 2006; 4: 293-304
        • Guirland C.
        • Zheng J.Q.
        Membrane lipid rafts and their role in axon guidance.
        Adv Exp Med Biol. 2007; 621: 144-155
        • Willmann R.
        • Pun S.
        • Stallmach L.
        • Sadasivam G.
        • Santos A.F.
        • Caroni P.
        • Fuhrer C.
        Cholesterol and lipid microdomains stabilize the postsynapse at the neuromuscular junction.
        EMBO J. 2006; 25: 4050-4060
        • Head B.P.
        • Patel H.H.
        • Tsutsumi Y.M.
        • Hu Y.
        • Mejia T.
        • Mora R.C.
        • et al.
        Caveolin-1 expression is essential for N-methyl-D-aspartate receptor-mediated Src and extracellular signal-regulated kinase 1/2 activation and protection of primary neurons from ischemic cell death.
        FASEB J. 2008; 22: 828-840
        • Head B.P.
        • Hu Y.
        • Finley J.C.
        • Saldana M.D.
        • Bonds J.A.
        • Miyanohara A.
        • et al.
        Neuron-targeted caveolin-1 protein enhances signaling and promotes arborization of primary neurons.
        J Biol Chem. 2011; 286: 33310-33321
        • Head B.P.
        • Patel H.H.
        • Roth D.M.
        • Murray F.
        • Swaney J.S.
        • Niesman I.R.
        • et al.
        Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components.
        J Biol Chem. 2006; 281: 26391-26399
        • Grande-Garcia A.
        • del Pozo M.A.
        Caveolin-1 in cell polarization and directional migration.
        Eur J Cell Biol. 2008; 87: 641-647
        • de Kreuk B.J.
        • Nethe M.
        • Fernandez-Borja M.
        • Anthony E.C.
        • Hensbergen P.J.
        • Deelder A.M.
        • et al.
        The F-BAR domain protein PACSIN2 associates with Rac1 and regulates cell spreading and migration.
        J Cell Sci. 2011; 124: 2375-2388
        • Del Pozo M.A.
        • Schwartz M.A.
        Rac, membrane heterogeneity, caveolin and regulation of growth by integrins.
        Trends Cell Biol. 2007; 17: 246-250
        • Nakai Y.
        • Kamiguchi H.
        Migration of nerve growth cones requires detergent-resistant membranes in a spatially defined and substrate-dependent manner.
        J Cell Biol. 2002; 159: 1097-1108
        • Niethammer P.
        • Delling M.
        • Sytnyk V.
        • Dityatev A.
        • Fukami K.
        • Schachner M.
        Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis.
        J Cell Biol. 2002; 157: 521-532
        • Chao M.V.
        Neurotrophin receptors: A window into neuronal differentiation.
        Neuron. 1992; 9: 583-593
        • Huang E.J.
        • Reichardt L.F.
        Neurotrophins: Roles in neuronal development and function.
        Annu Rev Neurosci. 2001; 24: 677-736
        • Kuruvilla R.
        • Ye H.
        • Ginty D.D.
        Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons.
        Neuron. 2000; 27: 499-512
        • Huang E.J.
        • Reichardt L.F.
        Trk receptors: Roles in neuronal signal transduction.
        Annu Rev Biochem. 2003; 72: 609-642
        • Wu C.
        • Butz S.
        • Ying Y.
        • Anderson R.G.
        Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane.
        J Biol Chem. 1997; 272: 3554-3559
        • Huang C.S.
        • Zhou J.
        • Feng A.K.
        • Lynch C.C.
        • Klumperman J.
        • DeArmond S.J.
        • Mobley W.C.
        Nerve growth factor signaling in caveolae-like domains at the plasma membrane.
        J Biol Chem. 1999; 274: 36707-36714
        • Peiro S.
        • Comella J.X.
        • Enrich C.
        • Martin-Zanca D.
        • Rocamora N.
        PC12 cells have caveolae that contain TrkA. Caveolae-disrupting drugs inhibit nerve growth factor-induced, but not epidermal growth factor-induced, MAPK phosphorylation.
        J Biol Chem. 2000; 275: 37846-37852
        • Higuchi H.
        • Yamashita T.
        • Yoshikawa H.
        • Tohyama M.
        PKA phosphorylates the p75 receptor and regulates its localization to lipid rafts.
        EMBO J. 2003; 22: 1790-1800
        • Suzuki S.
        • Numakawa T.
        • Shimazu K.
        • Koshimizu H.
        • Hara T.
        • Hatanaka H.
        • et al.
        BDNF-induced recruitment of TrkB receptor into neuronal lipid rafts: Roles in synaptic modulation.
        J Cell Biol. 2004; 167: 1205-1215
        • Pereira D.B.
        • Chao M.V.
        The tyrosine kinase Fyn determines the localization of TrkB receptors in lipid rafts.
        J Neurosci. 2007; 27: 4859-4869
        • Leal S.L.
        • Yassa M.A.
        Perturbations of neural circuitry in aging, mild cognitive impairment, and Alzheimer’s disease.
        Ageing Res Rev. 2013; 12: 823-831
        • Fjell A.M.
        • McEvoy L.
        • Holland D.
        • Dale A.M.
        • Walhovd K.B.
        • Alzheimer’s Disease Neuroimaging Initiative
        What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus.
        Prog Neurobiol. 2014; 117C: 20-40
        • Morrison J.H.
        • Baxter M.G.
        Synaptic health.
        JAMA Psychiatry. 2014; 71: 835-837
        • Mesulam M.M.
        Neuroplasticity failure in Alzheimer’s disease: Bridging the gap between plaques and tangles.
        Neuron. 1999; 24: 521-529
        • Rosenzweig E.S.
        • Barnes C.A.
        Impact of aging on hippocampal function: Plasticity, network dynamics, and cognition.
        Prog Neurobiol. 2003; 69: 143-179
        • Small S.A.
        • Schobel S.A.
        • Buxton R.B.
        • Witter M.P.
        • Barnes C.A.
        A pathophysiological framework of hippocampal dysfunction in ageing and disease.
        Nat Rev Neurosci. 2011; 12: 585-601
        • Hattiangady B.
        • Rao M.S.
        • Shetty G.A.
        • Shetty A.K.
        Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus.
        Exp Neurol. 2005; 195: 353-371
        • Head B.P.
        • Peart J.N.
        • Panneerselvam M.
        • Yokoyama T.
        • Pearn M.L.
        • Niesman I.R.
        • et al.
        Loss of caveolin-1 accelerates neurodegeneration and aging.
        PLoS One. 2010; 5: e15697
        • Titus D.J.
        • Furones C.
        • Kang Y.
        • Atkins C.M.
        Age-dependent alterations in cAMP signaling contribute to synaptic plasticity deficits following traumatic brain injury.
        Neuroscience. 2013; 231: 182-194
        • Niesman I.R.
        • Schilling J.M.
        • Shapiro L.A.
        • Kellerhals S.E.
        • Bonds J.A.
        • Kleschevnikov A.M.
        • et al.
        Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice.
        J Neuroinflammation. 2014; 11: 39
        • Kim A.
        • Zamora-Martinez E.R.
        • Edwards S.
        • Mandyam C.D.
        Structural reorganization of pyramidal neurons in the medial prefrontal cortex of alcohol dependent rats is associated with altered glial plasticity.
        Brain Struct Funct. 2015; 220: 1705-1720
        • Maren S.
        Pavlovian fear conditioning as a behavioral assay for hippocampus and amygdala function: Cautions and caveats.
        Eur J Neurosci. 2008; 28: 1661-1666
        • Gresack J.E.
        • Risbrough V.B.
        • Scott C.N.
        • Coste S.
        • Stenzel-Poore M.
        • Geyer M.A.
        • Powell S.B.
        Isolation rearing-induced deficits in contextual fear learning do not require CRF(2) receptors.
        Behav Brain Res. 2010; 209: 80-84
        • Maren S.
        • Phan K.L.
        • Liberzon I.
        The contextual brain: Implications for fear conditioning, extinction and psychopathology.
        Nat Rev Neurosci. 2013; 14: 417-428
        • Alto L.T.
        • Havton L.A.
        • Conner J.M.
        • Hollis 2nd, E.R.
        • Blesch A.
        • Tuszynski M.H.
        Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury.
        Nat Neurosci. 2009; 12: 1106-1113
        • Li S.
        • Overman J.J.
        • Katsman D.
        • Kozlov S.V.
        • Donnelly C.J.
        • Twiss J.L.
        • et al.
        An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke.
        Nat Neurosci. 2010; 13: 1496-1504
        • Santiago J.M.
        • Torrado A.I.
        • Arocho L.C.
        • Rosas O.R.
        • Rodriguez A.E.
        • Toro F.K.
        • et al.
        Expression profile of flotillin-2 and its pathophysiological role after spinal cord injury.
        J Mol Neurosci. 2013; 49: 347-359
        • Koch J.C.
        • Solis G.P.
        • Bodrikov V.
        • Michel U.
        • Haralampieva D.
        • Shypitsyna A.
        • et al.
        Upregulation of reggie-1/flotillin-2 promotes axon regeneration in the rat optic nerve in vivo and neurite growth in vitro.
        Neurobiol Dis. 2013; 51: 168-176
        • Trovo L.
        • Van Veldhoven P.P.
        • Martin M.G.
        • Dotti C.G.
        Sphingomyelin upregulation in mature neurons contributes to TrkB activity by Rac1 endocytosis.
        J Cell Sci. 2011; 124: 1308-1315
        • McKerracher L.
        • Winton M.J.
        Nogo on the go.
        Neuron. 2002; 36: 345-348
        • Huber A.B.
        • Kolodkin A.L.
        • Ginty D.D.
        • Cloutier J.F.
        Signaling at the growth cone: Ligand-receptor complexes and the control of axon growth and guidance.
        Annu Rev Neurosci. 2003; 26: 509-563
        • Brown D.A.
        • London E.
        Functions of lipid rafts in biological membranes.
        Annu Rev Cell Dev Biol. 1998; 14: 111-136
        • Simons K.
        • Toomre D.
        Lipid rafts and signal transduction.
        Nat Rev Mol Cell Biol. 2000; 1: 31-39
        • Tsui-Pierchala B.A.
        • Encinas M.
        • Milbrandt J.
        • Johnson Jr, E.M.
        Lipid rafts in neuronal signaling and function.
        Trends Neurosci. 2002; 25: 412-417
        • Mamounas L.A.
        • Altar C.A.
        • Blue M.E.
        • Kaplan D.R.
        • Tessarollo L.
        • Lyons W.E.
        BDNF promotes the regenerative sprouting, but not survival, of injured serotonergic axons in the adult rat brain.
        J Neurosci. 2000; 20: 771-782
        • Guirland C.
        • Suzuki S.
        • Kojima M.
        • Lu B.
        • Zheng J.Q.
        Lipid rafts mediate chemotropic guidance of nerve growth cones.
        Neuron. 2004; 42: 51-62
        • van Praag H.
        • Christie B.R.
        • Sejnowski T.J.
        • Gage F.H.
        Running enhances neurogenesis, learning, and long-term potentiation in mice.
        Proc Natl Acad Sci U S A. 1999; 96: 13427-13431
        • Anderson P.
        • Morris R.
        • Amaral D.
        • Bliss T.
        • O’Keefe J.
        The Hippocampus Book.
        Oxford University Press, Inc., New York2007
        • Henley J.M.
        • Wilkinson K.A.
        AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging.
        Dialogues Clin Neurosci. 2013; 15: 11-27
        • Martin M.
        • Dotti C.G.
        • Ledesma M.D.
        Brain cholesterol in normal and pathological aging.
        Biochim Biophys Acta. 2010; 1801: 934-944
        • Ledesma M.D.
        • Martin M.G.
        • Dotti C.G.
        Lipid changes in the aged brain: Effect on synaptic function and neuronal survival.
        Prog Lipid Res. 2012; 51: 23-35
        • Jiang L.
        • Fang J.
        • Moore D.S.
        • Gogichaeva N.V.
        • Galeva N.A.
        • Michaelis M.L.
        • Zaidi A.
        Age-associated changes in synaptic lipid raft proteins revealed by two-dimensional fluorescence difference gel electrophoresis.
        Neurobiol Aging. 2010; 31: 2146-2159
        • Conte V.
        • Raghupathi R.
        • Watson D.J.
        • Fujimoto S.
        • Royo N.C.
        • Marklund N.
        • et al.
        TrkB gene transfer does not alter hippocampal neuronal loss and cognitive deficits following traumatic brain injury in mice.
        Restor Neurol Neurosci. 2008; 26: 45-56
        • Remy F.
        • Mirrashed F.
        • Campbell B.
        • Richter W.
        Mental calculation impairment in Alzheimer’s disease: A functional magnetic resonance imaging study.
        Neurosci Lett. 2004; 358: 25-28
        • Yankner B.A.
        • Lu T.
        • Loerch P.
        The aging brain.
        Annu Rev Pathol. 2008; 3: 41-66