Advertisement
Archival Report| Volume 80, ISSUE 2, P140-148, July 15, 2016

Postnatal Loss of Mef2c Results in Dissociation of Effects on Synapse Number and Learning and Memory

      Abstract

      Background

      Myocyte enhancer factor 2 (MEF2) transcription factors play critical roles in diverse cellular processes during central nervous system development. Studies attempting to address the role of MEF2 in brain have largely relied on overexpression of a constitutive MEF2 construct that impairs memory formation or knockdown of MEF2 function that increases spine numbers and enhances memory formation. Genetic deletion of individual MEF2 isoforms in brain during embryogenesis demonstrated that Mef2c loss negatively regulates spine numbers resulting in learning and memory deficits, possibly as a result of its essential role in development.

      Methods

      To investigate MEF2C function in brain further, we genetically deleted Mef2c during postnatal development in mice. We characterized these conditional Mef2c knockout mice in an array of behavioral paradigms and examined the impact of postnatal loss of Mef2c on long-term potentiation.

      Results

      We observed increased spine numbers in hippocampus of the conditional Mef2c knockout mice. However, the postnatal loss of Mef2c did not impact learning and memory, long-term potentiation, or social and repetitive behaviors.

      Conclusions

      Our findings demonstrate a critical role for MEF2C in the regulation of spine numbers with a dissociation of learning and memory, synaptic plasticity, and measures of autism-related behaviors in postnatal brain.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Potthoff M.J.
        • Olson E.N.
        MEF2: A central regulator of diverse developmental programs.
        Development. 2007; 134: 4131-4140
        • Lyons G.E.
        • Micales B.K.
        • Schwarz J.
        • Martin J.F.
        • Olson E.N.
        Expression of mef2 genes in the mouse central nervous system suggests a role in neuronal maturation.
        J Neurosci. 1995; 15: 5727-5738
        • Leifer D.
        • Golden J.
        • Kowall N.W.
        Myocyte-specific enhancer binding factor 2C expression in human brain development.
        Neuroscience. 1994; 63: 1067-1079
        • Black B.
        • Cripps R.
        Myocyte enhancer factor-2 transcription factors in heart development and disease.
        Heart Development and Regeneration. 2010; 2: 673-699
        • Flavell S.W.
        • Cowan C.W.
        • Kim T.K.
        • Greer P.L.
        • Lin Y.
        • Paradis S.
        • et al.
        Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number.
        Science. 2006; 311: 1008-1012
        • Cole C.J.
        • Mercaldo V.
        • Restivo L.
        • Yiu A.P.
        • Sekeres M.J.
        • Han J.H.
        • et al.
        MEF2 negatively regulates learning-induced structural plasticity and memory formation.
        Nat Neurosci. 2012; 15: 1255-1264
        • Rashid A.J.
        • Cole C.J.
        • Josselyn S.A.
        Emerging roles for MEF2 transcription factors in memory.
        Genes Brain Behav. 2014; 13: 118-125
        • Naya F.J.
        • Black B.L.
        • Wu H.
        • Bassel-Duby R.
        • Richardson J.A.
        • Hill J.A.
        • et al.
        Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor.
        Nat Med. 2002; 8: 1303-1309
        • Phan D.
        • Rasmussen T.L.
        • Nakagawa O.
        • McAnally J.
        • Gottlieb P.D.
        • Tucker P.W.
        • et al.
        BOP, a regulator of right ventricular heart development, is a direct transcriptional target of MEF2C in the developing heart.
        Development. 2005; 132: 2669-2678
        • Akhtar M.W.
        • Kim M.S.
        • Adachi M.
        • Morris M.J.
        • Qi X.
        • Richardson J.A.
        • et al.
        In vivo analysis of MEF2 transcription factors in synapse regulation and neuronal survival.
        PLoS One. 2012; 7: e34863
        • Barbosa A.C.
        • Kim M.S.
        • Ertunc M.
        • Adachi M.
        • Nelson E.D.
        • McAnally J.
        • et al.
        MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function.
        Proc Natl Acad Sci U S A. 2008; 105: 9391-9396
        • Akbarian S.
        • Rios M.
        • Liu R.J.
        • Gold S.J.
        • Fong H.F.
        • Zeiler S.
        • et al.
        Brain-derived neurotrophic factor is essential for opiate-induced plasticity of noradrenergic neurons.
        J Neurosci. 2002; 22: 4153-4162
        • Chen R.Z.
        • Akbarian S.
        • Tudor M.
        • Jaenisch R.
        Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice.
        Nat Genet. 2001; 27: 327-331
        • Luikart B.W.
        • Nef S.
        • Virmani T.
        • Lush M.E.
        • Liu Y.
        • Kavalali E.T.
        • et al.
        TrkB has a cell-autonomous role in the establishment of hippocampal Schaffer collateral synapses.
        J Neurosci. 2005; 25: 3774-3786
        • Arnold M.A.
        • Kim Y.
        • Czubryt M.P.
        • Phan D.
        • McAnally J.
        • Qi X.
        • et al.
        MEF2C transcription factor controls chondrocyte hypertrophy and bone development.
        Dev Cell. 2007; 12: 377-389
        • Lin Q.
        • Schwarz J.
        • Bucana C.
        • Olson E.N.
        Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C.
        Science. 1997; 276: 1404-1407
        • Adachi M.
        • Autry A.E.
        • Covington 3rd, H.E.
        • Monteggia L.M.
        MeCP2-mediated transcription repression in the basolateral amygdala may underlie heightened anxiety in a mouse model of Rett syndrome.
        J Neurosci. 2009; 29: 4218-4227
        • Gemelli T.
        • Berton O.
        • Nelson E.D.
        • Perrotti L.I.
        • Jaenisch R.
        • Monteggia L.M.
        Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice.
        Biol Psychiatry. 2006; 59: 468-476
        • Lange N.
        • Hamann M.
        • Shashidharan P.
        • Richter A.
        Behavioural and pharmacological examinations in a transgenic mouse model of early-onset torsion dystonia.
        Pharmacol Biochem Behav. 2011; 97: 647-655
        • Berton O.
        • McClung C.A.
        • Dileone R.J.
        • Krishnan V.
        • Renthal W.
        • Russo S.J.
        • et al.
        Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress.
        Science. 2006; 311: 864-868
        • Neale B.M.
        • Kou Y.
        • Liu L.
        • Ma’ayan A.
        • Samocha K.E.
        • Sabo A.
        • et al.
        Patterns and rates of exonic de novo mutations in autism spectrum disorders.
        Nature. 2012; 485: 242-245
        • Novara F.
        • Beri S.
        • Giorda R.
        • Ortibus E.
        • Nageshappa S.
        • Darra F.
        • et al.
        Refining the phenotype associated with MEF2C haploinsufficiency.
        Clin Genet. 2010; 78: 471-477
        • Chao H.T.
        • Chen H.
        • Samaco R.C.
        • Xue M.
        • Chahrour M.
        • Yoo J.
        • et al.
        Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.
        Nature. 2010; 468: 263-269
        • Bi R.
        • Foy M.R.
        • Vouimba R.M.
        • Thompson R.F.
        • Baudry M.
        Cyclic changes in estradiol regulate synaptic plasticity through the MAP kinase pathway.
        Proc Natl Acad Sci U S A. 2001; 98: 13391-13395
        • Gould E.
        • Woolley C.S.
        • Frankfurt M.
        • McEwen B.S.
        Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood.
        J Neurosci. 1990; 10: 1286-1291
        • Smith C.C.
        • McMahon L.L.
        Estrogen-induced increase in the magnitude of long-term potentiation occurs only when the ratio of NMDA transmission to AMPA transmission is increased.
        J Neurosci. 2005; 25: 7780-7791
        • Monteggia L.M.
        • Barrot M.
        • Powell C.M.
        • Berton O.
        • Galanis V.
        • Gemelli T.
        • et al.
        Essential role of brain-derived neurotrophic factor in adult hippocampal function.
        Proc Natl Acad Sci U S A. 2004; 101: 10827-10832
        • Garcia A.D.
        • Doan N.B.
        • Imura T.
        • Bush T.G.
        • Sofroniew M.V.
        GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain.
        Nat Neurosci. 2004; 7: 1233-1241
        • Lin X.
        • Shah S.
        • Bulleit R.F.
        The expression of MEF2 genes is implicated in CNS neuronal differentiation.
        Brain Res Mol Brain Res. 1996; 42: 307-316
        • Berland S.
        • Houge G.
        Late-onset gain of skills and peculiar jugular pit in an 11-year-old girl with 5q14.3 microdeletion including MEF2C.
        Clin Dysmorphol. 2010; 19: 222-224
        • Carr C.W.
        • Zimmerman H.H.
        • Martin C.L.
        • Vikkula M.
        • Byrd A.C.
        • Abdul-Rahman O.A.
        5q14.3 neurocutaneous syndrome: A novel continguous gene syndrome caused by simultaneous deletion of RASA1 and MEF2C.
        Am J Med Genet A. 2011; 155A: 1640-1645
        • Engels H.
        • Wohlleber E.
        • Zink A.
        • Hoyer J.
        • Ludwig K.U.
        • Brockschmidt F.F.
        • et al.
        A novel microdeletion syndrome involving 5q14.3-q15: Clinical and molecular cytogenetic characterization of three patients.
        Eur J Hum Genet. 2009; 17: 1592-1599
        • Le Meur N.
        • Holder-Espinasse M.
        • Jaillard S.
        • Goldenberg A.
        • Joriot S.
        • Amati-Bonneau P.
        • et al.
        MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations.
        J Med Genet. 2010; 47: 22-29
        • Mikhail F.M.
        • Lose E.J.
        • Robin N.H.
        • Descartes M.D.
        • Rutledge K.D.
        • Rutledge S.L.
        • et al.
        Clinically relevant single gene or intragenic deletions encompassing critical neurodevelopmental genes in patients with developmental delay, mental retardation, and/or autism spectrum disorders.
        Am J Med Genet A. 2011; 155A: 2386-2396
        • Nowakowska B.A.
        • Obersztyn E.
        • Szymanska K.
        • Bekiesinska-Figatowska M.
        • Xia Z.
        • Ricks C.B.
        • et al.
        Severe mental retardation, seizures, and hypotonia due to deletions of MEF2C.
        Am J Med Genet B Neuropsychiatr Genet. 2010; 153B: 1042-1051
        • Paciorkowski A.R.
        • Traylor R.N.
        • Rosenfeld J.A.
        • Hoover J.M.
        • Harris C.J.
        • Winter S.
        • et al.
        MEF2C haploinsufficiency features consistent hyperkinesis, variable epilepsy, and has a role in dorsal and ventral neuronal developmental pathways.
        Neurogenetics. 2013; 14: 99-111
        • Zweier M.
        • Gregor A.
        • Zweier C.
        • Engels H.
        • Sticht H.
        • Wohlleber E.
        • et al.
        Mutations in MEF2C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression.
        Hum Mutat. 2010; 31: 722-733
        • Morrow E.M.
        • Yoo S.Y.
        • Flavell S.W.
        • Kim T.K.
        • Lin Y.
        • Hill R.S.
        • et al.
        Identifying autism loci and genes by tracing recent shared ancestry.
        Science. 2008; 321: 218-223
        • Li H.
        • Radford J.C.
        • Ragusa M.J.
        • Shea K.L.
        • McKercher S.R.
        • Zaremba J.D.
        • et al.
        Transcription factor MEF2C influences neural stem/progenitor cell differentiation and maturation in vivo.
        Proc Natl Acad Sci U S A. 2008; 105: 9397-9402
        • Vetere G.
        • Restivo L.
        • Cole C.J.
        • Ross P.J.
        • Ammassari-Teule M.
        • Josselyn S.A.
        • et al.
        Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory.
        Proc Natl Acad Sci U S A. 2011; 108: 8456-8460
        • Pulipparacharuvil S.
        • Renthal W.
        • Hale C.F.
        • Taniguchi M.
        • Xiao G.
        • Kumar A.
        • et al.
        Cocaine regulates MEF2 to control synaptic and behavioral plasticity.
        Neuron. 2008; 59: 621-633