Advertisement

Hippocampus Contributions to Food Intake Control: Mnemonic, Neuroanatomical, and Endocrine Mechanisms

Published:September 25, 2015DOI:https://doi.org/10.1016/j.biopsych.2015.09.011

      Abstract

      Food intake is a complex behavior that can occur or cease to occur for a multitude of reasons. Decisions about where, when, what, and how much to eat are not merely reflexive responses to food-relevant stimuli or to changes in energy status. Rather, feeding behavior is modulated by various contextual factors and by previous experiences. The data reviewed here support the perspective that neurons in multiple hippocampal subregions constitute an important neural substrate linking the external context, the internal context, and mnemonic and cognitive information to control both appetitive and ingestive behavior. Feeding behavior is heavily influenced by hippocampal-dependent mnemonic functions, including episodic meal-related memories and conditional learned associations between food-related stimuli and postingestive consequences. These mnemonic processes are undoubtedly influenced by both external and internal factors relating to food availability, location, and physiological energy status. The afferent and efferent neuroanatomical connectivity of the subregions of the hippocampus is reviewed with regard to the integration of visuospatial and olfactory sensory information (the external context) with endocrine and gastrointestinal interoceptive stimuli (the internal context). Also discussed are recent findings demonstrating that peripherally derived endocrine signals act on receptors in hippocampal neurons to reduce (leptin, glucagon-like peptide-1) or increase (ghrelin) food intake and learned food reward-driven responding, thereby highlighting endocrine and neuropeptidergic signaling in hippocampal neurons as a novel substrate of importance in the higher-order regulation of feeding behavior.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Guyenet S.J.
        • Schwartz M.W.
        Clinical review: Regulation of food intake, energy balance, and body fat mass: Implications for the pathogenesis and treatment of obesity.
        J Clin Endocrinol Metab. 2012; 97: 745-755
        • Duffey K.J.
        • Popkin B.M.
        Energy density, portion size, and eating occasions: Contributions to increased energy intake in the United States, 1977-2006.
        PLoS Med. 2011; 8: e1001050
        • Kelly M.T.
        • Wallace J.M.
        • Robson P.J.
        • Rennie K.L.
        • Welch R.W.
        • Hannon-Fletcher M.P.
        • et al.
        Increased portion size leads to a sustained increase in energy intake over 4 d in normal-weight and overweight men and women.
        Br J Nutr. 2009; 102: 470-477
        • Inabnet 3rd, W.B.
        • Winegar D.A.
        • Sherif B.
        • Sarr M.G.
        Early outcomes of bariatric surgery in patients with metabolic syndrome: An analysis of the bariatric outcomes longitudinal database.
        J Am Coll Surg. 2012; 214 (discussion 556–557): 550-556
        • Wu Q.
        • Zheng R.
        • Srisai D.
        • McKnight G.S.
        • Palmiter R.D.
        NR2B subunit of the NMDA glutamate receptor regulates appetite in the parabrachial nucleus.
        Proc Natl Acad Sci U S A. 2013; 110: 14765-14770
        • Hommel J.D.
        • Trinko R.
        • Sears R.M.
        • Georgescu D.
        • Liu Z.W.
        • Gao X.B.
        • et al.
        Leptin receptor signaling in midbrain dopamine neurons regulates feeding.
        Neuron. 2006; 51: 801-810
        • Abizaid A.
        • Liu Z.W.
        • Andrews Z.B.
        • Shanabrough M.
        • Borok E.
        • Elsworth J.D.
        • et al.
        Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite.
        J Clin Invest. 2006; 116: 3229-3239
        • Land B.B.
        • Narayanan N.S.
        • Liu R.J.
        • Gianessi C.A.
        • Brayton C.E.
        • Grimaldi D.M.
        • et al.
        Medial prefrontal D1 dopamine neurons control food intake.
        Nat Neurosci. 2014; 17: 248-253
        • Selleck R.A.
        • Lake C.
        • Estrada V.
        • Riederer J.
        • Andrzejewski M.
        • Sadeghian K.
        • Baldo B.A.
        Endogenous opioid signaling in the medial prefrontal cortex is required for the expression of hunger-induced impulsive action.
        Neuropsychopharmacology. 2015; 40: 2464-2474
        • Jennings J.H.
        • Rizzi G.
        • Stamatakis A.M.
        • Ung R.L.
        • Stuber G.D.
        The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding.
        Science. 2013; 341: 1517-1521
        • Roitman M.F.
        • Wheeler R.A.
        • Carelli R.M.
        Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output.
        Neuron. 2005; 45: 587-597
        • Cone J.J.
        • Roitman J.D.
        • Roitman M.F.
        Ghrelin regulates phasic dopamine and nucleus accumbens signaling evoked by food-predictive stimuli.
        J Neurochem. 2015; 133: 844-856
        • Mietlicki-Baase E.G.
        • Ortinski P.I.
        • Reiner D.J.
        • Sinon C.G.
        • McCutcheon J.E.
        • Pierce R.C.
        • et al.
        Glucagon-like peptide-1 receptor activation in the nucleus accumbens core suppresses feeding by increasing glutamatergic AMPA/kainate signaling.
        J Neurosci. 2014; 34: 6985-6992
        • Cohen N.J.
        • Poldrack R.A.
        • Eichenbaum H.
        Memory for items and memory for relations in the procedural/declarative memory framework.
        Memory. 1997; 5: 131-178
        • Eichenbaum H.
        • Cohen N.J.
        Can we reconcile the declarative memory and spatial navigation views on hippocampal function?.
        Neuron. 2014; 83: 764-770
        • Rozin P.
        • Dow S.
        • Moscovitch M.
        • Rajaram S.
        What causes humans to begin and end a meal? A role for memory for what has been eaten, as evidenced by a study of multiple meal eating in amnesic patients.
        Psychol Sci. 1998; 9: 392-396
        • Higgs S.
        • Williamson A.C.
        • Rotshtein P.
        • Humphreys G.W.
        Sensory-specific satiety is intact in amnesics who eat multiple meals.
        Psychol Sci. 2008; 19: 623-628
        • Higgs S.
        Memory for recent eating and its influence on subsequent food intake.
        Appetite. 2002; 39: 159-166
        • Higgs S.
        Cognitive influences on food intake: The effects of manipulating memory for recent eating.
        Physiol Behav. 2008; 94: 734-739
        • Brunstrom J.M.
        • Burn J.F.
        • Sell N.R.
        • Collingwood J.M.
        • Rogers P.J.
        • Wilkinson L.L.
        • et al.
        Episodic memory and appetite regulation in humans.
        PLoS One. 2012; 7: e50707
        • Henderson Y.O.
        • Smith G.P.
        • Parent M.B.
        Hippocampal neurons inhibit meal onset.
        Hippocampus. 2013; 23: 100-107
        • Garcia J.
        • Kimeldorf D.J.
        • Koelling R.A.
        Conditioned aversion to saccharin resulting from exposure to gamma radiation.
        Science. 1955; 122: 157-158
        • Grill H.J.
        • Norgren R.
        Chronically decerebrate rats demonstrate satiation but not bait shyness.
        Science. 1978; 201: 267-269
        • Sclafani A.
        Post-ingestive positive controls of ingestive behavior.
        Appetite. 2001; 36: 79-83
        • Breslin P.A.
        • Davidson T.L.
        • Grill H.J.
        Conditioned reversal of reactions to normally avoided tastes.
        Physiol Behav. 1990; 47: 535-538
        • Koh M.T.
        • Wheeler D.S.
        • Gallagher M.
        Hippocampal lesions interfere with long-trace taste aversion conditioning.
        Physiol Behav. 2009; 98: 103-107
        • Davidson T.L.
        • Jarrard L.E.
        The hippocampus and inhibitory learning: A ‘Gray’ area?.
        Neurosci Biobehav Rev. 2004; 28: 261-271
        • Jarrard L.E.
        • Davidson T.L.
        On the hippocampus and learned conditional responding: Effects of aspiration versus ibotenate lesions.
        Hippocampus. 1991; 1: 107-117
        • Kanoski S.E.
        • Davidson T.L.
        Western diet consumption and cognitive impairment: Links to hippocampal dysfunction and obesity.
        Physiol Behav. 2011; 103: 59-68
        • Holland P.C.
        • Bouton M.E.
        Hippocampus and context in classical conditioning.
        Curr Opin Neurobiol. 1999; 9: 195-202
        • Morris R.
        Theories of hippocampal function.
        in: Anderson P. Morris R. Amaral D. Bliss T. O’Keefe J. The Hippocampus Book. Oxford University Press, New York2007: 872
        • Gray J.A.
        • McNaughton N.
        The Neuropsychology of Anxiety.
        2nd ed. Oxford University Press, Oxford, UK2000
        • Holland P.C.
        • Lamoureux J.A.
        • Han J.-S.
        • Gallagher M.
        Hippocampal lesions interfere with Pavlovian negative occasion setting.
        Hippocampus. 1999; 9: 143-157
        • Davidson T.L.
        • Kanoski S.E.
        • Schier L.A.
        • Clegg D.J.
        • Benoit S.C.
        A potential role for the hippocampus in energy intake and body weight regulation.
        Curr Opin Pharmacol. 2007; 7: 613-616
        • Davidson T.L.
        • Kanoski S.E.
        • Walls E.K.
        • Jarrard L.E.
        Memory inhibition and energy regulation.
        Physiol Behav. 2005; 86: 731-746
        • Kanoski S.E.
        Cognitive and neuronal systems underlying obesity.
        Physiol Behav. 2012; 106: 337-344
        • Benoit S.C.
        • Davis J.F.
        • Davidson T.L.
        Learned and cognitive controls of food intake.
        Brain Res. 2010; 1350: 71-76
        • Kanoski S.E.
        • Hayes M.R.
        • Greenwald H.S.
        • Fortin S.M.
        • Gianessi C.A.
        • Gilbert J.R.
        • Grill H.J.
        Hippocampal leptin signaling reduces food intake and modulates food-related memory processing.
        Neuropsychopharmacology. 2011; 36: 1859-1870
        • Webster M.J.
        • Ungerleider L.G.
        • Bachevalier J.
        Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys.
        J Neurosci. 1991; 11: 1095-1116
        • Petrovich G.D.
        • Canteras N.S.
        • Swanson L.W.
        Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems.
        Brain Res Rev. 2001; 38: 247-289
        • Fanselow M.S.
        • Dong H.W.
        Are the dorsal and ventral hippocampus functionally distinct structures?.
        Neuron. 2010; 65: 7-19
        • Dolorfo C.L.
        • Amaral D.G.
        Entorhinal cortex of the rat: Organization of intrinsic connections.
        J Comp Neurol. 1998; 398: 49-82
        • Kjelstrup K.B.
        • Solstad T.
        • Brun V.H.
        • Hafting T.
        • Leutgeb S.
        • Witter M.P.
        • et al.
        Finite scale of spatial representation in the hippocampus.
        Science. 2008; 321: 140-143
        • Moser M.B.
        • Moser E.I.
        • Forrest E.
        • Andersen P.
        • Morris R.G.
        Spatial learning with a minislab in the dorsal hippocampus.
        Proc Natl Acad Sci U S A. 1995; 92: 9697-9701
        • Moser E.
        • Moser M.B.
        • Andersen P.
        Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions.
        J Neurosci. 1993; 13: 3916-3925
        • Bannerman D.M.
        • Deacon R.M.
        • Offen S.
        • Friswell J.
        • Grubb M.
        • Rawlins J.N.
        Double dissociation of function within the hippocampus: Spatial memory and hyponeophagia.
        Behav Neurosci. 2002; 116: 884-901
        • de Hoz L.
        • Knox J.
        • Morris R.G.
        Longitudinal axis of the hippocampus: Both septal and temporal poles of the hippocampus support water maze spatial learning depending on the training protocol.
        Hippocampus. 2003; 13: 587-603
        • Wilkerson A.
        • Levin E.D.
        Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats.
        Neuroscience. 1999; 89: 743-749
        • Keinath A.T.
        • Wang M.E.
        • Wann E.G.
        • Yuan R.K.
        • Dudman J.T.
        • Muzzio I.A.
        Precise spatial coding is preserved along the longitudinal hippocampal axis.
        Hippocampus. 2014; 24: 1533-1548
        • Beer Z.
        • Chwiesko C.
        • Sauvage M.M.
        Processing of spatial and non-spatial information reveals functional homogeneity along the dorso-ventral axis of CA3, but not CA1.
        Neurobiol Learn Mem. 2014; 111: 56-64
        • Bannerman D.M.
        • Rawlins J.N.
        • McHugh S.B.
        • Deacon R.M.
        • Yee B.K.
        • Bast T.
        • et al.
        Regional dissociations within the hippocampus--memory and anxiety.
        Neurosci Biobehav Rev. 2004; 28: 273-283
        • Strange B.A.
        • Witter M.P.
        • Lein E.S.
        • Moser E.I.
        Functional organization of the hippocampal longitudinal axis.
        Nat Rev Neurosci. 2014; 15: 655-669
        • Cenquizca L.A.
        • Swanson L.W.
        Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex.
        Brain Res Rev. 2007; 56: 1-26
        • Swanson L.W.
        • Cowan W.M.
        Hippocampo-hypothalamic connections: Origin in subicular cortex, not ammon’s horn.
        Science. 1975; 189: 303-304
        • Czajkowski R.
        • Jayaprakash B.
        • Wiltgen B.
        • Rogerson T.
        • Guzman-Karlsson M.C.
        • Barth A.L.
        • et al.
        Encoding and storage of spatial information in the retrosplenial cortex.
        Proc Natl Acad Sci U S A. 2014; 111: 8661-8666
        • Lee Y.S.
        • Danandeh A.
        • Baratta J.
        • Lin C.Y.
        • Yu J.
        • Robertson R.T.
        Neurotrophic factors rescue basal forebrain cholinergic neurons and improve performance on a spatial learning test.
        Exp Neurol. 2013; 249: 178-186
        • Nelson A.J.
        • Hindley E.L.
        • Pearce J.M.
        • Vann S.D.
        • Aggleton J.P.
        The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning.
        Front Behav Neurosci. 2015; 9: 11
        • Nelson A.J.
        • Vann S.D.
        Mammilliothalamic tract lesions disrupt tests of visuo-spatial memory.
        Behav Neurosci. 2014; 128: 494-503
        • Teixeira C.M.
        • Pomedli S.R.
        • Maei H.R.
        • Kee N.
        • Frankland P.W.
        Involvement of the anterior cingulate cortex in the expression of remote spatial memory.
        J Neurosci. 2006; 26: 7555-7564
        • Warburton E.C.
        • Aggleton J.P.
        Differential deficits in the Morris water maze following cytotoxic lesions of the anterior thalamus and fornix transection.
        Behav Brain Res. 1999; 98: 27-38
        • de la Rosa-Prieto C.
        • Ubeda-Banon I.
        • Mohedano-Moriano A.
        • Pro-Sistiaga P.
        • Saiz-Sanchez D.
        • Insausti R.
        • et al.
        Subicular and CA1 hippocampal projections to the accessory olfactory bulb.
        Hippocampus. 2009; 19: 124-129
        • Mathiasen M.L.
        • Hansen L.
        • Witter M.P.
        Insular projections to the parahippocampal region in the rat.
        J Comp Neurol. 2015; 523: 1379-1398
        • Kondo H.
        • Witter M.P.
        Topographic organization of orbitofrontal projections to the parahippocampal region in rats.
        J Comp Neurol. 2014; 522: 772-793
        • Chinnakkaruppan A.
        • Wintzer M.E.
        • McHugh T.J.
        • Rosenblum K.
        Differential contribution of hippocampal subfields to components of associative taste learning.
        J Neurosci. 2014; 34: 11007-11015
        • Davidson T.L.
        • Kanoski S.E.
        • Chan K.
        • Clegg D.J.
        • Benoit S.C.
        • Jarrard L.E.
        Hippocampal lesions impair retention of discriminative responding based on energy state cues.
        Behav Neurosci. 2010; 124: 97-105
        • Min D.K.
        • Tuor U.I.
        • Chelikani P.K.
        Gastric distention induced functional magnetic resonance signal changes in the rodent brain.
        Neuroscience. 2011; 179: 151-158
        • Wang G.-J.
        • Yang J.
        • Volkow N.D.
        • Telang F.
        • Ma Y.
        • Zhu W.
        • et al.
        Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry.
        Proc Natl Acad Sci U S A. 2006; 103: 15641-15645
        • Hsu T.M.
        • Hahn J.D.
        • Konanur V.R.
        • Lam A.
        • Kanoski S.E.
        Hippocampal GLP-1 receptors influence food intake, meal size, and effort-based responding for food through volume transmission.
        Neuropsychopharmacology. 2015; 40: 327-337
        • Rinaman L.
        Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure.
        Brain Res. 2010; 1350: 18-34
        • Wyss J.M.
        • Swanson L.W.
        • Cowan W.M.
        A study of subcortical afferents to the hippocampal formation in the rat.
        Neuroscience. 1979; 4: 463-476
        • Oleskevich S.
        • Descarries L.
        • Lacaille J.C.
        Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat.
        J Neurosci. 1989; 9: 3803-3815
        • Castle M.
        • Comoli E.
        • Loewy A.D.
        Autonomic brainstem nuclei are linked to the hippocampus.
        Neuroscience. 2005; 134: 657-669
        • Martres M.P.
        • Bouthenet M.L.
        • Sales N.
        • Sokoloff P.
        • Schwartz J.C.
        Widespread distribution of brain dopamine receptors evidenced with [125I]iodosulpride, a highly selective ligand.
        Science. 1985; 228: 752-755
        • Missale C.
        • Nash S.R.
        • Robinson S.W.
        • Jaber M.
        • Caron M.G.
        Dopamine receptors: From structure to function.
        Physiol Rev. 1998; 78: 189-225
        • Gasbarri A.
        • Packard M.G.
        • Campana E.
        • Pacitti C.
        Anterograde and retrograde tracing of projections from the ventral tegmental area to the hippocampal formation in the rat.
        Brain Res Bull. 1994; 33: 445-452
        • Gasbarri A.
        • Verney C.
        • Innocenzi R.
        • Campana E.
        • Pacitti C.
        Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: A combined retrograde tracing and immunohistochemical study.
        Brain Res. 1994; 668: 71-79
        • Ohara S.
        • Sato S.
        • Tsutsui K.
        • Witter M.P.
        • Iijima T.
        Organization of multisynaptic inputs to the dorsal and ventral dentate gyrus: Retrograde trans-synaptic tracing with rabies virus vector in the rat.
        PLoS One. 2013; 8: e78928
        • Brown J.A.
        • Woodworth H.L.
        • Leinninger G.M.
        To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance.
        Front Syst Neurosci. 2015; 9: 9
        • Berthoud H.R.
        • Munzberg H.
        The lateral hypothalamus as integrator of metabolic and environmental needs: From electrical self-stimulation to opto-genetics.
        Physiol Behav. 2011; 104: 29-39
        • Teitelbaum P.
        • Epstein A.N.
        The lateral hypothalamic syndrome: Recovery of feeding and drinking after lateral hypothalamic lesions.
        Psychol Rev. 1962; 69: 74-90
        • Coons E.E.
        • Levak M.
        • Miller N.E.
        Lateral hypothalamus: Learning of food-seeking response motivated by electrical stimulation.
        Science. 1965; 150: 1320-1321
        • Stanley B.G.
        • Willett 3rd, V.L.
        • Donias H.W.
        • Dee 2nd, M.G.
        • Duva M.A.
        Lateral hypothalamic NMDA receptors and glutamate as physiological mediators of eating and weight control.
        Am J Physiol. 1996; 270: R443-R449
        • Hahn J.D.
        • Swanson L.W.
        Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat.
        J Comp Neurol. 2012; 520: 1831-1890
        • Cenquizca L.A.
        • Swanson L.W.
        Analysis of direct hippocampal cortical field CA1 axonal projections to diencephalon in the rat.
        J Comp Neurol. 2006; 497: 101-114
        • Ishikawa A.
        • Nakamura S.
        Ventral hippocampal neurons project axons simultaneously to the medial prefrontal cortex and amygdala in the rat.
        J Neurophysiol. 2006; 96: 2134-2138
        • Brog J.S.
        • Salyapongse A.
        • Deutch A.Y.
        • Zahm D.S.
        The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro-gold.
        J Comp Neurol. 1993; 338: 255-278
        • Groenewegen H.J.
        • Vermeulen-Van der Zee E.
        • te Kortschot A.
        • Witter M.P.
        Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin.
        Neuroscience. 1987; 23: 103-120
        • Grace A.A.
        Dopamine system dysregulation by the hippocampus: Implications for the pathophysiology and treatment of schizophrenia.
        Neuropharmacology. 2012; 62: 1342-1348
        • Gong Y.
        • Xu L.
        • Wang H.
        • Guo F.
        • Sun X.
        • Gao S.
        Involvements of the lateral hypothalamic area in gastric motility and its regulation by the lateral septum.
        Gen Comp Endocrinol. 2013; 194: 275-285
        • Gong Y.
        • Xu L.
        • Guo F.
        • Pang M.
        • Shi Z.
        • Gao S.
        • Sun X.
        Effects of ghrelin on gastric distension sensitive neurons and gastric motility in the lateral septum and arcuate nucleus regulation.
        J Gastroenterol. 2014; 49: 219-230
        • Mitra A.
        • Lenglos C.
        • Timofeeva E.
        Inhibition in the lateral septum increases sucrose intake and decreases anorectic effects of stress.
        Eur J Neurosci. 2015; 41: 420-433
        • Meibach R.C.
        • Siegel A.
        Efferent connections of the hippocampal formation in the rat.
        Brain Res. 1977; 124: 197-224
        • Canteras N.S.
        • Swanson L.W.
        Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: A PHAL anterograde tract-tracing study in the rat.
        J Comp Neurol. 1992; 324: 180-194
        • Luo A.H.
        • Tahsili-Fahadan P.
        • Wise R.A.
        • Lupica C.R.
        • Aston-Jones G.
        Linking context with reward: A functional circuit from hippocampal CA3 to ventral tegmental area.
        Science. 2011; 333: 353-357
        • Unger J.
        • Livingston J.
        • Moss A.
        Insulin receptors in the central nervous system: Localization, signalling mechanisms and functional aspects.
        Prog Neurobiol. 1991; 36: 343-362
        • Zhao W.
        • Chen H.
        • Xu H.
        • Moore E.
        • Meiri N.
        • Quon M.J.
        • Alkon D.L.
        Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats.
        J Biol Chem. 1999; 274: 34893-34902
        • Scott M.M.
        • Lachey J.L.
        • Sternson S.M.
        • Lee C.E.
        • Elias C.F.
        • Friedman J.M.
        • Elmquist J.K.
        Leptin targets in the mouse brain.
        J Comp Neurol. 2009; 514: 518-532
        • Zigman J.M.
        • Jones J.E.
        • Lee C.E.
        • Saper C.B.
        • Elmquist J.K.
        Expression of ghrelin receptor mRNA in the rat and the mouse brain.
        J Comp Neurol. 2006; 494: 528-548
        • Merchenthaler I.
        • Lane M.
        • Shughrue P.
        Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system.
        J Comp Neurol. 1999; 403: 261-280
        • Depoortere I.
        • De Clercq P.
        • Svoboda M.
        • Bare L.
        • Peeters T.L.
        Identification of motilin mRNA in the brain of man and rabbit. Conservation of polymorphism of the motilin gene across species.
        Peptides. 1997; 18: 1497-1503
        • Adler B.L.
        • Yarchoan M.
        • Hwang H.M.
        • Louneva N.
        • Blair J.A.
        • Palm R.
        • et al.
        Neuroprotective effects of the amylin analogue pramlintide on Alzheimer’s disease pathogenesis and cognition.
        Neurobiol Aging. 2014; 35: 793-801
        • Caberlotto L.
        • Fuxe K.
        • Overstreet D.H.
        • Gerrard P.
        • Hurd Y.L.
        Alterations in neuropeptide Y and Y1 receptor mRNA expression in brains from an animal model of depression: Region specific adaptation after fluoxetine treatment.
        Brain Res Mol Brain Res. 1998; 59: 58-65
        • Kishi T.
        • Aschkenasi C.J.
        • Lee C.E.
        • Mountjoy K.G.
        • Saper C.B.
        • Elmquist J.K.
        Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat.
        J Comp Neurol. 2003; 457: 213-235
        • Marcus J.N.
        • Aschkenasi C.J.
        • Lee C.E.
        • Chemelli R.M.
        • Saper C.B.
        • Yanagisawa M.
        • Elmquist J.K.
        Differential expression of orexin receptors 1 and 2 in the rat brain.
        J Comp Neurol. 2001; 435: 6-25
        • Lembo P.M.
        • Grazzini E.
        • Cao J.
        • Hubatsch D.A.
        • Pelletier M.
        • Hoffert C.
        • et al.
        The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor.
        Nat Cell Biol. 1999; 1: 267-271
        • Shanley L.J.
        • Irving A.J.
        • Harvey J.
        Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity.
        J Neurosci. 2001; 21: RC186
        • During M.J.
        • Cao L.
        • Zuzga D.S.
        • Francis J.S.
        • Fitzsimons H.L.
        • Jiao X.
        • et al.
        Glucagon-like peptide-1 receptor is involved in learning and neuroprotection [see comment].
        Nat Med. 2003; 9: 1173-1179
        • Diano S.
        • Farr S.A.
        • Benoit S.C.
        • McNay E.C.
        • da Silva I.
        • Horvath B.
        • et al.
        Ghrelin controls hippocampal spine synapse density and memory performance.
        Nat Neurosci. 2006; 9: 381-388
        • Moult P.R.
        • Harvey J.
        Hormonal regulation of hippocampal dendritic morphology and synaptic plasticity.
        Cell Adh Migr. 2008; 2: 269-275
        • Zhang Y.
        • Proenca R.
        • Maffei M.
        • Barone M.
        • Leopold L.
        • Friedman J.M.
        Positional cloning of the mouse obese gene and its human homologue [see comment] [erratum appears in Nature 1995 Mar 30;374:479].
        Nature. 1994; 372: 425-432
        • Leshan R.L.
        • Bjornholm M.
        • Munzberg H.
        • Myers Jr, M.G.
        Leptin receptor signaling and action in the central nervous system.
        Obesity (Silver Spring). 2006; 14: 208S-212S
        • Banks W.A.
        • Niehoff M.L.
        • Martin D.
        • Farrell C.L.
        Leptin transport across the blood-brain barrier of the Koletsky rat is not mediated by a product of the leptin receptor gene.
        Brain Res. 2002; 950: 130-136
        • Myers Jr, M.G.
        • Munzberg H.
        • Leinninger G.M.
        • Leshan R.L.
        The geometry of leptin action in the brain: More complicated than a simple ARC.
        Cell Metab. 2009; 9: 117-123
        • Hayes M.R.
        • Skibicka K.P.
        • Leichner T.M.
        • Guarnieri D.J.
        • DiLeone R.J.
        • Bence K.K.
        • Grill H.J.
        Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation.
        Cell Metab. 2010; 11: 77-83
        • Kanoski S.E.
        • Zhao S.
        • Guarnieri D.J.
        • Dileone R.J.
        • Yan J.
        • De Jonghe B.C.
        • et al.
        Endogenous leptin receptor signaling in the medial nucleus tractus solitarius affects meal size and potentiates intestinal satiation signals.
        Am J Physiol Endocrinol Metab. 2012; 303: E496-E503
        • Grill H.J.
        • Hayes M.R.
        Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance.
        Cell Metab. 2012; 16: 296-309
        • Fulton S.
        • Pissios P.
        • Manchon R.P.
        • Stiles L.
        • Frank L.
        • Pothos E.N.
        • et al.
        Leptin regulation of the mesoaccumbens dopamine pathway.
        Neuron. 2006; 51: 811-822
        • Grill H.J.
        Distributed neural control of energy balance: Contributions from hindbrain and hypothalamus.
        Obesity (Silver Spring). 2006; 14: 216S-221S
        • Grill H.J.
        Leptin and the systems neuroscience of meal size control.
        Front Neuroendocrinol. 2010; 31: 61-78
        • Holst J.J.
        The physiology of glucagon-like peptide 1.
        Physiol Rev. 2007; 87: 1409-1439
        • Hayes M.R.
        • Mietlicki-Baase E.G.
        • Kanoski S.E.
        • De Jonghe B.C.
        Incretins and amylin: Neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose.
        Annu Rev Nutr. 2014; 34: 237-260
        • Williams D.L.
        Minireview: Finding the sweet spot: Peripheral versus central glucagon-like peptide 1 action in feeding and glucose homeostasis.
        Endocrinology. 2009; 150: 2997-3001
        • Hayes M.R.
        • De Jonghe B.C.
        • Kanoski S.E.
        Role of the glucagon-like-peptide-1 receptor in the control of energy balance.
        Physiol Behav. 2010; 100: 503-510
        • Schick R.R.
        • Zimmermann J.P.
        • vorm Walde T.
        • Schusdziarra V.
        Peptides that regulate food intake: Glucagon-like peptide 1-(7-36) amide acts at lateral and medial hypothalamic sites to suppress feeding in rats.
        Am J Physiol Regul Integr Comp Physiol. 2003; 284: R1427-R1435
        • McMahon L.R.
        • Wellman P.J.
        PVN infusion of GLP-1-(7-36) amide suppresses feeding but does not induce aversion or alter locomotion in rats.
        Am J Physiol. 1998; 274: R23-R29
        • Hayes M.R.
        • Leichner T.M.
        • Zhao S.
        • Lee G.S.
        • Chowansky A.
        • Zimmer D.
        • et al.
        Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation.
        Cell Metab. 2011; 13: 320-330
        • Hayes M.R.
        • Skibicka K.P.
        • Grill H.J.
        Caudal brainstem processing is sufficient for behavioral, sympathetic, and parasympathetic responses driven by peripheral and hindbrain glucagon-like-peptide-1 receptor stimulation.
        Endocrinology. 2008; 149: 4059-4068
        • Kinzig K.P.
        • D’Alessio D.A.
        • Seeley R.J.
        The diverse roles of specific GLP-1 receptors in the control of food intake and the response to visceral illness.
        J Neurosci. 2002; 22: 10470-10476
        • Alhadeff A.L.
        • Rupprecht L.E.
        • Hayes M.R.
        GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake.
        Endocrinology. 2012; 153: 647-658
        • Dickson S.L.
        • Shirazi R.H.
        • Hansson C.
        • Bergquist F.
        • Nissbrandt H.
        • Skibicka K.P.
        The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: A new role for mesolimbic GLP-1 receptors.
        J Neurosci. 2012; 32: 4812-4820
        • Dossat A.M.
        • Lilly N.
        • Kay K.
        • Williams D.L.
        Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake.
        J Neurosci. 2011; 31: 14453-14457
        • Gu G.
        • Roland B.
        • Tomaselli K.
        • Dolman C.S.
        • Lowe C.
        • Heilig J.S.
        Glucagon-like peptide-1 in the rat brain: Distribution of expression and functional implication.
        J Comp Neurol. 2013; 521: 2235-2261
        • Kojima M.
        • Hosoda H.
        • Date Y.
        • Nakazato M.
        • Matsuo H.
        • Kangawa K.
        Ghrelin is a growth-hormone-releasing acylated peptide from stomach.
        Nature. 1999; 402: 656-660
        • Cowley M.A.
        • Smith R.G.
        • Diano S.
        • Tschop M.
        • Pronchuk N.
        • Grove K.L.
        • et al.
        The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis.
        Neuron. 2003; 37: 649-661
        • Skibicka K.P.
        • Hansson C.
        • Alvarez-Crespo M.
        • Friberg P.A.
        • Dickson S.L.
        Ghrelin directly targets the ventral tegmental area to increase food motivation.
        Neuroscience. 2011; 180: 129-137
        • Faulconbridge L.F.
        • Cummings D.E.
        • Kaplan J.M.
        • Grill H.J.
        Hyperphagic effects of brainstem ghrelin administration.
        Diabetes. 2003; 52: 2260-2265
        • Mani B.K.
        • Walker A.K.
        • Lopez Soto E.J.
        • Raingo J.
        • Lee C.E.
        • Perello M.
        • et al.
        Neuroanatomical characterization of a growth hormone secretagogue receptor-green fluorescent protein reporter mouse.
        J Comp Neurol. 2014; 522: 3644-3666
        • Kanoski S.E.
        • Fortin S.M.
        • Ricks K.M.
        • Grill H.J.
        Ghrelin signaling in the ventral hippocampus stimulates learned and motivational aspects of feeding via PI3K-Akt signaling.
        Biol Psychiatry. 2013; 73: 915-923
        • Leube D.T.
        • Weis S.
        • Freymann K.
        • Erb M.
        • Jessen F.
        • Heun R.
        • et al.
        Neural correlates of verbal episodic memory in patients with MCI and Alzheimer’s disease--a VBM study.
        Int J Geriatr Psychiatry. 2008; 23: 1114-1118
        • Insel N.
        • Takehara-Nishiuchi K.
        The cortical structure of consolidated memory: A hypothesis on the role of the cingulate-entorhinal cortical connection.
        Neurobiol Learn Mem. 2013; 106: 343-350