Advertisement

At the Tip of an Iceberg: Prenatal Marijuana and Its Possible Relation to Neuropsychiatric Outcome in the Offspring

  • Alán Alpár
    Affiliations
    MTA-SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, Budapest, Hungary

    Department of Anatomy, Semmelweis University, Budapest, Hungary
    Search for articles by this author
  • Vincenzo Di Marzo
    Affiliations
    Endocannabinoid Research Group, Instituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy
    Search for articles by this author
  • Tibor Harkany
    Correspondence
    Address correspondence to Tibor Harkany Professor of Molecular Neurosciences, PhD, MSc, FRSB (UK), Karolinska Institute, Department of Medical Biochemistry and Biophysics, Stockholm SE-17177, Sweden.
    Affiliations
    Division of Molecular Neurosciences, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden

    Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
    Search for articles by this author
Published:September 23, 2015DOI:https://doi.org/10.1016/j.biopsych.2015.09.009

      Abstract

      Endocannabinoids regulate brain development via modulating neural proliferation, migration, and the differentiation of lineage-committed cells. In the fetal nervous system, (endo)cannabinoid-sensing receptors and the enzymatic machinery of endocannabinoid metabolism exhibit a cellular distribution map different from that in the adult, implying distinct functions. Notably, cannabinoid receptors serve as molecular targets for the psychotropic plant-derived cannabis constituent Δ9-tetrahydrocannainol, as well as synthetic derivatives (designer drugs). Over 180 million people use cannabis for recreational or medical purposes globally. Recreational cannabis is recognized as a niche drug for adolescents and young adults. This review combines data from human and experimental studies to show that long-term and heavy cannabis use during pregnancy can impair brain maturation and predispose the offspring to neurodevelopmental disorders. By discussing the mechanisms of cannabinoid receptor-mediated signaling events at critical stages of fetal brain development, we organize histopathologic, biochemical, molecular, and behavioral findings into a logical hypothesis predicting neuronal vulnerability to and attenuated adaptation toward environmental challenges (stress, drug exposure, medication) in children affected by in utero cannabinoid exposure. Conversely, we suggest that endocannabinoid signaling can be an appealing druggable target to dampen neuronal activity if pre-existing pathologies associate with circuit hyperexcitability. Yet, we warn that the lack of critical data from longitudinal follow-up studies precludes valid conclusions on possible delayed and adverse side effects. Overall, our conclusion weighs in on the ongoing public debate on cannabis legalization, particularly in medical contexts.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rakic P.
        Principles of neural cell migration.
        Experientia. 1990; 46: 882-891
        • Rakic P.
        Neurogenesis in adult primate neocortex: An evaluation of the evidence.
        Nat Rev Neurosci. 2002; 3: 65-71
        • Rakic P.
        Developmental and evolutionary adaptations of cortical radial glia.
        Cereb Cortex. 2003; 13: 541-549
        • Decorte T.
        • Potter G.R.
        The globalisation of cannabis cultivation: A growing challenge.
        Int J Drug Policy. 2015; 26: 221-225
        • Potter G.R.
        • Barratt M.J.
        • Malm A.
        • Bouchard M.
        • Blok T.
        • Christensen A.S.
        • et al.
        Global patterns of domestic cannabis cultivation: Sample characteristics and patterns of growing across eleven countries.
        Int J Drug Policy. 2015; 26: 226-237
        • National Institute on Drug Abuse
        NIDA Monograph Series: Marijuana Abuse.
        National Institute on Drug Abuse, Rockville, MD2005
        • Substance Abuse and Mental Health Services Administration
        Results from the 2010 National Survey on Drug Use and Health: Summary of National Findings. NSDUH Series H-41, HHS Publication No. (SMA) 11-4658.
        Substance Abuse and Mental Health Services Administration, Rockville, MD2011
        • Volkow N.D.
        • Baler R.D.
        • Compton W.M.
        • Weiss S.R.
        Adverse health effects of marijuana use.
        N Engl J Med. 2014; 370: 2219-2227
      1. European Monitoring Centre for Drugs and Drug Addiction (2012): Legal topic overviews: Possession of cannabis for personal use. EMCDDA. Available at: http://www.emcdda.europa.eu/legal-topic-overviews/cannabis-possession-for-personal-use. Accessed October 23, 2015.

      2. European Monitoring Centre for Drugs and Drug Addiction (2013): Synthetic Cannabinoids in Europe. EMCDDA. Available at: http://www.emcdda.europa.eu/topics/pods/synthetic-cannabinoids. Accessed October 23, 2015.

        • Fried P.A.
        • Smith A.M.
        A literature review of the consequences of prenatal marihuana exposure. An emerging theme of a deficiency in aspects of executive function.
        Neurotoxicol Teratol. 2001; 23: 1-11
        • Campolongo P.
        • Trezza V.
        • Ratano P.
        • Palmery M.
        • Cuomo V.
        Developmental consequences of perinatal cannabis exposure: Behavioral and neuroendocrine effects in adult rodents.
        Psychopharmacology (Berl). 2011; 214: 5-15
        • Vorhees C.V.
        Concepts in teratology and developmental toxicology derived from animal research.
        Ann N Y Acad Sci. 1989; 562: 31-41
        • Calvigioni D.
        • Hurd Y.L.
        • Harkany T.
        • Keimpema E.
        Neuronal substrates and functional consequences of prenatal cannabis exposure.
        Eur Child Adolesc Psychiatry. 2014; 23: 931-941
        • Keimpema E.
        • Calvigioni D.
        • Harkany T.
        Endocannabinoid signals in the developmental programming of delayed-onset neuropsychiatric and metabolic illnesses.
        Biochem Soc Trans. 2013; 41: 1569-1576
        • Psychoyos D.
        • Vinod K.Y.
        Marijuana, Spice ‘herbal high’, and early neural development: Implications for rescheduling and legalization.
        Drug Test Anal. 2013; 5: 27-45
        • Hall W.
        The adverse health effects of cannabis use: What are they, and what are their implications for policy?.
        Int J Drug Policy. 2009; 20: 458-466
      3. Boycott R (1997): The time is right to decriminalise cannabis. The Independent on Sunday. September 28, 1997:2:1

        • Hayes J.S.
        • Lampart R.
        • Dreher M.C.
        • Morgan L.
        Five-year follow-up of rural Jamaican children whose mothers used marijuana during pregnancy.
        West Indian Med J. 1991; 40: 120-123
        • Grotenhermen F.
        The toxicology of cannabis and cannabis prohibition.
        Chem Biodivers. 2007; 4: 1744-1769
        • Moore T.H.
        • Zammit S.
        • Lingford-Hughes A.
        • Barnes T.R.
        • Jones P.B.
        • Burke M.
        • Lewis G.
        Cannabis use and risk of psychotic or affective mental health outcomes: A systematic review.
        Lancet. 2007; 370: 319-328
        • Di Forti M.
        • Sallis H.
        • Allegri F.
        • Trotta A.
        • Ferraro L.
        • Stilo S.A.
        • et al.
        Daily use, especially of high-potency cannabis, drives the earlier onset of psychosis in cannabis users.
        Schizophr Bull. 2014; 40: 1509-1517
        • Iseger T.A.
        • Bossong M.G.
        A systematic review of the antipsychotic properties of cannabidiol in humans.
        Schizophr Res. 2015; 162: 153-161
        • Campos A.C.
        • Moreira F.A.
        • Gomes F.V.
        • Del Bel E.A.
        • Guimaraes F.S.
        Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders.
        Philos Trans R Soc Lond B Biol Sci. 2012; 367: 3364-3378
        • Devinsky O.
        • Cilio M.R.
        • Cross H.
        • Fernandez-Ruiz J.
        • French J.
        • Hill C.
        • et al.
        Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders.
        Epilepsia. 2014; 55: 791-802
        • Weiland B.J.
        • Thayer R.E.
        • Depue B.E.
        • Sabbineni A.
        • Bryan A.D.
        • Hutchison K.E.
        Daily marijuana use is not associated with brain morphometric measures in adolescents or adults.
        J Neurosci. 2015; 35: 1505-1512
        • Hurd Y.L.
        • Wang X.
        • Anderson V.
        • Beck O.
        • Minkoff H.
        • Dow-Edwards D.
        Marijuana impairs growth in mid-gestation fetuses.
        Neurotoxicol Teratol. 2005; 27: 221-229
        • Day N.L.
        • Richardson G.A.
        Prenatal marijuana use: Epidemiology, methodologic issues, and infant outcome.
        Clin Perinatol. 1991; 18: 77-91
        • Linn S.
        • Schoenbaum S.C.
        • Monson R.R.
        • Rosner R.
        • Stubblefield P.C.
        • Ryan K.J.
        The association of marijuana use with outcome of pregnancy.
        Am J Public Health. 1983; 73: 1161-1164
        • Hutchings D.E.
        • Martin B.R.
        • Gamagaris Z.
        • Miller N.
        • Fico T.
        Plasma concentrations of delta-9-tetrahydrocannabinol in dams and fetuses following acute or multiple prenatal dosing in rats.
        Life Sci. 1989; 44: 697-701
        • Perez-Reyes M.
        • Wall M.E.
        Presence of delta9-tetrahydrocannabinol in human milk.
        N Engl J Med. 1982; 307: 819-820
        • Astley S.J.
        • Little R.E.
        Maternal marijuana use during lactation and infant development at one year.
        Neurotoxicol Teratol. 1990; 12: 161-168
        • Oliet S.H.
        • Baimoukhametova D.V.
        • Piet R.
        • Bains J.S.
        Retrograde regulation of GABA transmission by the tonic release of oxytocin and endocannabinoids governs postsynaptic firing.
        J Neurosci. 2007; 27: 1325-1333
        • Fonseca B.M.
        • Correia-da-Silva G.
        • Taylor A.H.
        • Lam P.M.
        • Marczylo T.H.
        • Bell S.C.
        • et al.
        The endocannabinoid 2-arachidonoylglycerol (2-AG) and metabolizing enzymes during rat fetoplacental development: A role in uterine remodelling.
        Int J Biochem Cell Biol. 2010; 42: 1884-1892
        • Fride E.
        • Ginzburg Y.
        • Breuer A.
        • Bisogno T.
        • Di Marzo V.
        • Mechoulam R.
        Critical role of the endogenous cannabinoid system in mouse pup suckling and growth.
        Eur J Pharmacol. 2001; 419: 207-214
        • Tortoriello G.
        • Morris C.V.
        • Alpár A.
        • Fuzik J.
        • Shirran S.L.
        • Calvigioni D.
        • et al.
        Miswiring the brain: Δ9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway.
        EMBO J. 2014; 33: 668-685
        • Tree K.C.
        • Scotto di Perretolo M.
        • Peyronnet J.
        • Cayetanot F.
        In utero cannabinoid exposure alters breathing and the response to hypoxia in newborn mice.
        Eur J Neurosci. 2014; 40: 2196-2204
        • Whyte L.S.
        • Ryberg E.
        • Sims N.A.
        • Ridge S.A.
        • Mackie K.
        • Greasley P.J.
        • et al.
        The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo.
        Proc Natl Acad Sci U S A. 2009; 106: 16511-16516
        • Matsuda L.A.
        • Lolait S.J.
        • Brownstein M.J.
        • Young A.C.
        • Bonner T.I.
        Structure of a cannabinoid receptor and functional expression of the cloned cDNA.
        Nature. 1990; 346: 561-564
        • Galve-Roperh I.
        • Aguado T.
        • Rueda D.
        • Velasco G.
        • Guzman M.
        Endocannabinoids: A new family of lipid mediators involved in the regulation of neural cell development.
        Curr Pharm Des. 2006; 12: 2319-2325
        • Munro S.
        • Thomas K.L.
        • Abu-Shaar M.
        Molecular characterization of a peripheral receptor for cannabinoids.
        Nature. 1993; 365: 61-65
        • Lauckner J.E.
        • Jensen J.B.
        • Chen H.Y.
        • Lu H.C.
        • Hille B.
        • Mackie K.
        GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current.
        Proc Natl Acad Sci U S A. 2008; 105: 2699-2704
        • OʼSullivan S.E.
        Cannabinoids go nuclear: Evidence for activation of peroxisome proliferator-activated receptors.
        Br J Pharmacol. 2007; 152: 576-582
        • De Petrocellis L.
        • Di Marzo V.
        Non-CB1, non-CB2 receptors for endocannabinoids, plant cannabinoids, and synthetic cannabimimetics: Focus on G-protein-coupled receptors and transient receptor potential channels.
        J Neuroimmune Pharmacol. 2010; 5: 103-121
        • Morgan N.H.
        • Stanford I.M.
        • Woodhall G.L.
        Functional CB2 type cannabinoid receptors at CNS synapses.
        Neuropharmacology. 2009; 57: 356-368
        • Duff G.
        • Argaw A.
        • Cecyre B.
        • Cherif H.
        • Tea N.
        • Zabouri N.
        • et al.
        Cannabinoid receptor CB2 modulates axon guidance.
        PLoS One. 2013; 8: e70849
        • El Andaloussi-Lilja J.
        • Lundqvist J.
        • Forsby A.
        TRPV1 expression and activity during retinoic acid-induced neuronal differentiation.
        Neurochem Int. 2009; 55: 768-774
        • Devane W.A.
        • Hanus L.
        • Breuer A.
        • Pertwee R.G.
        • Stevenson L.A.
        • Griffin G.
        • et al.
        Isolation and structure of a brain constituent that binds to the cannabinoid receptor.
        Science. 1992; 258: 1946-1949
        • Stella N.
        • Schweitzer P.
        • Piomelli D.
        A second endogenous cannabinoid that modulates long-term potentiation.
        Nature. 1997; 388: 773-778
        • Gokoh M.
        • Kishimoto S.
        • Oka S.
        • Mori M.
        • Waku K.
        • Ishima Y.
        • Sugiura T.
        2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces rapid actin polymerization in HL-60 cells differentiated into macrophage-like cells.
        Biochem J. 2005; 386: 583-589
        • Katona I.
        • Sperlágh B.
        • Maglóczky Z.
        • Sántha E.
        • Kőfalvi A.
        • Czirjak S.
        • et al.
        GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus.
        Neuroscience. 2000; 100: 797-804
        • Katona I.
        • Sperlágh B.
        • Sík A.
        • Kőfalvi A.
        • Vizi E.S.
        • Mackie K.
        • Freund T.F.
        Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons.
        J Neurosci. 1999; 19: 4544-4558
        • Katona I.
        • Urbán G.M.
        • Wallace M.
        • Ledent C.
        • Jung K.M.
        • Piomelli D.
        • et al.
        Molecular composition of the endocannabinoid system at glutamatergic synapses.
        J Neurosci. 2006; 26: 5628-5637
        • Kano M.
        • Ohno-Shosaku T.
        • Hashimotodani Y.
        • Uchigashima M.
        • Watanabe M.
        Endocannabinoid-mediated control of synaptic transmission.
        Physiol Rev. 2009; 89: 309-380
        • Piet R.
        • Garenne A.
        • Farrugia F.
        • Le Masson G.
        • Marsicano G.
        • Chavis P.
        • Manzoni O.J.
        State-dependent, bidirectional modulation of neural network activity by endocannabinoids.
        J Neurosci. 2011; 31: 16591-16596
        • Lastres-Becker I.
        • De Miguel R.
        • Fernandez-Ruiz J.J.
        The endocannabinoid system and Huntingtonʼs disease.
        Curr Drug Targets CNS Neurol Disord. 2003; 2: 335-347
        • Laviolette S.R.
        • Grace A.A.
        The roles of cannabinoid and dopamine receptor systems in neural emotional learning circuits: Implications for schizophrenia and addiction.
        Cell Mol Life Sci. 2006; 63: 1597-1613
        • DʼAddario C.
        • Micioni Di Bonaventura M.V.
        • Pucci M.
        • Romano A.
        • Gaetani S.
        • Ciccocioppo R.
        • et al.
        Endocannabinoid signaling and food addiction.
        Neurosci Biobehav Rev. 2014; 47: 203-224
        • Katona I.
        • Freund T.F.
        Endocannabinoid signaling as a synaptic circuit breaker in neurological disease.
        Nat Med. 2008; 14: 923-930
        • Leterrier C.
        • Laine J.
        • Darmon M.
        • Boudin H.
        • Rossier J.
        • Lenkei Z.
        Constitutive activation drives compartment-selective endocytosis and axonal targeting of type 1 cannabinoid receptors.
        J Neurosci. 2006; 26: 3141-3153
        • De Petrocellis L.
        • Ligresti A.
        • Moriello A.S.
        • Allara M.
        • Bisogno T.
        • Petrosino S.
        • et al.
        Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes.
        Br J Pharmacol. 2011; 163: 1479-1494
        • Thomas A.
        • Stevenson L.A.
        • Wease K.N.
        • Price M.R.
        • Baillie G.
        • Ross R.A.
        • Pertwee R.G.
        Evidence that the plant cannabinoid Delta9-tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor antagonist.
        Br J Pharmacol. 2005; 146: 917-926
        • McPartland J.M.
        • Duncan M.
        • Di Marzo V.
        • Pertwee R.G.
        Are cannabidiol and Delta(9)-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review.
        Br J Pharmacol. 2015; 172: 737-753
        • Bisogno T.
        • Hanus L.
        • De Petrocellis L.
        • Tchilibon S.
        • Ponde D.E.
        • Brandi I.
        • et al.
        Molecular targets for cannabidiol and its synthetic analogues: Effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide.
        Br J Pharmacol. 2001; 134: 845-852
        • Berrendero F.
        • Garcia-Gil L.
        • Hernandez M.L.
        • Romero J.
        • Cebeira M.
        • de Miguel R.
        • et al.
        Localization of mRNA expression and activation of signal transduction mechanisms for cannabinoid receptor in rat brain during fetal development.
        Development. 1998; 125: 3179-3188
        • Harkany T.
        • Guzman M.
        • Galve-Roperh I.
        • Berghuis P.
        • Devi L.A.
        • Mackie K.
        The emerging functions of endocannabinoid signaling during CNS development.
        Trends Pharmacol Sci. 2007; 28: 83-92
        • Maccarrone M.
        • Guzman M.
        • Mackie K.
        • Doherty P.
        • Harkany T.
        Programming of neural cells by (endo)cannabinoids: From physiological rules to emerging therapies.
        Nat Rev Neurosci. 2014; 15: 786-801
        • Fernandez-Ruiz J.J.
        • Berrendero F.
        • Hernandez M.L.
        • Romero J.
        • Ramos J.A.
        Role of endocannabinoids in brain development.
        Life Sci. 1999; 65: 725-736
        • Bisogno T.
        • Howell F.
        • Williams G.
        • Minassi A.
        • Cascio M.G.
        • Ligresti A.
        • et al.
        Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain.
        J Cell Biol. 2003; 163: 463-468
        • Simon G.M.
        • Cravatt B.F.
        Anandamide biosynthesis catalyzed by the phosphodiesterase GDE1 and detection of glycerophospho-N-acyl ethanolamine precursors in mouse brain.
        J Biol Chem. 2008; 283: 9341-9349
        • Keimpema E.
        • Barabas K.
        • Morozov Y.M.
        • Tortoriello G.
        • Torii M.
        • Cameron G.
        • et al.
        Differential subcellular recruitment of monoacylglycerol lipase generates spatial specificity of 2-arachidonoyl glycerol signaling during axonal pathfinding.
        J Neurosci. 2010; 30: 13992-14007
        • Talens-Visconti R.
        • Sanchez-Vera I.
        • Kostic J.
        • Perez-Arago M.A.
        • Erceg S.
        • Stojkovic M.
        • Guerri C.
        Neural differentiation from human embryonic stem cells as a tool to study early brain development and the neuroteratogenic effects of ethanol.
        Stem Cells Dev. 2011; 20: 327-339
        • Dinh T.P.
        • Freund T.F.
        • Piomelli D.
        A role for monoglyceride lipase in 2-arachidonoylglycerol inactivation.
        Chem Phys Lipids. 2002; 121: 149-158
        • Cravatt B.F.
        • Giang D.K.
        • Mayfield S.P.
        • Boger D.L.
        • Lerner R.A.
        • Gilula N.B.
        Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.
        Nature. 1996; 384: 83-87
        • Marsicano G.
        • Goodenough S.
        • Monory K.
        • Hermann H.
        • Eder M.
        • Cannich A.
        • et al.
        CB1 cannabinoid receptors and on-demand defense against excitotoxicity.
        Science. 2003; 302: 84-88
        • Jin K.
        • Xie L.
        • Kim S.H.
        • Parmentier-Batteur S.
        • Sun Y.
        • Mao X.O.
        • et al.
        Defective adult neurogenesis in CB1 cannabinoid receptor knockout mice.
        Mol Pharmacol. 2004; 66: 204-208
        • Guzman M.
        • Sanchez C.
        • Galve-Roperh I.
        Control of the cell survival/death decision by cannabinoids.
        J Mol Med (Berl). 2001; 78: 613-625
        • Rueda D.
        • Navarro B.
        • Martinez-Serrano A.
        • Guzman M.
        • Galve-Roperh I.
        The endocannabinoid anandamide inhibits neuronal progenitor cell differentiation through attenuation of the Rap1/B-Raf/ERK pathway.
        J Biol Chem. 2002; 277: 46645-46650
        • Alpár A.
        • Tortoriello G.
        • Calvigioni D.
        • Niphakis M.J.
        • Milenkovic I.
        • Bakker J.
        • et al.
        Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling.
        Nat Commun. 2014; 5: 4421
        • Berghuis P.
        • Rajnicek A.M.
        • Morozov Y.M.
        • Ross R.A.
        • Mulder J.
        • Urban G.M.
        • et al.
        Hardwiring the brain: Endocannabinoids shape neuronal connectivity.
        Science. 2007; 316: 1212-1216
        • Vitalis T.
        • Laine J.
        • Simon A.
        • Roland A.
        • Leterrier C.
        • Lenkei Z.
        The type 1 cannabinoid receptor is highly expressed in embryonic cortical projection neurons and negatively regulates neurite growth in vitro.
        Eur J Neurosci. 2008; 28: 1705-1718
        • Rodriguez de Fonseca F.
        • Cebeira M.
        • Fernandez-Ruiz J.J.
        • Navarro M.
        • Ramos J.A.
        Effects of pre- and perinatal exposure to hashish extracts on the ontogeny of brain dopaminergic neurons.
        Neuroscience. 1991; 43: 713-723
        • Mirmiran M.
        • Swaab D.F.
        Influence of drugs on brain neurotransmitters and behavioral states during development.
        Dev Pharmacol Ther. 1987; 10: 377-384
        • Spano M.S.
        • Ellgren M.
        • Wang X.
        • Hurd Y.L.
        Prenatal cannabis exposure increases heroin seeking with allostatic changes in limbic enkephalin systems in adulthood.
        Biol Psychiatry. 2007; 61: 554-563
        • DiNieri J.A.
        • Wang X.
        • Szutorisz H.
        • Spano S.M.
        • Kaur J.
        • Casaccia P.
        • et al.
        Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring.
        Biol Psychiatry. 2011; 70: 763-769
        • Gardner E.
        Cannabinoid interaction with brain reward systems - The neurobiological basis of cannabinoid abuse.
        in: Bartke A. Neurobiology and Neurophysiology of Cannabinoids Biochemistry and Physiology of Substance Abuse. CRC Press, Boca Raton, FL1992: 275-335
        • Levenson S.F.
        Effects of delta-tetrahydrocannabinol on ventral tegmental A10 dopamine neurons in the rat.
        Soc Neurosci Abstr. 1990; 16: 1100
        • Chen J.P.
        • Paredes W.
        • Li J.
        • Smith D.
        • Lowinson J.
        • Gardner E.L.
        Delta 9-tetrahydrocannabinol produces naloxone-blockable enhancement of presynaptic basal dopamine efflux in nucleus accumbens of conscious, freely-moving rats as measured by intracerebral microdialysis.
        Psychopharmacology (Berl). 1990; 102: 156-162
        • Navarro M.
        • de Miguel R.
        • Rodriguez de Fonseca F.
        • Ramos J.A.
        • Fernandez-Ruiz J.J.
        Perinatal cannabinoid exposure modifies the sociosexual approach behavior and the mesolimbic dopaminergic activity of adult male rats.
        Behav Brain Res. 1996; 75: 91-98
        • Herkenham M.
        • Lynn A.B.
        • Little M.D.
        • Johnson M.R.
        • Melvin L.S.
        • de Costa B.R.
        • Rice K.C.
        Cannabinoid receptor localization in brain.
        Proc Natl Acad Sci U S A. 1990; 87: 1932-1936
        • Mailleux P.
        • Vanderhaeghen J.J.
        Localization of cannabinoid receptor in the human developing and adult basal ganglia. Higher levels in the striatonigral neurons.
        Neurosci Lett. 1992; 148: 173-176
        • Wang X.
        • Dow-Edwards D.
        • Keller E.
        • Hurd Y.L.
        Preferential limbic expression of the cannabinoid receptor mRNA in the human fetal brain.
        Neuroscience. 2003; 118: 681-694
        • Wang X.
        • Dow-Edwards D.
        • Anderson V.
        • Minkoff H.
        • Hurd Y.L.
        In utero marijuana exposure associated with abnormal amygdala dopamine D2 gene expression in the human fetus.
        Biol Psychiatry. 2004; 56: 909-915
        • Goldschmidt L.
        • Day N.L.
        • Richardson G.A.
        Effects of prenatal marijuana exposure on child behavior problems at age 10.
        Neurotoxicol Teratol. 2000; 22: 325-336
        • Leech S.L.
        • Richardson G.A.
        • Goldschmidt L.
        • Day N.L.
        Prenatal substance exposure: Effects on attention and impulsivity of 6-year-olds.
        Neurotoxicol Teratol. 1999; 21: 109-118
        • Richardson G.A.
        • Ryan C.
        • Willford J.
        • Day N.L.
        • Goldschmidt L.
        Prenatal alcohol and marijuana exposure: Effects on neuropsychological outcomes at 10 years.
        Neurotoxicol Teratol. 2002; 24: 309-320
        • Whalen P.J.
        • Shin L.M.
        • Somerville L.H.
        • McLean A.A.
        • Kim H.
        Functional neuroimaging studies of the amygdala in depression.
        Semin Clin Neuropsychiatry. 2002; 7: 234-242
        • Gray K.A.
        • Day N.L.
        • Leech S.
        • Richardson G.A.
        Prenatal marijuana exposure: Effect on child depressive symptoms at ten years of age.
        Neurotoxicol Teratol. 2005; 27: 439-448
        • Chen K.
        • Kandel D.B.
        Predictors of cessation of marijuana use: An event history analysis.
        Drug Alcohol Depend. 1998; 50: 109-121
        • Navarro M.
        • Rubio P.
        • de Fonseca F.R.
        Behavioural consequences of maternal exposure to natural cannabinoids in rats.
        Psychopharmacology (Berl). 1995; 122: 1-14
        • Navarro M.
        • Rodriguez de Fonseca F.
        • Hernandez M.L.
        • Ramos J.A.
        • Fernandez-Ruiz J.J.
        Motor behavior and nigrostriatal dopaminergic activity in adult rats perinatally exposed to cannabinoids.
        Pharmacol Biochem Behav. 1994; 47: 47-58
        • Corchero J.
        • Manzanares J.
        • Fuentes J.A.
        Cannabinoid/opioid crosstalk in the central nervous system.
        Crit Rev Neurobiol. 2004; 16: 159-172
        • Mohammadi M.
        • Nasehi M.
        • Zarrindast M.R.
        Modulation of the effects of the cannabinoid agonist, ACPA, on spatial and non-spatial novelty detection in mice by dopamine D1 receptor drugs infused into the basolateral amygdala.
        Behav Brain Res. 2015; 280: 36-44
        • Zhang H.Y.
        • Gao M.
        • Liu Q.R.
        • Bi G.H.
        • Li X.
        • Yang H.J.
        • et al.
        Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice.
        Proc Natl Acad Sci U S A. 2014; 111: E5007-E5015
        • Bodnar R.J.
        • Klein G.E.
        Endogenous opiates and behavior: 2003.
        Peptides. 2004; 25: 2205-2256
        • Herz A.
        Opioid reward mechanisms: A key role in drug abuse?.
        Can J Physiol Pharmacol. 1998; 76: 252-258
        • Vigano D.
        • Rubino T.
        • Parolaro D.
        Molecular and cellular basis of cannabinoid and opioid interactions.
        Pharmacol Biochem Behav. 2005; 81: 360-368
        • Ellgren M.
        • Spano S.M.
        • Hurd Y.L.
        Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats.
        Neuropsychopharmacology. 2007; 32: 607-615
        • Ghozland S.
        • Matthes H.W.
        • Simonin F.
        • Filliol D.
        • Kieffer B.L.
        • Maldonado R.
        Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors.
        J Neurosci. 2002; 22: 1146-1154
        • Valverde O.
        • Noble F.
        • Beslot F.
        • Dauge V.
        • Fournie-Zaluski M.C.
        • Roques B.P.
        Delta9-tetrahydrocannabinol releases and facilitates the effects of endogenous enkephalins: Reduction in morphine withdrawal syndrome without change in rewarding effect.
        Eur J Neurosci. 13. ), 2001: 1816-1824
        • Solinas M.
        • Zangen A.
        • Thiriet N.
        • Goldberg S.R.
        Beta-endorphin elevations in the ventral tegmental area regulate the discriminative effects of Delta-9-tetrahydrocannabinol.
        Eur J Neurosci. 2004; 19: 3183-3192
        • Ledent C.
        • Valverde O.
        • Cossu G.
        • Petitet F.
        • Aubert J.F.
        • Beslot F.
        • et al.
        Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice.
        Science. 1999; 283: 401-404
        • Cossu G.
        • Ledent C.
        • Fattore L.
        • Imperato A.
        • Bohme G.A.
        • Parmentier M.
        • Fratta W.
        Cannabinoid CB1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse.
        Behav Brain Res. 2001; 118: 61-65
        • De Vries T.J.
        • Homberg J.R.
        • Binnekade R.
        • Raaso H.
        • Schoffelmeer A.N.
        Cannabinoid modulation of the reinforcing and motivational properties of heroin and heroin-associated cues in rats.
        Psychopharmacology (Berl). 2003; 168: 164-169
        • Wang X.
        • Dow-Edwards D.
        • Anderson V.
        • Minkoff H.
        • Hurd Y.L.
        Discrete opioid gene expression impairment in the human fetal brain associated with maternal marijuana use.
        Pharmacogenomics J. 2006; 6: 255-264
        • Skoubis P.D.
        • Lam H.A.
        • Shoblock J.
        • Narayanan S.
        • Maidment N.T.
        Endogenous enkephalins, not endorphins, modulate basal hedonic state in mice.
        Eur J Neurosci. 2005; 21: 1379-1384
        • Kelley A.E.
        Ventral striatal control of appetitive motivation: Role in ingestive behavior and reward-related learning.
        Neurosci Biobehav Rev. 2004; 27: 765-776
        • Goldschmidt L.
        • Richardson G.A.
        • Cornelius M.D.
        • Day N.L.
        Prenatal marijuana and alcohol exposure and academic achievement at age 10.
        Neurotoxicol Teratol. 2004; 26: 521-532
        • Fried P.A.
        Behavioral outcomes in preschool and school-age children exposed prenatally to marijuana: A review and speculative interpretation.
        NIDA Res Monogr. 1996; 164: 242-260
        • Kandel D.B.
        Does marijuana use cause the use of other drugs?.
        JAMA. 2003; 289: 482-483
        • Bandstra E.S.
        • Morrow C.E.
        • Anthony J.C.
        • Accornero V.H.
        • Fried P.A.
        Longitudinal investigation of task persistence and sustained attention in children with prenatal cocaine exposure.
        Neurotoxicol Teratol. 2001; 23: 545-559
        • Gonzalez S.
        • Valenti M.
        • de Miguel R.
        • Fezza F.
        • Fernandez-Ruiz J.
        • Di Marzo V.
        • Ramos J.A.
        Changes in endocannabinoid contents in reward-related brain regions of alcohol-exposed rats, and their possible relevance to alcohol relapse.
        Br J Pharmacol. 2004; 143: 455-464
        • Ortiz S.
        • Oliva J.M.
        • Perez-Rial S.
        • Palomo T.
        • Manzanares J.
        Chronic ethanol consumption regulates cannabinoid CB1 receptor gene expression in selected regions of rat brain.
        Alcohol Alcohol. 2004; 39: 88-92
        • Pietrzak B.
        • Dunaj A.
        • Piatkowska K.
        [The role of the cannabinoid system in the pathogenesis and treatment of alcohol dependence].
        Postepy Hig Med Dosw (Online). 2011; 65: 606-615
        • Stringer R.L.
        • Laufer B.I.
        • Kleiber M.L.
        • Singh S.M.
        Reduced expression of brain cannabinoid receptor 1 (Cnr1) is coupled with an increased complementary micro-RNA (miR-26b) in a mouse model of fetal alcohol spectrum disorders.
        Clin Epigenetics. 2013; 5: 14
        • Subbanna S.
        • Psychoyos D.
        • Xie S.
        • Basavarajappa B.S.
        Postnatal ethanol exposure alters levels of 2-arachidonylglycerol-metabolizing enzymes and pharmacological inhibition of monoacylglycerol lipase does not cause neurodegeneration in neonatal mice.
        J Neurochem. 2015; 134: 276-287
        • Dasmahapatra A.K.
        • Khan I.A.
        Gene-specific disruption of endocannabinoid receptor 1 (cnr1a) by ethanol probably leads to the development of fetal alcohol spectrum disorder (FASD) phenotypes in Japanese rice fish (Oryzias latipes) embryogenesis.
        Comp Biochem Physiol C Toxicol Pharmacol. 2015; 167: 90-100
        • Subbanna S.
        • Shivakumar M.
        • Psychoyos D.
        • Xie S.
        • Basavarajappa B.S.
        Anandamide-CB1 receptor signaling contributes to postnatal ethanol-induced neonatal neurodegeneration, adult synaptic, and memory deficits.
        J Neurosci. 2013; 33: 6350-6366
        • Faden V.B.
        • Graubard B.I.
        Maternal substance use during pregnancy and developmental outcome at age three.
        J Subst Abuse. 2000; 12: 329-340
        • Corradi R.B.
        Schizophrenia as a human process.
        J Am Acad Psychoanal Dyn Psychiatry. 2011; 39: 717-736
        • Bossong M.G.
        • Niesink R.J.
        Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia.
        Prog Neurobiol. 2010; 92: 370-385
        • Elvevag B.
        • Goldberg T.E.
        Cognitive impairment in schizophrenia is the core of the disorder.
        Crit Rev Neurobiol. 2000; 14: 1-21
        • Spear L.P.
        The adolescent brain and age-related behavioral manifestations.
        Neurosci Biobehav Rev. 2000; 24: 417-463
        • Spear L.P.
        • Brake S.C.
        Periadolescence: Age-dependent behavior and psychopharmacological responsivity in rats.
        Dev Psychobiol. 1983; 16: 83-109
        • Luna B.
        • Garver K.E.
        • Urban T.A.
        • Lazar N.A.
        • Sweeney J.A.
        Maturation of cognitive processes from late childhood to adulthood.
        Child Dev. 2004; 75: 1357-1372
        • Kalsbeek A.
        • Voorn P.
        • Buijs R.M.
        • Pool C.W.
        • Uylings H.B.
        Development of the dopaminergic innervation in the prefrontal cortex of the rat.
        J Comp Neurol. 1988; 269: 58-72
        • Rosenberg D.R.
        • Lewis D.A.
        Changes in the dopaminergic innervation of monkey prefrontal cortex during late postnatal development: A tyrosine hydroxylase immunohistochemical study.
        Biol Psychiatry. 1994; 36: 272-277
        • Teicher M.H.
        • Barber N.I.
        • Gelbard H.A.
        • Gallitano A.L.
        • Campbell A.
        • Marsh E.
        • Baldessarini R.J.
        Developmental differences in acute nigrostriatal and mesocorticolimbic system response to haloperidol.
        Neuropsychopharmacology. 1993; 9: 147-156
        • Bourgeois J.P.
        • Goldman-Rakic P.S.
        • Rakic P.
        Synaptogenesis in the prefrontal cortex of rhesus monkeys.
        Cereb Cortex. 1994; 4: 78-96
        • Freund T.F.
        • Buzsáki G.
        Interneurons of the hippocampus.
        Hippocampus. 1996; 6: 347-470
        • Cruz D.A.
        • Weaver C.L.
        • Lovallo E.M.
        • Melchitzky D.S.
        • Lewis D.A.
        Selective alterations in postsynaptic markers of chandelier cell inputs to cortical pyramidal neurons in subjects with schizophrenia.
        Neuropsychopharmacology. 2009; 34: 2112-2124
        • Behrens M.M.
        • Sejnowski T.J.
        Does schizophrenia arise from oxidative dysregulation of parvalbumin-interneurons in the developing cortex?.
        Neuropharmacology. 2009; 57: 193-200
        • Andreasson S.
        • Allebeck P.
        • Engstrom A.
        • Rydberg U.
        Cannabis and schizophrenia. A longitudinal study of Swedish conscripts.
        Lancet. 1987; 2: 1483-1486
        • Arseneault L.
        • Cannon M.
        • Poulton R.
        • Murray R.
        • Caspi A.
        • Moffitt T.E.
        Cannabis use in adolescence and risk for adult psychosis: Longitudinal prospective study.
        BMJ. 2002; 325: 1212-1213
        • van Os J.
        • Bak M.
        • Hanssen M.
        • Bijl R.V.
        • de Graaf R.
        • Verdoux H.
        Cannabis use and psychosis: A longitudinal population-based study.
        Am J Epidemiol. 2002; 156: 319-327
        • Zammit S.
        • Allebeck P.
        • Andreasson S.
        • Lundberg I.
        • Lewis G.
        Self reported cannabis use as a risk factor for schizophrenia in Swedish conscripts of 1969: Historical cohort study.
        BMJ. 2002; 325: 1199
        • Estrada G.
        • Fatjo-Vilas M.
        • Munoz M.J.
        • Pulido G.
        • Minano M.J.
        • Toledo E.
        • et al.
        Cannabis use and age at onset of psychosis: Further evidence of interaction with COMT Val158Met polymorphism.
        Acta Psychiatr Scand. 2011; 123: 485-492
        • Hashimoto T.
        • Arion D.
        • Unger T.
        • Maldonado-Aviles J.G.
        • Morris H.M.
        • Volk D.W.
        • et al.
        Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia.
        Mol Psychiatry. 2008; 13: 147-161
        • Zamberletti E.
        • Beggiato S.
        • Steardo Jr, L.
        • Prini P.
        • Antonelli T.
        • Ferraro L.
        • et al.
        Alterations of prefrontal cortex GABAergic transmission in the complex psychotic-like phenotype induced by adolescent delta-9-tetrahydrocannabinol exposure in rats.
        Neurobiol Dis. 2014; 63: 35-47
        • Prescot A.P.
        • Renshaw P.F.
        • Yurgelun-Todd D.A.
        gamma-Amino butyric acid and glutamate abnormalities in adolescent chronic marijuana smokers.
        Drug Alcohol Depend. 2013; 129: 232-239
        • Schizophrenia Working Group of the Psychiatric Genomics Consortium
        Biological insights from 108 schizophrenia-associated genetic loci.
        Nature. 2014; 511: 421-427
        • Morita Y.
        • Ujike H.
        • Tanaka Y.
        • Uchida N.
        • Nomura A.
        • Ohtani K.
        • et al.
        A nonsynonymous polymorphism in the human fatty acid amide hydrolase gene did not associate with either methamphetamine dependence or schizophrenia.
        Neurosci Lett. 2005; 376: 182-187
        • Ujike H.
        • Takaki M.
        • Nakata K.
        • Tanaka Y.
        • Takeda T.
        • Kodama M.
        • et al.
        CNR1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia.
        Mol Psychiatry. 2002; 7: 515-518
        • Krebs M.O.
        • Morvan Y.
        • Jay T.
        • Gaillard R.
        • Kebir O.
        Psychotomimetic effects at initiation of cannabis use are associated with cannabinoid receptor 1 (CNR1) variants in healthy students.
        Mol Psychiatry. 2014; 19: 402-403
        • Bromberg K.D.
        • Maʼayan A.
        • Neves S.R.
        • Iyengar R.
        Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth.
        Science. 2008; 320: 903-909
        • Di Forti M.
        • Iyegbe C.
        • Sallis H.
        • Kolliakou A.
        • Falcone M.A.
        • Paparelli A.
        • et al.
        Confirmation that the AKT1 (rs2494732) genotype influences the risk of psychosis in cannabis users.
        Biol Psychiatry. 2012; 72: 811-816
        • Davis K.L.
        • Kahn R.S.
        • Ko G.
        • Davidson M.
        Dopamine in schizophrenia: A review and reconceptualization.
        Am J Psychiatry. 1991; 148: 1474-1486
        • Saez T.M.
        • Aronne M.P.
        • Caltana L.
        • Brusco A.H.
        Prenatal exposure to the CB1 and CB2 cannabinoid receptor agonist WIN 55, 212-2 alters migration of early-born glutamatergic neurons and GABAergic interneurons in the rat cerebral cortex.
        J Neurochem. 2014; 129: 637-648
        • Scherr M.
        • Hamann M.
        • Schwerthoffer D.
        • Frobose T.
        • Vukovich R.
        • Pitschel-Walz G.
        • Bäuml J.
        Environmental risk factors and their impact on the age of onset of schizophrenia: Comparing familial to non-familial schizophrenia.
        Nord J Psychiatry. 2012; 66: 107-114
        • Rethelyi J.M.
        • Benkovits J.
        • Bitter I.
        Genes and environments in schizophrenia: The different pieces of a manifold puzzle.
        Neurosci Biobehav Rev. 2013; 37: 2424-2437
        • Cannon M.
        • Clarke M.C.
        Risk for schizophrenia--broadening the concepts, pushing back the boundaries.
        Schizophr Res. 2005; 79: 5-13
        • Magloczky Z.
        • Freund T.F.
        Impaired and repaired inhibitory circuits in the epileptic human hippocampus.
        Trends Neurosci. 2005; 28: 334-340
        • Hill T.D.
        • Cascio M.G.
        • Romano B.
        • Duncan M.
        • Pertwee R.G.
        • Williams C.M.
        • et al.
        Cannabidivarin-rich cannabis extracts are anticonvulsant in mouse and rat via a CB1 receptor-independent mechanism.
        Br J Pharmacol. 2013; 170: 679-692
        • Jones N.A.
        • Glyn S.E.
        • Akiyama S.
        • Hill T.D.
        • Hill A.J.
        • Weston S.E.
        • et al.
        Cannabidiol exerts anti-convulsant effects in animal models of temporal lobe and partial seizures.
        Seizure. 2012; 21: 344-352
        • Hofmann M.E.
        • Frazier C.J.
        Marijuana, endocannabinoids, and epilepsy: Potential and challenges for improved therapeutic intervention.
        Exp Neurol. 2013; 244: 43-50
        • Chesher G.B.
        • Jackson D.M.
        Anticonvulsant effects of cannabinoids in mice: Drug interactions within cannabinoids and cannabinoid interactions with phenytoin.
        Psychopharmacologia. 1974; 37: 255-264
        • Hegde M.
        • Santos-Sanchez C.
        • Hess C.P.
        • Kabir A.A.
        • Garcia P.A.
        Seizure exacerbation in two patients with focal epilepsy following marijuana cessation.
        Epilepsy Behav. 2012; 25: 563-566
        • Cherubini E.
        • Gaiarsa J.L.
        • Ben-Ari Y.
        GABA: An excitatory transmitter in early postnatal life.
        Trends Neurosci. 1991; 14: 515-519
        • Leinekugel X.
        • Khazipov R.
        • Cannon R.
        • Hirase H.
        • Ben-Ari Y.
        • Buzsaki G.
        Correlated bursts of activity in the neonatal hippocampus in vivo.
        Science. 2002; 296: 2049-2052
        • McLean H.A.
        • Caillard O.
        • Khazipov R.
        • Ben-Ari Y.
        • Gaiarsa J.L.
        Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus.
        J Neurophysiol. 1996; 76: 1036-1046
        • Bernard C.
        • Milh M.
        • Morozov Y.M.
        • Ben-Ari Y.
        • Freund T.F.
        • Gozlan H.
        Altering cannabinoid signaling during development disrupts neuronal activity.
        Proc Natl Acad Sci U S A. 2005; 102: 9388-9393
        • Clancy B.
        • Darlington R.B.
        • Finlay B.L.
        Translating developmental time across mammalian species.
        Neuroscience. 2001; 105: 7-17
        • Mereu G.
        • Fa M.
        • Ferraro L.
        • Cagiano R.
        • Antonelli T.
        • Tattoli M.
        • et al.
        Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release.
        Proc Natl Acad Sci U S A. 2003; 100: 4915-4920
        • Szasz A.
        • Barna B.
        • Szupera Z.
        • De Visscher G.
        • Galbacs Z.
        • Kirsch-Volders M.
        • Szente M.
        Chronic low-dose maternal exposure to methylmercury enhances epileptogenicity in developing rats.
        Int J Dev Neurosci. 1999; 17: 733-742
        • Marsh D.O.
        • Clarkson T.W.
        • Cox C.
        • Myers G.J.
        • Amin-Zaki L.
        • Al-Tikriti S.
        Fetal methylmercury poisoning. Relationship between concentration in single strands of maternal hair and child effects.
        Arch Neurol. 1987; 44: 1017-1022
        • Azadi A.
        • Dildy G.A. 3rd
        Universal screening for substance abuse at the time of parturition.
        Am J Obstet Gynecol. 2008; 198: e30-e32
        • Ostrea Jr, E.M.
        • Brady M.
        • Gause S.
        • Raymundo A.L.
        • Stevens M.
        Drug screening of newborns by meconium analysis: A large-scale, prospective, epidemiologic study.
        Pediatrics. 1992; 89: 107-113
        • Velisek L.
        • Stanton P.K.
        • Moshe S.L.
        • Vathy I.
        Prenatal morphine exposure enhances seizure susceptibility but suppresses long-term potentiation in the limbic system of adult male rats.
        Brain Res. 2000; 869: 186-193
        • Baraban S.C.
        • McCarthy E.B.
        • Schwartzkroin P.A.
        Evidence for increased seizure susceptibility in rats exposed to cocaine in utero.
        Brain Res Dev Brain Res. 1997; 102: 189-196
        • Baraban S.C.
        • Schwartzkroin P.A.
        Effects of prenatal cocaine exposure on the developing hippocampus: Intrinsic and synaptic physiology.
        J Neurophysiol. 1997; 77: 126-136
        • Navarro H.A.
        • Howard J.L.
        • Pollard G.T.
        • Carroll F.I.
        Positive allosteric modulation of the human cannabinoid (CB) receptor by RTI-371, a selective inhibitor of the dopamine transporter.
        Br J Pharmacol. 2009; 156: 1178-1184
        • Porter B.E.
        • Jacobson C.
        Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy.
        Epilepsy Behav. 2013; 29: 574-577
        • Cunha J.M.
        • Carlini E.A.
        • Pereira A.E.
        • Ramos O.L.
        • Pimentel C.
        • Gagliardi R.
        • et al.
        Chronic administration of cannabidiol to healthy volunteers and epileptic patients.
        Pharmacology. 1980; 21: 175-185
        • Mechoulam R.
        • Parker L.A.
        • Gallily R.
        Cannabidiol: An overview of some pharmacological aspects.
        J Clin Pharmacol. 2002; 42: 11S-19S
        • Elphick M.R.
        • Egertova M.
        The neurobiology and evolution of cannabinoid signalling.
        Philos Trans R Soc Lond B Biol Sci. 2001; 356: 381-408
        • Kandel D.B.
        Stages and Pathways of Drug Involvement: Examining the Gateway Hypothesis.
        Cambridge University Press, New York2002
        • Kandel D.B.
        Marijuana users in young adulthood.
        Arch Gen Psychiatry. 1984; 41: 200-209
        • Aguado T.
        • Monory K.
        • Palazuelos J.
        • Stella N.
        • Cravatt B.
        • Lutz B.
        • et al.
        The endocannabinoid system drives neural progenitor proliferation.
        FASEB J. 2005; 19: 1704-1706
        • Aguado T.
        • Palazuelos J.
        • Monory K.
        • Stella N.
        • Cravatt B.
        • Lutz B.
        • et al.
        The endocannabinoid system promotes astroglial differentiation by acting on neural progenitor cells.
        J Neurosci. 2006; 26: 1551-1561
        • Palazuelos J.
        • Ortega Z.
        • Diaz-Alonso J.
        • Guzman M.
        • Galve-Roperh I.
        CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling.
        J Biol Chem. 2012; 287: 1198-1209
        • Galve-Roperh I.
        • Chiurchiu V.
        • Diaz-Alonso J.
        • Bari M.
        • Guzman M.
        • Maccarrone M.
        Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation.
        Prog Lipid Res. 2013; 52: 633-650