Advertisement

Intrinsic Visual-Motor Synchrony Correlates With Social Deficits in Autism

  • Mary Beth Nebel
    Correspondence
    Address correspondence to: Mary Beth Nebel, Kennedy Krieger Institute, Center for Neurodevelopmental and Imaging Research, 716 N Broadway, Suite 328, Baltimore, MD 21205
    Affiliations
    Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
    Search for articles by this author
  • Ani Eloyan
    Affiliations
    Department of Biostatistics, School of Public Health, Brown University, Providence, Rhode Island
    Search for articles by this author
  • Carrie A. Nettles
    Affiliations
    Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland
    Search for articles by this author
  • Kristie L. Sweeney
    Affiliations
    Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland
    Search for articles by this author
  • Katarina Ament
    Affiliations
    Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland
    Search for articles by this author
  • Rebecca E. Ward
    Affiliations
    Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland
    Search for articles by this author
  • Ann S. Choe
    Affiliations
    The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Providence, Rhode Island

    F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
    Search for articles by this author
  • Anita D. Barber
    Affiliations
    Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
    Search for articles by this author
  • James J. Pekar
    Affiliations
    The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Providence, Rhode Island

    F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
    Search for articles by this author
  • Stewart H. Mostofsky
    Affiliations
    Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland

    Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
    Search for articles by this author
Published:September 03, 2015DOI:https://doi.org/10.1016/j.biopsych.2015.08.029

      Abstract

      Background

      Imitation, which is impaired in children with autism spectrum disorder (ASD) and critically depends on the integration of visual input with motor output, likely impacts both motor and social skill acquisition in children with ASD; however, it is unclear what brain mechanisms contribute to this impairment. Children with ASD also exhibit what appears to be an ASD-specific bias against using visual feedback during motor learning. Does the temporal congruity of intrinsic activity, or functional connectivity, between motor and visual brain regions contribute to ASD-associated deficits in imitation, motor, and social skills?

      Methods

      We acquired resting-state functional magnetic resonance imaging scans from 100 8- to 12-year-old children (50 ASD). Group independent component analysis was used to estimate functional connectivity between visual and motor systems. Brain-behavior relationships were assessed by regressing functional connectivity measures with social deficit severity, imitation, and gesture performance scores.

      Results

      We observed increased intrinsic asynchrony between visual and motor systems in children with ASD and replicated this finding in an independent sample from the Autism Brain Imaging Data Exchange. Moreover, children with more out-of-sync intrinsic visual-motor activity displayed more severe autistic traits, while children with greater intrinsic visual-motor synchrony were better imitators.

      Conclusions

      Our twice replicated findings confirm that visual-motor functional connectivity is disrupted in ASD. Furthermore, the observed temporal incongruity between visual and motor systems, which may reflect diminished integration of visual consequences with motor output, was predictive of the severity of social deficits and may contribute to impaired social-communicative skill development in children with ASD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lai M.-C.
        • Lombardo M.V.
        • Baron-Cohen S.
        Autism.
        Lancet. 2014; 383: 896-910
        • Jones V.
        • Prior D.M.
        Motor imitation abilities and neurological signs in autistic children.
        J Autism Dev Disord. 1985; 15: 37-46
        • Haswell C.C.
        • Izawa J.
        • Dowell L.R.
        • Mostofsky S.H.
        • Shadmehr R.
        Representation of internal models of action in the autistic brain.
        Nat Neurosci. 2009; 12: 970-972
        • Izawa J.
        • Pekny S.E.
        • Marko M.K.
        • Haswell C.C.
        • Shadmehr R.
        • Mostofsky S.H.
        Motor learning relies on integrated sensory inputs in ADHD, but over-selectively on proprioception in autism spectrum conditions.
        Autism Res. 2012; 5: 124-136
        • Marko M.K.
        • Crocetti D.
        • Hulst T.
        • Donchin O.
        • Shadmehr R.
        • Mostofsky S.H.
        Behavioural and neural basis of anomalous motor learning in children with autism.
        Brain. 2015; 138: 784-797
        • Mayes S.D.
        • Calhoun S.L.
        Learning, attention, writing, and processing speed in typical children and children with ADHD, autism, anxiety, depression, and oppositional-defiant disorder.
        Child Neuropsychol. 2007; 13: 469-493
        • Glazebrook C.
        • Gonzalez D.
        • Hansen S.
        • Elliott D.
        The role of vision for online control of manual aiming movements in persons with autism spectrum disorders.
        Autism. 2009; 13: 411-433
        • Dowd A.M.
        • McGinley J.L.
        • Taffe J.R.
        • Rinehart N.J.
        Do planning and visual integration difficulties underpin motor dysfunction in autism? A kinematic study of young children with autism.
        J Autism Dev Disord. 2012; 42: 1539-1548
        • Crippa A.
        • Forti S.
        • Perego P.
        • Molteni M.
        Eye-hand coordination in children with high functioning autism and Asperger’s disorder using a gap-overlap paradigm.
        J Autism Dev Disord. 2013; 43: 841-850
        • Ament K.
        • Mejia A.
        • Buhlman R.
        • Erklin S.
        • Caffo B.
        • Mostofsky S.
        • Wodka E.
        Evidence for specificity of motor impairments in catching and balance in children with autism.
        J Autism Dev Disord. 2015; 45: 742-751
        • Whyatt C.P.
        • Craig C.M.
        Motor skills in children aged 7–10 years, diagnosed with autism spectrum disorder.
        J Autism Dev Disord. 2012; 42: 1799-1809
        • Rodriguez E.
        • George N.
        • Lachaux J.-P.
        • Martinerie J.
        • Renault B.
        • Varela F.J.
        Perception’s shadow: Long-distance synchronization of human brain activity.
        Nature. 1999; 397: 430-433
        • Raichle M.E.
        Two views of brain function.
        Trends Cogn Sci. 2010; 14: 180-190
        • Biswal B.
        • Yetkin F.Z.
        • Haughton V.M.
        • Hyde J.S.
        Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.
        Magn Reson Med. 1995; 34: 537-541
        • Choe A.S.
        • Belegu V.
        • Yoshida S.
        • Joel S.
        • Sadowsky C.L.
        • Smith S.A.
        • et al.
        Extensive neurological recovery from a complete spinal cord injury: A case report and hypothesis on the role of cortical plasticity.
        Front Hum Neurosci. 2013; 7: 290
        • Uddin L.Q.
        • Supekar K.
        • Menon V.
        Reconceptualizing functional brain connectivity in autism from a developmental perspective.
        Front Hum Neurosci. 2013; 7: 458
        • Keown C.L.
        • Shih P.
        • Nair A.
        • Peterson N.
        • Mulvey M.E.
        • Müller R.-A.
        Local functional overconnectivity in posterior brain regions is associated with symptom severity in autism spectrum disorders.
        Cell Rep. 2013; 5: 567-572
        • Uddin L.Q.
        • Supekar K.
        • Lynch C.J.
        • Khouzam A.
        • Phillips J.
        • Feinstein C.
        • et al.
        Salience network-based classification and prediction of symptom severity in children with autism.
        JAMA Psychiatry. 2013; 70: 869-879
        • Courchesne E.
        • Pierce K.
        Why the frontal cortex in autism might be talking only to itself: Local over-connectivity but long-distance disconnection.
        Curr Opin Neurobiol. 2005; 15: 225-230
        • Ye A.X.
        • Leung R.C.
        • Schäfer C.B.
        • Taylor M.J.
        • Doesburg S.M.
        Atypical resting synchrony in autism spectrum disorder.
        Hum Brain Mapp. 2014; 35: 6049-6066
        • Villalobos M.E.
        • Mizuno A.
        • Dahl B.C.
        • Kemmotsu N.
        • Müller R.-A.
        Reduced functional connectivity between V1 and inferior frontal cortex associated with visuomotor performance in autism.
        Neuroimage. 2005; 25: 916-925
        • Libero L.E.
        • Maximo J.O.
        • Deshpande H.D.
        • Klinger L.G.
        • Klinger M.R.
        • Kana R.K.
        The role of mirroring and mentalizing networks in mediating action intentions in autism.
        Mol Autism. 2014; 5: 50
        • Oldfield R.C.
        The assessment and analysis of handedness: The Edinburgh inventory.
        Neuropsychologia. 1971; 9: 97-113
        • Wechsler D.
        Wechsler Intelligence Scale for Children-WISC-IV.
        Psychological Corporation, San Antonio, TX2003
        • Hollingshead A.
        Four factor index of social status.
        Yale University, Department of Sociology, New Haven, CT1975
        • Mottron L.
        Matching strategies in cognitive research with individuals with high-functioning autism: Current practices, instrument biases, and recommendations.
        J Autism Dev Disord. 2004; 34: 19-27
        • American Psychiatric Association
        Diagnostic and Statistical Manual of Mental Disorders.
        4th ed. American Psychiatric Press, Washington, DC1994
        • Lord C.
        • Risi S.
        • Lambrecht L.
        • Cook Jr, E.H.
        • Leventhal B.L.
        • DiLavore P.C.
        • et al.
        The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism.
        J Autism Dev Disord. 2000; 30: 205-223
        • Lord C.
        • Rutter M.
        • Le Couteur A.
        Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders.
        J Autism Dev Disord. 1994; 24: 659-685
        • Welner Z.
        • Reich W.
        • Herjanic B.
        • Jung K.G.
        • Amado H.
        Reliability, validity, and parent-child agreement studies of the Diagnostic Interview for Children and Adolescents (DICA).
        J Am Acad Child Adolesc Psychiatry. 1987; 26: 649-653
        • Constantino J.N.
        • Davis S.A.
        • Todd R.D.
        • Schindler M.K.
        • Gross M.M.
        • Brophy S.L.
        • et al.
        Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the autism diagnostic interview-revised.
        J Autism Dev Disord. 2003; 33: 427-433
        • Constantino J.N.
        • Todd R.D.
        Autistic traits in the general population: A twin study.
        Arch Gen Psychiatry. 2003; 60: 524-530
        • Mostofsky S.H.
        • Dubey P.
        • Jerath V.K.
        • Jansiewicz E.M.
        • Goldberg M.C.
        • Denckla M.B.
        Developmental dyspraxia is not limited to imitation in children with autism spectrum disorders.
        J Int Neuropsychol Soc. 2006; 12: 314-326
        • Dziuk M.A.
        • Larson J.C.G.
        • Apostu A.
        • Mahone E.M.
        • Denckla M.B.
        • Mostofsky S.H.
        Dyspraxia in autism: Association with motor, social, and communicative deficits.
        Dev Med Child Neurol. 2007; 49: 734-739
        • Dowell L.R.
        • Mahone E.M.
        • Mostofsky S.H.
        Associations of postural knowledge and basic motor skill with dyspraxia in autism: Implication for abnormalities in distributed connectivity and motor learning.
        Neuropsychology. 2009; 23: 563-570
        • Power J.D.
        • Barnes K.A.
        • Snyder A.Z.
        • Schlaggar B.L.
        • Petersen S.E.
        Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.
        Neuroimage. 2012; 59: 2142-2154
        • Calhoun V.D.
        • Adali T.
        • Pearlson G.D.
        • Pekar J.J.
        A method for making group inferences from functional MRI data using independent component analysis.
        Hum Brain Mapp. 2001; 14: 140-151
        • Erhardt E.B.
        • Rachakonda S.
        • Bedrick E.J.
        • Allen E.A.
        • Adali T.
        • Calhoun V.D.
        Comparison of multi-subject ICA methods for analysis of fMRI data.
        Hum Brain Mapp. 2011; 32: 2075-2095
        • De Martino F.
        • Gentile F.
        • Esposito F.
        • Balsi M.
        • Di Salle F.
        • Goebel R.
        • Formisano E.
        Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers.
        Neuroimage. 2007; 34: 177-194
        • Koch W.
        • Teipel S.
        • Mueller S.
        • Buerger K.
        • Bokde A.L.W.
        • Hampel H.
        • et al.
        Effects of aging on default mode network activity in resting state fMRI: Does the method of analysis matter?.
        Neuroimage. 2010; 51: 280-287
        • Li Y.-O.
        • Adali T.
        • Calhoun V.D.
        Estimating the number of independent components for functional magnetic resonance imaging data.
        Hum Brain Mapp. 2007; 28: 1251-1266
        • Himberg J.
        • Hyvärinen A.
        • Esposito F.
        Validating the independent components of neuroimaging time series via clustering and visualization.
        Neuroimage. 2004; 22: 1214-1222
        • Bell A.J.
        • Sejnowski T.J.
        An information-maximization approach to blind separation and blind deconvolution.
        Neural Comput. 1995; 7: 1129-1159
        • Calhoun V.D.
        • Adali T.
        • Pearlson G.D.
        • Pekar J.J.
        A method for making group inferences from functional MRI data using independent component analysis.
        Hum Brain Mapp. 2002; 16 (131–131)
        • Eickhoff S.B.
        • Stephan K.E.
        • Mohlberg H.
        • Grefkes C.
        • Fink G.R.
        • Amunts K.
        • Zilles K.
        A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data.
        Neuroimage. 2005; 25: 1325-1335
        • Amunts K.
        • Malikovic A.
        • Mohlberg H.
        • Schormann T.
        • Zilles K.
        Brodmann’s areas 17 and 18 brought into stereotaxic space—where and how variable?.
        Neuroimage. 2000; 11: 66-84
        • Malikovic A.
        • Amunts K.
        • Schleicher A.
        • Mohlberg H.
        • Eickhoff S.B.
        • Wilms M.
        • et al.
        Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: A probabilistic, stereotaxic map of area hOc5.
        Cereb Cortex. 2007; 17: 562-574
        • Rottschy C.
        • Eickhoff S.B.
        • Schleicher A.
        • Mohlberg H.
        • Kujovic M.
        • Zilles K.
        • Amunts K.
        Ventral visual cortex in humans: Cytoarchitectonic mapping of two extrastriate areas.
        Hum Brain Mapp. 2007; 28: 1045-1059
        • Oishi K.
        • Faria A.
        • Jiang H.
        • Li X.
        • Akhter K.
        • Zhang J.
        • et al.
        Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: Application to normal elderly and Alzheimer’s disease participants.
        Neuroimage. 2009; 46: 486-499
        • Worsley K.J.
        • Marrett S.
        • Neelin P.
        • Vandal A.C.
        • Friston K.J.
        • Evans A.C.
        A unified statistical approach for determining significant signals in images of cerebral activation.
        Hum Brain Mapp. 1996; 4: 58-73
        • Jafri M.J.
        • Pearlson G.D.
        • Stevens M.
        • Calhoun V.D.
        A method for functional network connectivity among spatially independent resting-state components in schizophrenia.
        Neuroimage. 2008; 39: 1666-1681
        • Joel S.E.
        • Caffo B.S.
        • van Zijl P.C.M.
        • Pekar J.J.
        On the relationship between seed-based and ICA-based measures of functional connectivity.
        Magn Reson Med. 2011; 66: 644-657
        • Allen E.A.
        • Erhardt E.B.
        • Damaraju E.
        • Gruner W.
        • Segall J.M.
        • Silva R.F.
        • et al.
        A baseline for the multivariate comparison of resting-state networks.
        Front Syst Neurosci. 2011; 5: 2
        • Cisek P.
        • Kalaska J.F.
        Neural mechanisms for interacting with a world full of action choices.
        Annu Rev Neurosci. 2010; 33: 269-298
        • Di Martino A.
        • Yan C.-G.
        • Li Q.
        • Denio E.
        • Castellanos F.X.
        • Alaerts K.
        • et al.
        The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism.
        Mol Psychiatry. 2014; 19: 659-667
        • Nebel M.B.
        • Eloyan A.
        • Barber A.D.
        • Mostofsky S.H.
        Precentral gyrus functional connectivity signatures of autism.
        Front Syst Neurosci. 2014; 8: 80
        • Gorgolewski K.J.
        • Varoquaux G.
        • Rivera G.
        • Schwartz Y.
        • Sochat V.V.
        • Ghosh S.S.
        • et al.
        NeuroVault.org: A web-based repository for collecting and sharing unthresholded statistical maps of the human brain.
        Front Neuroinform 9:8. 2015; (http://dx.doi.org/10.3389/fninf.2015.00008)
        • Sepulcre J.
        Integration of visual and motor functional streams in the human brain.
        Neurosci Lett. 2014; 567: 68-73
        • Astafiev S.V.
        • Stanley C.M.
        • Shulman G.L.
        • Corbetta M.
        Extrastriate body area in human occipital cortex responds to the performance of motor actions.
        Nat Neurosci. 2004; 7: 542-548
        • Deco G.
        • Jirsa V.K.
        • McIntosh A.R.
        Emerging concepts for the dynamical organization of resting-state activity in the brain.
        Nat Rev Neurosci. 2011; 12: 43-56
        • Whyatt C.
        • Craig C.
        Sensory-motor problems in autism.
        Front Integr Neurosci. 2013; 7: 51
        • Nakano T.
        • Ota H.
        • Kato N.
        • Kitazawa S.
        Deficit in visual temporal integration in autism spectrum disorders.
        Proc Biol Sci. 2010; 277: 1027-1030
        • Lewis J.D.
        • Evans A.C.
        • Pruett J.R.
        • Botteron K.
        • Zwaigenbaum L.
        • Estes A.
        • et al.
        Network inefficiencies in autism spectrum disorder at 24 months.
        Transl Psychiatry. 2014; 4: e388
        • Nebel M.B.
        • Joel S.E.
        • Muschelli J.
        • Barber A.D.
        • Caffo B.S.
        • Pekar J.J.
        • Mostofsky S.H.
        Disruption of functional organization within the primary motor cortex in children with autism.
        Hum Brain Mapp. 2014; 35: 567-580
        • Ehlers S.
        • Gillberg C.
        • Wing L.
        A screening questionnaire for Asperger syndrome and other high-functioning autism spectrum disorders in school age children.
        J Autism Dev Disord. 1999; 29: 129-141
      1. Denckla MB (1974). Development of motor co‐ordination in normal children. Dev Med Child Neurol 16:729--741.