Advertisement
Archival Report| Volume 79, ISSUE 5, P383-391, March 01, 2016

Association of AADAC Deletion and Gilles de la Tourette Syndrome in a Large European Cohort

Published:September 03, 2015DOI:https://doi.org/10.1016/j.biopsych.2015.08.027

      Abstract

      Background

      Gilles de la Tourette syndrome (GTS) is a complex neuropsychiatric disorder with a strong genetic influence where copy number variations are suggested to play a role in disease pathogenesis. In a previous small-scale copy number variation study of a GTS cohort (n = 111), recurrent exon-affecting microdeletions of four genes, including the gene encoding arylacetamide deacetylase (AADAC), were observed and merited further investigations.

      Methods

      We screened a Danish cohort of 243 GTS patients and 1571 control subjects for submicroscopic deletions and duplications of these four genes. The most promising candidate gene, AADAC, identified in this Danish discovery sample was further investigated in cohorts from Iceland, the Netherlands, Hungary, Germany, and Italy, and a final meta-analysis, including a total of 1181 GTS patients and 118,730 control subjects from these six European countries, was performed. Subsequently, expression of the candidate gene in the central nervous system was investigated using human and mouse brain tissues.

      Results

      In the Danish cohort, we identified eight patients with overlapping deletions of AADAC. Investigation of the additional five countries showed a significant association between the AADAC deletion and GTS, and a final meta-analysis confirmed the significant association (p = 4.4 × 10−4; odds ratio = 1.9; 95% confidence interval = 1.33–2.71). Furthermore, RNA in situ hybridization and reverse transcription-polymerase chain reaction studies revealed that AADAC is expressed in several brain regions previously implicated in GTS pathology.

      Conclusions

      AADAC is a candidate susceptibility factor for GTS and the present findings warrant further genomic and functional studies to investigate the role of this gene in the pathogenesis of GTS.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Robertson M.M.
        Tourette syndrome, associated conditions and the complexities of treatment.
        Brain. 2000; 123: 425-462
        • Robertson M.M.
        The prevalence and epidemiology of Gilles de la Tourette syndrome. Part 1: The epidemiological and prevalence studies.
        J Psychosom Res. 2008; 65: 461-472
        • Price R.A.
        • Kidd K.K.
        • Cohen D.J.
        • Pauls D.L.
        • Leckman J.F.
        A twin study of Tourette syndrome.
        Arch Gen Psychiatry. 1985; 42: 815-820
        • Hyde T.M.
        • Aaronson B.A.
        • Randolph C.
        • Rickler K.C.
        • Weinberger D.R.
        Relationship of birth weight to the phenotypic expression of Gilles de la Tourette’s syndrome in monozygotic twins.
        Neurology. 1992; 42: 652-658
        • O´Rourke J.A.
        • Scharf J.M.
        • Yu D.
        • Pauls D.L.
        The genetics of Tourette syndrome: A review.
        J Psychosom Res. 2009; 67: 533-545
        • Hoekstra P.J.
        • Dietrich A.
        • Edwards M.J.
        • Elamin I.
        • Martino D.
        Environmental factors in Tourette syndrome.
        Neurosci Biobehav Rev. 2013; 37: 1040-1049
        • Morrow E.M.
        Genomic copy number variation in disorders of cognitive development.
        J Am Acad Child Adolesc Psychiatry. 2010; 49: 1091-1104
        • Sundaram S.K.
        • Huq A.M.
        • Wilson B.J.
        • Chugani H.T.
        Tourette syndrome is associated with recurrent exonic copy number variants.
        Neurology. 2010; 74: 1583-1590
        • Fernandez T.V.
        • Sanders S.J.
        • Yurkiewicz I.R.
        • Ercan-Sencicek A.G.
        • Kim Y.S.
        • Fishman D.O.
        • et al.
        Rare copy number variants in tourette syndrome disrupt genes in histaminergic pathways and overlap with autism.
        Biol Psychiatry. 2012; 71: 392-402
        • Nag A.
        • Bochukova E.G.
        • Kremeyer B.
        • Campbell D.D.
        • Muller H.
        • Valencia-Duarte A.V.
        • et al.
        CNV analysis in Tourette syndrome implicates large genomic rearrangements in COL8A1 and NRXN1.
        PLoS One. 2013; 8: e59061
        • McGrath L.M.
        • Yu D.
        • Marshall C.
        • Davis L.K.
        • Thiruvahindrapuram B.
        • Li B.
        • et al.
        Copy number variation in obsessive-compulsive disorder and Tourette syndrome: A cross-disorder study.
        J Am Acad Child Adolesc Psychiatry. 2014; 53: 910-919
        • Marshall C.R.
        • Noor A.
        • Vincent J.B.
        • Lionel A.C.
        • Feuk L.
        • Skaug J.
        • et al.
        Structural variation of chromosomes in autism spectrum disorder.
        Am J Hum Genet. 2008; 82: 477-488
        • Wang K.
        • Zhang H.
        • Ma D.
        • Bucan M.
        • Glessner J.T.
        • Abrahams B.S.
        • et al.
        Common genetic variants on 5p14.1 associate with autism spectrum disorders.
        Nature. 2009; 459: 528-533
        • Kirov G.
        • Gumus D.
        • Chen W.
        • Norton N.
        • Georgieva L.
        • Sari M.
        • et al.
        Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia.
        Hum Mol Genet. 2008; 17: 458-465
        • Mol Debes N.M.
        • Hjalgrim H.
        • Skov L.
        Validation of the presence of comorbidities in a Danish clinical cohort of children with Tourette syndrome.
        J Child Neurol. 2008; 23: 1017-1027
      1. American Psychiatric Association (2000): Diagnostic and Statistical Manual for Mental Disorders, 4th edition, Text Revision (DSM-IV-TR). Washington, DC: American Psychiatric Press

      2. World Health Organization (1992): The ICD-10 Classification of Mental and Behavioural Disorders. Clinical Descriptions and Diagnostic Guidelines. Geneva: World Health Organization

      3. American Psychiatric Association (1994): Diagnostic and Statistical Manual for Mental Disorders, 4th edition (DSM-IV). Washington, DC: American Psychiatric Press

        • Bos-Veneman N.G.
        • Minderaa R.B.
        • Hoekstra P.J.
        The DRD4 gene and severity of tics and comorbid symptoms: Main effects and interactions with delivery complications.
        Mov Disord. 2010; 25: 1470-1476
        • Robertson M.M.
        • Banerjee S.
        • Kurlan R.
        • Cohen D.J.
        • Leckman J.F.
        • McMahon W.
        • et al.
        The Tourette syndrome diagnostic confidence index: Development and clinical associations.
        Neurology. 1999; 53: 2108-2112
        • Leckman J.F.
        • Riddle M.A.
        • Hardin M.T.
        • Ort S.I.
        • Swartz K.L.
        • Stevenson J.
        • Cohen D.J.
        The Yale Global Tic Severity Scale: Initial testing of a clinician-rated scale of tic severity.
        J Am Acad Child Adolesc Psychiatry. 1989; 28: 566-573
        • Karagiannidis I.
        • Rizzo R.
        • Tarnok Z.
        • Wolanczyk T.
        • Hebebrand J.
        • Nöthen M.M.
        • et al.
        Replication of association between a SLITRK1 haplotype and Tourette Syndrome in a large sample of families.
        Mol Psychiatry. 2012; 17: 665-668
        • Gadzicki D.
        • Müller-Vahl K.R.
        • Heller D.
        • Ossege S.
        • Nöthen M.M.
        • Hedebrand J.
        • Stuhrmann M.
        Tourette syndrome is not caused by mutations in the central cannabinoid receptor (CNR1) gene.
        Am J Med Genet B Neuropsychiatr Genet. 2004; 127: 97-103
        • Stefansson H.
        • Ophoff R.A.
        • Steinberg S.
        • Andreassen O.A.
        • Cichon S.
        • Rujescu D.
        • et al.
        Common variants conferring risk of schizophrenia.
        Nature. 2009; 460: 744-747
        • Stein J.L.
        • Medland S.E.
        • Vasquez A.A.
        • Hibar D.P.
        • Senstad R.E.
        • Winkler A.M.
        • et al.
        Identification of common variants associated with human hippocampal and intracranial volumes.
        Nat Genet. 2012; 44: 552-561
        • Wetzels J.F.
        • Kiemeney L.A.
        • Swinkels D.W.
        • Willems H.L.
        • den Heijer M.
        Age- and gender-specific reference values of estimated GFR in Caucasians: The Nijmegen Biomedical Study.
        Kidney Int. 2007; 72: 632-637
        • Wang K.
        • Li M.
        • Hadley D.
        • Liu R.
        • Glessner J.
        • Grant S.F.
        • et al.
        PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data.
        Genome Res. 2007; 17: 1665-1674
        • Devlin B.
        • Roeder K.
        Genomic control for association studies.
        Biometrics. 1999; 55: 997-1004
        • Bailey J.A.
        • Yavor A.M.
        • Massa H.F.
        • Trask B.J.
        • Eichler E.E.
        Segmental duplications: Organization and impact within the current human genome project assembly.
        Genome Res. 2001; 11: 1005-1017
        • Bailey J.A.
        • Gu Z.
        • Clark R.A.
        • Reinert K.
        • Samonte R.V.
        • Schwartz S.
        • et al.
        Recent segmental duplications in the human genome.
        Science. 2002; 297: 1003-1007
        • Silahtaroglu A.N.
        • Nolting D.
        • Dyrskjøt L.
        • Berezikov E.
        • Møller M.
        • Tommerup N.
        • Kauppinen S.
        Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification.
        Nat Protoc. 2007; 2: 2520-2528
        • Abecasis G.R.
        • Auto A.
        • Brooks L.D.
        • DePristo M.A.
        • Durbin R.M.
        • et al.
        • 1000 Genomes Project Consortium
        An integrated map of genetic variation from 1,092 human genomes.
        Nature. 2012; 491: 56-65
        • Lein E.S.
        • Hawrylycz M.J.
        • Ao N.
        • Ayres M.
        • Bensinger A.
        • Bernard A.
        • et al.
        Genome-wide atlas of gene expression in the adult mouse brain.
        Nature. 2007; 445: 168-176
        • Williams N.M.
        • Zaharieva I.
        • Martin A.
        • Langley K.
        • Mantripragada K.
        • Fossdal R.
        • et al.
        Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: A genome-wide analysis.
        Lancet. 2010; 376: 1401-1408
        • Elia J.
        • Gai X.
        • Xie H.M.
        • Perin J.C.
        • Geiger E.
        • Glessner J.T.
        • et al.
        Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes.
        Mol Psychiatry. 2010; 15: 637-646
        • Elia J.
        • Glessner J.T.
        • Wang K.
        • Takahasni N.
        • Shtir C.J.
        • Hadley D.
        • et al.
        Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder.
        Nat Genet. 2011; 44: 78-84
        • Jarick I.
        • Volckmar A.L.
        • Pütter C.
        • Pechlivanis S.
        • Nguyen T.T.
        • Dauvermann M.R.
        • et al.
        Genome-wide analysis of rare copy number variations reveals PARK2 as a candidate gene for attention-deficit/hyperactivity disorder.
        Mol Psychiatry. 2014; 19: 115-121
        • Ramos-Quiroga J.A.
        • Sánchez-Mora C.
        • Casas M.
        • Garcia-Martínez I.
        • Bosch R.
        • Nogueira M.
        • et al.
        Genome-wide copy number variation analysis in adult attention-deficit and hyperactivity disorder.
        J Psychiatr Res. 2014; 49: 60-67
        • Martin J.
        • Cooper M.
        • Hamshere M.L.
        • Pocklington A.
        • Scherer S.W.
        • Kent L.
        • et al.
        Biological overlap of attention-deficit/hyperactivity disorder and autism spectrum disorder: Evidence from copy number variants.
        J Am Acad Child Adolesc Psychiatry. 2014; 53: 761-770
        • Sharp A.J.
        • Locke D.P.
        • McGrath S.D.
        • Cheng Z.
        • Bailey J.A.
        • Vallente R.U.
        • et al.
        Segmental duplications and copy-number variation in the human genome.
        Am J Hum Genet. 2005; 77: 78-88
        • Plessen K.J.
        • Bansal R.
        • Peterson B.S.
        Imaging evidence for anatomical disturbances and neuroplastic compensation in persons with Tourette syndrome.
        J Psychosom Res. 2009; 67: 559-573
        • Reeber S.L.
        • Otis T.S.
        • Sillitoe R.V.
        New roles for the cerebellum in health and disease.
        Front Syst Neurosci. 2013; 7: 83
        • Bauman M.L.
        • Kemper T.L.
        Neuroanatomic observations of the brain in autism: A review and future directions.
        Int J Dev Neurosci. 2005; 23: 183-187
        • Amaral D.G.
        • Schumann C.M.
        • Nordahl C.W.
        Neuroanatomy of autism.
        Trends Neurosci. 2008; 31: 137-145
        • Tsai P.T.
        • Hull C.
        • Chu Y.
        • Greene-Colozzi E.
        • Sadowski A.R.
        • Leech J.M.
        • et al.
        Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice.
        Nature. 2012; 488: 647-651
        • Tobe R.H.
        • Bansal R.
        • Xu D.
        • Hao X.
        • Liu J.
        • Sanchez J.
        • Peterson B.S.
        Cerebellar morphology in Tourette syndrome and obsessive-compulsive disorder.
        Ann Neurol. 2010; 67: 479-487
        • Bohlhalter S.
        • Goldfine A.
        • Matteson S.
        • Garraux G.
        • Hanakawa T.
        • Kansaku K.
        • et al.
        Neural correlates of tic generation in Tourette syndrome: An event-related functional MRI study.
        Brain. 2006; 129: 2029-2037
        • Quiroga A.D.
        • Lehner R.
        Role of endoplasmic reticulum neutral lipid hydrolases.
        Trends Endocrinol Metab. 2011; 22: 218-225
        • Trickett J.I.
        • Patel D.D.
        • Knight B.L.
        • Saggerson E.D.
        • Gibbons G.F.
        • Pease R.J.
        Characterization of the rodent genes for arylacetamide deacetylase, a putative microsomal lipase, and evidence for transcriptional regulation.
        J Biol Chem. 2001; 276: 39522-39532
        • Miksys S.L.
        • Tyndale R.F.
        Drug-metabolizing cytochrome P450s in the brain.
        J Psychiatry Neurosci. 2002; 27: 406-415
        • Hiroi T.
        • Imaoka S.
        • Funae Y.
        Dopamine formation from tyramine by CYP2D6.
        Biochem Biophys Res Commun. 1998; 249: 838-843
        • Watts P.M.
        • Riedl A.G.
        • Douek D.C.
        • Edwards R.J.
        • Boobis A.R.
        • Jenner P.
        • Marsden C.D.
        Co-localization of P450 enzymes in the rat substantia nigra with tyrosine hydroxylase.
        Neuroscience. 1998; 86: 511-519
        • Niznik H.B.
        • Tyndale R.F.
        • Sallee F.R.
        • Gonzales F.J.
        • Hardwick J.P.
        • Inaba T.
        • Kalow W.
        The dopamine transporter and cytochrome P450IID1 (debrisoquine 4-hydroxylase) in brain: resolution and identification of two distinct [3H]GBR-12935 binding proteins.
        Arch Biochem Biophys. 1990; 276: 424-432
        • Tsuneoka Y.
        • Matsuo Y.
        • Iwahashi K.
        • Takeuchi H.
        • Ichikawa Y.
        A novel cytochrome P-450IID6 mutant gene associated with Parkinson’s disease.
        J Biochem. 1993; 114: 263-266
        • Chen X.
        • Xia Y.
        • Alford M.
        • DeTeresa R.
        • Hansen L.
        • Klauber M.R.
        • et al.
        The CYP2D6B allele is associated with a milder synaptic pathology in Alzheimer´s disease.
        Ann Neurol. 1995; 38: 653-658

      Linked Article

      • What Makes You Tic? A New Lead in Tourette Syndrome Genetics
        Biological PsychiatryVol. 79Issue 5
        • Preview
          Gilles de la Tourette syndrome (GTS) is a developmental neuropsychiatric disorder characterized by motor and vocal tics that can range in severity from mild to disabling. Despite accumulated evidence for a substantial genetic contribution to disease risk, gene discovery in GTS has been challenging. Decades of candidate gene association studies initially reporting positive findings have failed to replicate in larger patient cohorts, and genome-wide association studies have yet to generate statistically significant signals.
        • Full-Text
        • PDF