Advertisement

The Impact of Exposure to Cannabinoids in Adolescence: Insights From Animal Models

  • Tiziana Rubino
    Correspondence
    Address correspondence to Tiziana Rubino, Ph.D., Department of Theoretical and Applied Sciences, Biomedical Research Division and Neuroscience Center, University of Insubria via Manara 7, 21052 Busto Arsizio (VA), Italy
    Affiliations
    Department of Theoretical and Applied Sciences, Biomedical Research Division, and Neuroscience Center, University of Insubria, Busto Arsizi, Italy.
    Search for articles by this author
  • Daniela Parolaro
    Affiliations
    Department of Theoretical and Applied Sciences, Biomedical Research Division, and Neuroscience Center, University of Insubria, Busto Arsizi, Italy.
    Search for articles by this author

      Abstract

      The regular use of cannabis during adolescence is of particular concern because use by this age group seems to be associated with an increased likelihood of deleterious consequences, as reported by several epidemiologic studies. However, despite their unquestionable value, epidemiologic data are inconclusive. Modeling the adolescent phase in animals appears to be a useful approach to investigate the impact of cannabis use on the adolescent brain. In these models, adolescent cannabinoid exposure has been reported to cause long-term impairment in specific components of learning and memory and to have differential effects on anxiety, social behavior, and depressive-like signs. These findings suggest that it may represent, per se or in association with other hits, a risk factor for developing psychotic-like symptoms in adulthood. The neurobiological bases of this association include the induction of alterations in the maturational events of the endocannabinoid system occurring in the adolescent brain. Alterations in the endocannabinoid system may profoundly dysregulate developmental processes in some neurotransmitter systems, such as gamma-aminobutyric acid and glutamate, mainly in the cortex. The resulting picture strongly resembles the one present in schizophrenic patients, highlighting the translational value of this experimental approach.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Colver A.
        • Longwell S.
        New understanding of adolescent brain development: Relevance to transitional healthcare for young people with long term conditions.
        Arch Dis Child. 2013; 98: 902-907
        • Houston S.M.
        • Lebel C.
        • Katzir T.
        • Manis F.R.
        • Kan E.
        • Rodriguez G.G.
        • et al.
        Reading skill and structural brain development.
        Neuroreport. 2014; 25: 347-352
        • Luciana M.
        Adolescent brain development in normality and psychopathology.
        Dev Psychopathol. 2013; 25: 1325-1345
        • Sturman D.A.
        • Moghaddam B.
        The neurobiology of adolescence: Changes in brain architecture, functional dynamics, and behavioral tendencies.
        Neurosci Biobehav Rev. 2011; 35: 1704-1712
        • Giedd J.N.
        • Blumenthal J.
        • Jeffries N.O.
        • Castellanos F.X.
        • Liu H.
        • Zijdenbos A.
        • et al.
        Brain development during childhood and adolescence: A longitudinal MRI study.
        Nat Neurosci. 1999; 2: 861-863
        • Sowell E.R.
        • Thompson P.M.
        • Holmes C.J.
        • Jernigan T.L.
        • Toga A.W.
        In vivo evidence for post-adolescent brain maturation in frontal and striatal regions.
        Nat Neurosci. 1999; 2: 859-861
        • Sowell E.R.
        • Thompson P.M.
        • Holmes C.J.
        • Batth R.
        • Jernigan T.L.
        • Toga A.W.
        Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping.
        Neuroimage. 1999; 9: 587-597
        • Sowell E.R.
        • Thompson P.M.
        • Toga A.W.
        Mapping changes in the human cortex throughout the span of life.
        Neuroscientist. 2004; 10: 372-392
        • Gogtay N.
        • Giedd J.N.
        • Lusk L.
        • Hayashi K.M.
        • Greenstein D.
        • Vaituzis A.C.
        • et al.
        Dynamic mapping of human cortical development during childhood through early adulthood.
        Proc Natl Acad Sci U S A. 2004; 101: 8174-8179
        • Bourgeois J.P.
        • Goldman-Rakic P.S.
        • Rakic P.
        Synaptogenesis in the prefrontal cortex of rhesus monkeys.
        Cereb Cortex. 1994; 4: 78-96
        • Huttenlocher P.R.
        Morphometric study of human cerebral cortex development.
        Neuropsychologia. 1990; 28: 517-527
        • Paus T.
        Growth of white matter in the adolescent brain: Myelin or axon?.
        Brain Cogn. 2010; 72: 26-35
        • Cunningham M.G.
        • Bhattacharyya S.
        • Benes F.M.
        Amygdalo-cortical sprouting continues into early adulthood: Implications for the development of normal and abnormal function during adolescence.
        J Comp Neurol. 2002; 453: 116-130
        • Asato M.R.
        • Terwilliger R.
        • Woo J.
        • Luna B.
        White matter development in adolescence: A DTI study.
        Cereb Cortex. 2010; 20: 2122-2131
        • Simon N.W.
        • Moghaddam B.
        Neural processing of reward in adolescent rodents.
        Dev Cogn Neurosci. 2015; 11: 145-154
        • Andersen S.L.
        • Thompson A.T.
        • Rutstein M.
        • Hostetter J.C.
        • Teicher M.H.
        Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats.
        Synapse. 2000; 37: 167-169
        • Tarazi F.I.
        • Tomasini E.C.
        • Baldessarini R.J.
        Postnatal development of dopamine D4-like receptors in rat forebrain regions: Comparison with D2-like receptors.
        Brain Res Dev Brain Res. 1998; 110: 227-233
        • McCutcheon J.E.
        • Marinelli M.
        Age matters.
        Eur J Neurosci. 2009; 29: 997-1014
        • Hedner T.
        • Iversen K.
        • Lundborg P.
        Central GABA mechanisms during postnatal development in the rat: Neurochemical characteristics.
        J Neural Transm. 1984; 59: 105-118
        • Zamberletti E.
        • Beggiato S.
        • Steardo Jr, L.
        • Prini P.
        • Antonelli T.
        • Ferraro L.
        • et al.
        Alterations of prefrontal cortex GABAergic transmission in the complex psychotic-like phenotype induced by adolescent delta-9-tetrahydrocannabinol exposure in rats.
        Neurobiol Dis. 2014; 63: 35-47
        • Kilb W.
        Development of the GABAergic system from birth to adolescence.
        Neuroscientist. 2012; 18: 613-630
        • Hoftman G.D.
        • Lewis D.A.
        Postnatal developmental trajectories of neural circuits in the primate prefrontal cortex: Identifying sensitive periods for vulnerability to schizophrenia.
        Schizophr Bull. 2011; 37: 493-503
        • Rubino T.
        • Prini P.
        • Piscitelli F.
        • Zamberletti E.
        • Trusel M.
        • Melis M.
        • et al.
        Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex.
        Neurobiol Dis. 2015; 73: 60-69
        • Wang H.X.
        • Gao W.J.
        Cell type-specific development of NMDA receptors in the interneurons of rat prefrontal cortex.
        Neuropsychopharmacology. 2009; 34: 2028-2040
        • Díaz-Alonso J.
        • Guzmán M.
        • Galve-Roperh I.
        Endocannabinoids via CB1 receptors act as neurogenic niche cues during cortical development.
        Philos Trans R Soc Lond B Biol Sci. 2012; 367: 3229-3241
        • Maccarrone M.
        • Guzmán M.
        • Mackie K.
        • Doherty P.
        • Harkany T.
        Programming of neural cells by (endo)cannabinoids: From physiological rules to emerging therapies.
        Nat Rev Neurosci. 2014; 15: 786-801
        • Belue R.C.
        • Howlett A.C.
        • Westlake T.M.
        • Hutchings D.E.
        The ontogeny of cannabinoid receptors in the brain of postnatal and aging rats.
        Neurotoxicol Teratol. 1995; 17: 25-30
        • Verdurand M.
        • Nguyen V.
        • Stark D.
        • Zahra D.
        • Gregoire M.C.
        • Greguric I.
        • et al.
        Comparison of cannabinoid CB(1) receptor binding in adolescent and adult rats: A positron emission tomography study using [F]MK-9470.
        Int J Mol Imaging. 2011; 2011: 548123
        • Ellgren M.
        • Artmann A.
        • Tkalych O.
        • Gupta A.
        • Hansen H.S.
        • Hansen S.H.
        • et al.
        Dynamic changes of the endogenous cannabinoid and opioid mesocorticolimbic systems during adolescence: THC effects.
        Eur Neuropsychopharmacol. 2008; 18: 826-834
        • Eggan S.M.
        • Mizoguchi Y.
        • Stoyak S.R.
        • Lewis D.A.
        Development of cannabinoid 1 receptor protein and messenger RNA in monkey dorsolateral prefrontal cortex.
        Cereb Cortex. 2010; 20: 1164-1174
        • Lee T.T.
        • Hill M.N.
        • Hillard C.J.
        • Gorzalka B.B.
        Temporal changes in N-acylethanolamine content and metabolism throughout the peri-adolescent period.
        Synapse. 2013; 67: 4-10
        • Leweke F.M.
        • Schneider M.
        Chronic pubertal cannabinoid treatment as a behavioural model for aspects of schizophrenia: Effects of the atypical antipsychotic quetiapine.
        Int J Neuropsychopharmacol. 2011; 14: 43-51
        • O’Shea M.
        • McGregor I.S.
        • Mallet P.E.
        Repeated cannabinoid exposure during perinatal, adolescent or early adult ages produces similar longlasting deficits in object recognition and reduced social interaction in rats.
        J Psychopharmacol. 2006; 20: 611-621
        • O’Shea M.
        • Singh M.E.
        • McGregor I.S.
        • Mallet P.E.
        Chronic cannabinoid exposure produces lasting memory impairment and increased anxiety in adolescent but not adult rats.
        J Psychopharmacol. 2004; 18: 502-508
        • Quinn H.R.
        • Matsumoto I.
        • Callaghan P.D.
        • Long L.E.
        • Arnold J.C.
        • Gunasekaran N.
        • et al.
        Adolescent rats find repeated delta(9)-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure.
        Neuropsychopharmacology. 2008; 33: 1113-1126
        • Realini N.
        • Viganò D.
        • Guidali C.
        • Zamberletti E.
        • Rubino T.
        • Parolaro D.
        Chronic URB597 treatment at adulthood reverted most depressive-like symptoms induced by adolescent exposure to THC in female rats.
        Neuropharmacology. 2011; 60: 235-243
        • Rubino T.
        • Viganò D.
        • Realini N.
        • Guidali C.
        • Braida D.
        • Capurro V.
        • et al.
        Chronic delta(9)-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: Behavioral and biochemical correlates.
        Neuropsychopharmacology. 2008; 33: 2760-2771
        • Higuera-Matas A.
        • Botreau F.
        • Miguéns M.
        • Del Olmo N.
        • Borcel E.
        • Pérez-Alvarez L.
        • et al.
        Chronic periadolescent cannabinoid treatment enhances adult hippocampal PSA-NCAM expression in male Wistar rats but only has marginal effects on anxiety, learning and memory.
        Pharmacol Biochem Behav. 2009; 93: 482-490
        • Bambico F.R.
        • Nguyen N.T.
        • Katz N.
        • Gobbi G.
        Chronic exposure to cannabinoids during adolescence but not during adulthood impairs emotional behaviour and monoaminergic neurotransmission.
        Neurobiol Dis. 2010; 37: 641-655
        • Mateos B.
        • Borcel E.
        • Loriga R.
        • Luesu W.
        • Bini V.
        • Llorente R.
        • et al.
        Adolescent exposure to nicotine and/or the cannabinoid agonist CP 55,940 induces gender-dependent long-lasting memory impairments and changes in brain nicotinic and CB(1) cannabinoid receptors.
        J Psychopharmacol. 2011; 25: 1676-1690
        • Bortolato M.
        • Bini V.
        • Frau R.
        • Devoto P.
        • Pardu A.
        • Fan Y.
        • et al.
        Juvenile cannabinoid treatment induces frontostriatal gliogenesis in Lewis rats.
        Eur Neuropsychopharmacol. 2014; 24: 974-985
        • Cadoni C.
        • Simola N.
        • Espa E.
        • Fenu S.
        • Di Chiara G.
        Strain dependence of adolescent Cannabis influence on heroin reward and mesolimbic dopamine transmission in adult Lewis and Fischer 344 rats.
        Addict Biol. 2015; 20: 132-142
        • Biscaia M.
        • Marín S.
        • Fernández B.
        • Marco E.M.
        • Rubio M.
        • Guaza C.
        • et al.
        Chronic treatment with CP 55,940 during the peri-adolescent period differentially affects the behavioural responses of male and female rats in adulthood.
        Psychopharmacology. 2003; 170: 301-308
        • Wegener N.
        • Koch M.
        Behavioural disturbances and altered Fos protein expression in adult rats after chronic pubertal cannabinoid treatment.
        Brain Res. 2009; 1253: 81-91
        • Llorente-Berzal A.
        • Puighermanal E.
        • Burokas A.
        • Ozaita A.
        • Maldonado R.
        • Marco E.M.
        • et al.
        Sex-dependent psychoneuroendocrine effects of THC and MDMA in an animal model of adolescent drug consumption.
        PLoS One. 2013; 8: e78386
        • Rubino T.
        • Realini N.
        • Castiglioni C.
        • Guidali C.
        • Viganó D.
        • Marras E.
        • et al.
        Role in anxiety behavior of the endocannabinoid system in the prefrontal cortex.
        Cereb Cortex. 2008; 18: 1292-1301
        • Ruehle S.
        • Rey A.A.
        • Remmers F.
        • Lutz B.
        The endocannabinoid system in anxiety, fear memory and habituation.
        J Psychopharmacol. 2012; 26: 23-39
        • Chadwick B.
        • Saylor A.J.
        • López H.H.
        Adolescent cannabinoid exposure attenuates adult female sexual motivation but does not alter adulthood CB1R expression or estrous cyclicity.
        Pharmacol Biochem Behav. 2011; 100: 157-164
        • Abush H.
        • Akirav I.
        Short- and long-term cognitive effects of chronic cannabinoids administration in late-adolescence rats.
        PLoS One. 2012; 7: e31731
        • Renard J.
        • Krebs M.O.
        • Jay T.M.
        • Le Pen G.
        Long-term cognitive impairments induced by chronic cannabinoid exposure during adolescence in rats: A strain comparison.
        Psychopharmacology (Berl). 2013; 225: 781-790
        • Schneider M.
        • Koch M.
        Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats.
        Neuropsychopharmacology. 2003; 28: 1760-1769
        • Rubino T.
        • Realini N.
        • Braida D.
        • Alberio T.
        • Capurro V.
        • Viganò D.
        • et al.
        The depressive phenotype induced in adult female rats by adolescent exposure to THC is associated with cognitive impairment and altered neuroplasticity in the prefrontal cortex.
        Neurotox Res. 2009; 15: 291-302
        • Rubino T.
        • Realini N.
        • Braida D.
        • Guidi S.
        • Capurro V.
        • Viganò D.
        • et al.
        Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood.
        Hippocampus. 2009; 19: 763-772
        • Verrico C.D.
        • Gu H.
        • Peterson M.L.
        • Sampson A.R.
        • Lewis D.A.
        Repeated Δ9-tetrahydrocannabinol exposure in adolescent monkeys: Persistent effects selective for spatial working memory.
        Am J Psychiatry. 2014; 171: 416-425
        • Gomes F.V.
        • Guimarães F.S.
        • Grace A.A.
        Effects of pubertal cannabinoid administration on attentional set-shifting and dopaminergic hyper-responsivity in a developmental disruption model of schizophrenia.
        Int J Neuropsychopharmacol. 2014; 18
        • Cha Y.M.
        • Jones K.H.
        • Kuhn C.M.
        • Wilson W.A.
        • Swartzwelder H.S.
        Sex differences in the effects of delta9-tetrahydrocannabinol on spatial learning in adolescent and adult rats.
        Behav Pharmacol. 2007; 18: 563-569
        • Geyer M.A.
        Developing translational animal models for symptoms of schizophrenia or bipolar mania.
        Neurotox Res. 2008; 14: 71-78
        • Gleason K.A.
        • Birnbaum S.G.
        • Shukla A.
        • Ghose S.
        Susceptibility of the adolescent brain to cannabinoids: Long-term hippocampal effects and relevance to schizophrenia.
        Transl Psychiatry. 2012; 2: e199
        • Llorente-Berzal A.
        • Fuentes S.
        • Gagliano H.
        • López-Gallardo M.
        • Armario A.
        • Viveros M.P.
        • Nadal R.
        Sex-dependent effects of maternal deprivation and adolescent cannabinoid treatment on adult rat behaviour.
        Addict Biol. 2011; 16: 624-637
        • O’Tuathaigh C.M.
        • Clarke G.
        • Walsh J.
        • Desbonnet L.
        • Petit E.
        • O’Leary C.
        • et al.
        Genetic vs. pharmacological inactivation of COMT influences cannabinoid-induced expression of schizophrenia-related phenotypes.
        Int J Neuropsychopharmacol. 2012; 15: 1331-1342
        • Klug M.
        • van den Buuse M.
        An investigation into “two hit” effects of BDNF deficiency and young-adult cannabinoid receptor stimulation on prepulse inhibition regulation and memory in mice.
        Front Behav Neurosci. 2013; 7: 149
        • Bayer T.A.
        • Falkai P.
        • Maier W.
        Genetic and non-genetic vulnerability factors in schizophrenia: The basis of the “two hit hypothesis.”.
        J Psychiatr Res. 1999; 33: 543-548
        • Maynard T.M.
        • Sikich L.
        • Lieberman J.A.
        • LaMantia A.S.
        Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia.
        Schizophr Bull. 2001; 27: 457-476
        • McGrath J.J.
        • Féron F.P.
        • Burne T.H.
        • Mackay-Sim A.
        • Eyles D.W.
        The neurodevelopmental hypothesis of schizophrenia: A review of recent developments.
        Ann Med. 2003; 35: 86-93
        • Van Os J.
        • Bak M.
        • Hanssen M.
        • Bijl R.V.
        • de Graaf R.
        • Verdoux H.
        Cannabis use and psychosis: A longitudinal population-based study.
        Am J Epidemiol. 2002; 156: 319-327
        • Henquet C.
        • Di Forti M.
        • Morrison P.
        • Kuepper R.
        • Murray R.M.
        Gene-environment interplay between cannabis and psychosis.
        Schizophr Bull. 2008; 34: 1111-1121
        • Gururajan A.
        • Manning E.E.
        • Klug M.
        • van den Buuse M.
        Drugs of abuse and increased risk of psychosis development.
        Aust N Z J Psychiatry. 2012; 46: 1120-1135
        • O’Tuathaigh C.M.
        • Hryniewiecka M.
        • Behan A.
        • Tighe O.
        • Coughlan C.
        • Desbonnet L.
        • et al.
        Chronic adolescent exposure to Δ-9-tetrahydrocannabinol in COMT mutant mice: Impact on psychosis-related and other phenotypes.
        Neuropsychopharmacology. 2010; 35: 2262-2273
        • Caspi A.
        • Moffitt T.E.
        • Cannon M.
        • McClay J.
        • Murray R.
        • Harrington H.
        • et al.
        Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: Longitudinal evidence of a gene X environment interaction.
        Biol Psychiatry. 2005; 57: 1117-1127
        • Mei L.
        • Xiong W.C.
        Neuregulin 1 in neural development, synaptic plasticity and schizophrenia.
        Nat Rev Neurosci. 2008; 9: 437-452
        • Chong V.Z.
        • Thompson M.
        • Beltaifa S.
        • Webster M.J.
        • Law A.J.
        • Weickert C.S.
        Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients.
        Schizophr Res. 2008; 100: 270-280
        • Roussos P.
        • Giakoumaki S.G.
        • Adamaki E.
        • Bitsios P.
        The influence of schizophrenia-related neuregulin-1 polymorphisms on sensorimotor gating in healthy males.
        Biol Psychiatry. 2011; 69: 479-486
        • Long L.E.
        • Chesworth R.
        • Huang X.F.
        • McGregor I.S.
        • Arnold J.C.
        • Karl T.
        Transmembrane domain Nrg1 mutant mice show altered susceptibility to the neurobehavioural actions of repeated THC exposure in adolescence.
        Int J Neuropsychopharmacol. 2013; 16: 163-175
        • Spencer J.R.
        • Darbyshire K.M.
        • Boucher A.A.
        • Kashem M.A.
        • Long L.E.
        • McGregor I.S.
        • et al.
        Novel molecular changes induced by Nrg1 hypomorphism and Nrg1-cannabinoid interaction in adolescence: A hippocampal proteomic study in mice.
        Front Cell Neurosci. 2013; 7: 15
        • Decoster J.
        • van Os J.
        • Kenis G.
        • Henquet C.
        • Peuskens J.
        • De Hert M.
        • van Winkel R.
        Age at onset of psychotic disorder: Cannabis, BDNF Val66Met, and sex-specific models of gene-environment interaction.
        Am J Med Genet B Neuropsychiatr Genet. 2011; 156B: 363-369
        • Schneider M.
        • Koch M.
        The effect of chronic peripubertal cannabinoid treatment on deficient object recognition memory in rats after neonatal mPFC lesion.
        Eur Neuropsychopharmacol. 2007; 17: 180-186
        • Vigano D.
        • Guidali C.
        • Petrosino S.
        • Realini N.
        • Rubino T.
        • Di Marzo V.
        • Parolaro D.
        Involvement of the endocannabinoid system in phencyclidine-induced cognitive deficits modelling schizophrenia.
        Int J Neuropsychopharmacol. 2009; 12: 599-614
        • Malone D.T.
        • Taylor D.A.
        The effect of Delta9-tetrahydrocannabinol on sensorimotor gating in socially isolated rats.
        Behav Brain Res. 2006; 166: 101-109
        • Zamberletti E.
        • Prini P.
        • Speziali S.
        • Gabaglio M.
        • Solinas M.
        • Parolaro D.
        • Rubino T.
        Gender-dependent behavioral and biochemical effects of adolescent delta-9-tetrahydrocannabinol in adult maternally deprived rats.
        Neuroscience. 2012; 204: 245-257
        • Klug M.
        • van den Buuse M.
        Chronic cannabinoid treatment during young adulthood induces sex-specific behavioural deficits in maternally separated rats.
        Behav Brain Res. 2012; 233: 305-313
        • Burston J.J.
        • Wiley J.L.
        • Craig A.A.
        • Selley D.E.
        • Sim-Selley L.J.
        Regional enhancement of cannabinoid CB1 receptor desensitization in female adolescent rats following repeated Δ9-tetrahydrocannabinol exposure.
        Br J Pharmacol. 2010; 161: 103-112
        • Wiley J.L.
        • Burston J.J.
        Sex differences in Δ(9)-tetrahydrocannabinol metabolism and in vivo pharmacology following acute and repeated dosing in adolescent rats.
        Neurosci Lett. 2014; 576: 51-55
        • Rubino T.
        • Parolaro D.
        Sexually dimorphic effects of cannabinoid compounds on emotion and cognition.
        Front Behav Neurosci. 2011; 5: 64
        • Huang G.Z.
        • Woolley C.S.
        Estradiol acutely suppresses inhibition in the hippocampus through a sex-specific endocannabinoid and mGluR-dependent mechanism.
        Neuron. 2012; 74: 801-808
        • Riebe C.J.
        • Hill M.N.
        • Lee T.T.
        • Hillard C.J.
        • Gorzalka B.B.
        Estrogenic regulation of limbic cannabinoid receptor binding.
        Psychoneuroendocrinology. 2010; 35: 1265-1269
        • Higuera-Matas A.
        • Miguéns M.
        • Coria S.M.
        • Assis M.A.
        • Borcel E.
        • del Olmo N.
        • et al.
        Sex-specific disturbances of the glutamate/GABA balance in the hippocampus of adult rats subjected to adolescent cannabinoid exposure.
        Neuropharmacology. 2012; 62: 1975-1984
        • Thomases D.R.
        • Cass D.K.
        • Tseng K.Y.
        Periadolescent exposure to the NMDA receptor antagonist MK-801 impairs the functional maturation of local GABAergic circuits in the adult prefrontal cortex.
        J Neurosci. 2013; 33: 26-34
        • Cass D.K.
        • Flores-Barrera E.
        • Thomases D.R.
        • Vital W.F.
        • Caballero A.
        • Tseng K.Y.
        CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex.
        Mol Psychiatry. 2014; 19: 536-543
        • Uhlhaas P.J.
        • Roux F.
        • Singer W.
        • Haenschel C.
        • Sireteanu R.
        • Rodriguez E.
        The development of neural synchrony reflects late maturation and restructuring of functional networks in humans.
        Proc Natl Acad Sci U S A. 2009; 106: 9866-9871
        • Buzsáki G.
        • Draguhn A.
        Neuronal oscillations in cortical networks.
        Science. 2004; 304: 1926-1929
        • Wang X.J.
        Neurophysiological and computational principles of cortical rhythms in cognition.
        Physiol Rev. 2010; 90: 1195-1268
        • Uhlhaas P.J.
        • Singer W.
        Abnormal neural oscillations and synchrony in schizophrenia.
        Nat Rev Neurosci. 2010; 11: 100-113
        • Gonzalez-Burgos G.
        • Fish K.N.
        • Lewis D.A.
        GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia.
        Neural Plast. 2011; 2011: 723184
        • Raver S.M.
        • Haughwout S.P.
        • Keller A.
        Adolescent cannabinoid exposure permanently suppresses cortical oscillations in adult mice.
        Neuropsychopharmacology. 2013; 38: 2338-2347
        • Raver S.M.
        • Keller A.
        Permanent suppression of cortical oscillations in mice after adolescent exposure to cannabinoids: Receptor mechanisms.
        Neuropharmacology. 2014; 86: 161-173
        • Selemon L.D.
        A role for synaptic plasticity in the adolescent development of executive function.
        Transl Psychiatry. 2013; 3: e238
        • Carvalho A.F.
        • Reyes B.A.
        • Ramalhosa F.
        • Sousa N.
        • Van Bockstaele E.J.
        Repeated administration of a synthetic cannabinoid receptor agonist differentially affects cortical and accumbal neuronal morphology in adolescent and adult rats [published online ahead of print Oct 28].
        Brain Struct Funct. 2014;