Advertisement

Fragile X Mental Retardation Protein and Dendritic Local Translation of the Alpha Subunit of the Calcium/Calmodulin-Dependent Kinase II Messenger RNA Are Required for the Structural Plasticity Underlying Olfactory Learning

      Abstract

      Background

      In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown.

      Methods

      Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity.

      Results

      Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons.

      Conclusions

      Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Caroni P.
        • Donato F.
        • Muller D.
        Structural plasticity upon learning: Regulation and functions.
        Nat Rev Neurosci. 2012; 13: 478-490
        • Sutton M.A.
        • Schuman E.M.
        Dendritic protein synthesis, synaptic plasticity, and memory.
        Cell. 2006; 127: 49-58
        • Chelly J.
        • Mandel J.L.
        Monogenic causes of X-linked mental retardation.
        Nat Rev Genet. 2001; 2: 669-680
        • Bhakar A.L.
        • Dolen G.
        • Bear M.F.
        The pathophysiology of fragile X (and what it teaches us about synapses).
        Annu Rev Neurosci. 2012; 35: 417-443
        • Bassell G.J.
        • Warren S.T.
        Fragile X syndrome: Loss of local mRNA regulation alters synaptic development and function.
        Neuron. 2008; 60: 201-214
        • Harlow E.G.
        • Till S.M.
        • Russell T.A.
        • Wijetunge L.S.
        • Kind P.
        • Contractor A.
        Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice.
        Neuron. 2010; 65: 385-398
        • Dolen G.
        • Osterweil E.
        • Rao B.S.
        • Smith G.B.
        • Auerbach B.D.
        • Chattarji S.
        • Bear M.F.
        Correction of fragile X syndrome in mice.
        Neuron. 2007; 56: 955-962
        • Pan F.
        • Aldridge G.M.
        • Greenough W.T.
        • Gan W.B.
        Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome.
        Proc Natl Acad Sci U S A. 2010; 107: 17768-17773
        • Cruz-Martin A.
        • Crespo M.
        • Portera-Cailliau C.
        Delayed stabilization of dendritic spines in fragile X mice.
        J Neurosci. 2010; 30: 7793-7803
        • Padmashri R.
        • Reiner B.C.
        • Suresh A.
        • Spartz E.
        • Dunaevsky A.
        Altered structural and functional synaptic plasticity with motor skill learning in a mouse model of fragile X syndrome.
        J Neurosci. 2013; 33: 19715-19723
        • Scotto-Lomassese S.
        • Nissant A.
        • Mota T.
        • Neant-Fery M.
        • Oostra B.A.
        • Greer C.A.
        • et al.
        Fragile X mental retardation protein regulates new neuron differentiation in the adult olfactory bulb.
        J Neurosci. 2011; 31: 2205-2215
        • Neant-Fery M.
        • Peres E.
        • Nasrallah C.
        • Kessner M.
        • Gribaudo S.
        • Greer C.
        • et al.
        A role for dendritic translation of CaMKIIalpha mRNA in olfactory plasticity.
        PLoS One. 2012; 7: e40133
        • Gross C.
        • Berry-Kravis E.M.
        • Bassell G.J.
        Therapeutic strategies in fragile X syndrome: Dysregulated mGluR signaling and beyond.
        Neuropsychopharmacology. 2012; 37: 178-195
        • Jacquemont S.
        • Berry-Kravis E.
        • Hagerman R.
        • von Raison F.
        • Gasparini F.
        • Apostol G.
        • et al.
        The challenges of clinical trials in fragile X syndrome.
        Psychopharmacology (Berl). 2014; 231: 1237-1250
        • Doll C.A.
        • Broadie K.
        Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models.
        Front Cell Neurosci. 2014; 8: 30
        • LeBlanc J.J.
        • Fagiolini M.
        Autism: A “critical period” disorder?.
        Neural Plast. 2011; 2011: 921680
        • Doll C.A.
        • Broadie K.
        Activity-dependent FMRP requirements in development of the neural circuitry of learning and memory.
        Development. 2015; 142: 1346-1356
        • Mandairon N.
        • Stack C.
        • Kiselycznyk C.
        • Linster C.
        Broad activation of the olfactory bulb produces long-lasting changes in odor perception.
        Proc Natl Acad Sci U S A. 2006; 103: 13543-13548
        • Moreno M.M.
        • Linster C.
        • Escanilla O.
        • Sacquet J.
        • Didier A.
        • Mandairon N.
        Olfactory perceptual learning requires adult neurogenesis.
        Proc Natl Acad Sci U S A. 2009; 106: 17980-17985
        • Mientjes E.J.
        • Nieuwenhuizen I.
        • Kirkpatrick L.
        • Zu T.
        • Hoogeveen-Westerveld M.
        • Severijnen L.
        • et al.
        The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo.
        Neurobiol Dis. 2006; 21: 549-555
        • Schilit Nitenson A.
        • Stackpole E.E.
        • Truszkowski T.L.
        • Midroit M.
        • Fallon J.R.
        • Bath K.G.
        Fragile X mental retardation protein regulates olfactory sensitivity but not odorant discrimination.
        Chem Senses. 2015; 40: 345-350
        • Lagace D.C.
        • Whitman M.C.
        • Noonan M.A.
        • Ables J.L.
        • DeCarolis N.A.
        • Arguello A.A.
        • et al.
        Dynamic contribution of nestin-expressing stem cells to adult neurogenesis.
        J Neurosci. 2007; 27: 12623-12629
        • Guo W.
        • Allan A.M.
        • Zong R.
        • Zhang L.
        • Johnson E.B.
        • Schaller E.G.
        • et al.
        Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning.
        Nat Med. 2011; 17: 559-565
        • Bear M.F.
        • Huber K.M.
        • Warren S.T.
        The mGluR theory of fragile X mental retardation.
        Trends Neurosci. 2004; 27: 370-377
        • Miller S.
        • Yasuda M.
        • Coats J.K.
        • Jones Y.
        • Martone M.E.
        • Mayford M.
        Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation.
        Neuron. 2002; 36: 507-519
        • Aakalu G.
        • Smith W.B.
        • Nguyen N.
        • Jiang C.
        • Schuman E.M.
        Dynamic visualization of local protein synthesis in hippocampal neurons.
        Neuron. 2001; 30: 489-502
        • Mayford M.
        • Baranes D.
        • Podsypanina K.
        • Kandel E.R.
        The 3’-untranslated region of CaMKII alpha is a cis-acting signal for the localization and translation of mRNA in dendrites.
        Proc Natl Acad Sci U S A. 1996; 93: 13250-13255
        • Subramanian M.
        • Rage F.
        • Tabet R.
        • Flatter E.
        • Mandel J.L.
        • Moine H.
        G-quadruplex RNA structure as a signal for neurite mRNA targeting.
        EMBO Rep. 2011; 12: 697-704
        • Lepousez G.
        • Nissant A.
        • Bryant A.K.
        • Gheusi G.
        • Greer C.A.
        • Lledo P.M.
        Olfactory learning promotes input-specific synaptic plasticity in adult-born neurons.
        Proc Natl Acad Sci U S A. 2014; 111: 13984-13989
        • Tronel S.
        • Fabre A.
        • Charrier V.
        • Oliet S.H.
        • Gage F.H.
        • Abrous D.N.
        Spatial learning sculpts the dendritic arbor of adult-born hippocampal neurons.
        Proc Natl Acad Sci U S A. 2010; 107: 7963-7968
        • Holtmaat A.
        • Svoboda K.
        Experience-dependent structural synaptic plasticity in the mammalian brain.
        Nat Rev Neurosci. 2009; 10: 647-658
        • Mizrahi A.
        Dendritic development and plasticity of adult-born neurons in the mouse olfactory bulb.
        Nat Neurosci. 2007; 10: 444-452
        • Arenkiel B.R.
        • Hasegawa H.
        • Yi J.J.
        • Larsen R.S.
        • Wallace M.L.
        • Philpot B.D.
        • et al.
        Activity-induced remodeling of olfactory bulb microcircuits revealed by monosynaptic tracing.
        PLoS One. 2011; 6: e29423
        • Okamoto K.
        • Narayanan R.
        • Lee S.H.
        • Murata K.
        • Hayashi Y.
        The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure.
        Proc Natl Acad Sci U S A. 2007; 104: 6418-6423
        • Jourdain P.
        • Fukunaga K.
        • Muller D.
        Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation.
        J Neurosci. 2003; 23: 10645-10649
        • Wu G.Y.
        • Cline H.T.
        Stabilization of dendritic arbor structure in vivo by CaMKII.
        Science. 1998; 279: 222-226
        • Banerjee S.
        • Neveu P.
        • Kosik K.S.
        A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation.
        Neuron. 2009; 64: 871-884
        • Ashraf S.I.
        • McLoon A.L.
        • Sclarsic S.M.
        • Kunes S.
        Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila.
        Cell. 2006; 124: 191-205
        • Gong R.
        • Park C.S.
        • Abbassi N.R.
        • Tang S.J.
        Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons.
        J Biol Chem. 2006; 281: 18802-18815
        • Bagni C.
        • Oostra B.A.
        Fragile X syndrome: From protein function to therapy.
        Am J Med Genet A. 2013; 161A: 2809-2821