Advertisement

Oxytocin and Memory of Emotional Stimuli: Some Dance to Remember, Some Dance to Forget

  • Mouna Maroun
    Affiliations
    Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
    Search for articles by this author
  • Shlomo Wagner
    Correspondence
    Address correspondence to: Shlomo Wagner, Ph.D., University of Haifa, Sagol Department of Neurobiology, Faculty of Natural Sciences, Mt. Carmel, Haifa 3498838, Israel.
    Affiliations
    Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
    Search for articles by this author

      Abstract

      An ever-growing body of evidence suggests that the hypothalamic neuropeptide oxytocin plays a central role in the regulation of mammalian social behavior and relationships. Yet, mammalian social interactions are extremely complex, involving both approach and avoidance behaviors toward specific individuals. While in the past oxytocin was conceived merely as a prosocial molecule that nonselectively facilitated affiliative emotions and behavior, it is now recognized that oxytocin plays a role in a wide range of social relationships, some of which involve negative emotions such as fear, aggression, and envy and lead to avoidance behavior. However, the way by which a single molecule such as oxytocin contributes to contrasting emotions and opposite behaviors is yet to be discovered. Here, we discuss the role of oxytocin in the modulation of emotional memories in rodents, focusing on two paradigms: social recognition and fear conditioning, representing approach and avoidance behaviors, respectively. We review recent pioneering studies that address the complex effects of oxytocin in a mechanistic approach, using genetic animal models and brain region-specific manipulations of oxytocin activity. These studies suggest that the multiple roles of oxytocin in social and fear behavior are due to its local effects in various brain areas, most notably distinct regions of the amygdala. Finally, we propose a model explaining some of the contradictory effects of oxytocin as products of the balance between two networks in the amygdala that are controlled by the medial prefrontal cortex.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Neumann I.D.
        Brain oxytocin: A key regulator of emotional and social behaviours in both females and males.
        J Neuroendocrinol. 2008; 20: 858-865
        • Wang Z.
        • Aragona B.J.
        Neurochemical regulation of pair bonding in male prairie voles.
        Physiol Behav. 2004; 83: 319-328
        • Bosch O.J.
        • Neumann I.D.
        Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: From central release to sites of action.
        Horm Behav. 2012; 61: 293-303
        • Kirsch P.
        • Esslinger C.
        • Chen Q.
        • Mier D.
        • Lis S.
        • Siddhanti S.
        • et al.
        Oxytocin modulates neural circuitry for social cognition and fear in humans.
        J Neurosci. 2005; 25: 11489-11493
        • Gordon I.
        • Zagoory-Sharon O.
        • Leckman J.F.
        • Feldman R.
        Oxytocin and the development of parenting in humans.
        Biol Psychiatry. 2010; 68: 377-382
        • De Dreu C.K.
        Oxytocin modulates cooperation within and competition between groups: An integrative review and research agenda.
        Horm Behav. 2012; 61: 419-428
        • Kosfeld M.
        • Heinrichs M.
        • Zak P.J.
        • Fischbacher U.
        • Fehr E.
        Oxytocin increases trust in humans.
        Nature. 2005; 435: 673-676
        • Debiec J.
        From affiliative behaviors to romantic feelings: A role of nanopeptides.
        FEBS Lett. 2007; 581: 2580-2586
        • Guastella A.J.
        • Carson D.S.
        • Dadds M.R.
        • Mitchell P.B.
        • Cox R.E.
        Does oxytocin influence the early detection of angry and happy faces?.
        Psychoneuroendocrinology. 2009; 34: 220-225
        • Shamay-Tsoory S.G.
        • Fischer M.
        • Dvash J.
        • Harari H.
        • Perach-Bloom N.
        • Levkovitz Y.
        Intranasal administration of oxytocin increases envy and schadenfreude (gloating).
        Biol Psychiatry. 2009; 66: 864-870
        • Chini B.
        • Leonzino M.
        • Braida D.
        • Sala M.
        Learning about oxytocin: Pharmacologic and behavioral issues.
        Biol Psychiatry. 2014; 76: 360-366
        • Young L.J.
        Frank A. Beach Award. Oxytocin and vasopressin receptors and species-typical social behaviors.
        Horm Behav. 1999; 36: 212-221
        • Insel T.R.
        • Fernald R.D.
        How the brain processes social information: Searching for the social brain.
        Annu Rev Neurosci. 2004; 27: 697-722
        • Carter C.S.
        • Porges S.W.
        The biochemistry of love: An oxytocin hypothesis.
        EMBO Rep. 2013; 14: 12-16
        • Feldman R.
        Oxytocin and social affiliation in humans.
        Horm Behav. 2012; 61: 380-391
        • Lieberwirth C.
        • Wang Z.
        Social bonding: Regulation by neuropeptides.
        Front Neurosci. 2014; 8: 171
        • Neumann I.D.
        The advantage of social living: Brain neuropeptides mediate the beneficial consequences of sex and motherhood.
        Front Neuroendocrinol. 2009; 30: 483-496
        • Orsucci F.
        • Paoloni G.
        • Conti C.M.
        • Reda M.
        • Fulcheri M.
        The role of oxytocin in plasticity, memory and attachment dynamics.
        J Biol Regul Homeost Agents. 2013; 27: 947-954
        • Burkett J.P.
        • Young L.J.
        The behavioral, anatomical and pharmacological parallels between social attachment, love and addiction.
        Psychopharmacology (Berl). 2012; 224: 1-26
        • Marlin B.J.
        • Mitre M.
        • DʼAmour J.A.
        • Chao M.V.
        • Froemke R.C.
        Oxytocin enables maternal behaviour by balancing cortical inhibition.
        Nature. 2015; 520: 499-504
        • Nakajima M.
        • Gorlich A.
        • Heintz N.
        Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons.
        Cell. 2014; 159: 295-305
        • Gheusi G.
        • Bluthe R.M.
        • Goodall G.
        • Dantzer R.
        Social and individual recognition in rodents: Methodological aspects and neurobiological bases.
        Behav Processes. 1994; 33: 59-88
        • Brennan P.A.
        • Zufall F.
        Pheromonal communication in vertebrates.
        Nature. 2006; 444: 308-315
        • Lee H.J.
        • Macbeth A.H.
        • Pagani J.H.
        • Young 3rd, W.S.
        Oxytocin: The great facilitator of life.
        Prog Neurobiol. 2009; 88: 127-151
        • Thor D.H.
        • Holloway W.R.
        Social memory of the male laboratory rat.
        J Comp Physiol Psychol. 1982; 96: 1000-1006
        • Ferguson J.N.
        • Young L.J.
        • Insel T.R.
        The neuroendocrine basis of social recognition.
        Front Neuroendocrinol. 2002; 23: 200-224
        • Engelmann M.
        • Hadicke J.
        • Noack J.
        Testing declarative memory in laboratory rats and mice using the nonconditioned social discrimination procedure.
        Nat Protoc. 2011; 6: 1152-1162
        • McEwen B.B.
        Expansion of olfactory-based social recognition memory research: The roles of vasopressin and oxytocin in social recognition memory.
        Adv Pharmacol. 2004; 50 (655–708): 475-529
        • Popik P.
        • van Ree J.M.
        Neurohypophyseal peptides and social recognition in rats.
        Prog Brain Res. 1998; 119: 415-436
        • Kogan J.H.
        • Frankland P.W.
        • Silva A.J.
        Long-term memory underlying hippocampus-dependent social recognition in mice.
        Hippocampus. 2000; 10: 47-56
        • Shahar-Gold H.
        • Gur R.
        • Wagner S.
        Rapid and reversible impairments of short- and long-term social recognition memory are caused by acute isolation of adult rats via distinct mechanisms.
        PLoS One. 2013; 8: e65085
        • Dulac C.
        • Torello A.T.
        Molecular detection of pheromone signals in mammals: From genes to behaviour.
        Nat Rev Neurosci. 2003; 4: 551-562
        • Dulac C.
        • Wagner S.
        Genetic analysis of brain circuits underlying pheromone signaling.
        Annu Rev Genet. 2006; 40: 449-467
        • Kang N.
        • Baum M.J.
        • Cherry J.A.
        Different profiles of main and accessory olfactory bulb mitral/tufted cell projections revealed in mice using an anterograde tracer and a whole-mount, flattened cortex preparation.
        Chem Senses. 2011; 36: 251-260
        • Pro-Sistiaga P.
        • Mohedano-Moriano A.
        • Ubeda-Banon I.
        • Del Mar Arroyo-Jimenez M.
        • Marcos P.
        • Artacho-Perula E.
        • et al.
        Convergence of olfactory and vomeronasal projections in the rat basal telencephalon.
        J Comp Neurol. 2007; 504: 346-362
        • Root C.M.
        • Denny C.A.
        • Hen R.
        • Axel R.
        The participation of cortical amygdala in innate, odour-driven behaviour.
        Nature. 2014; 515: 269-273
        • Sheehan T.P.
        • Chambers R.A.
        • Russell D.S.
        Regulation of affect by the lateral septum: Implications for neuropsychiatry.
        Brain Res Brain Res Rev. 2004; 46: 71-117
        • Risold P.Y.
        • Swanson L.W.
        Connections of the rat lateral septal complex.
        Brain Res Brain Res Rev. 1997; 24: 115-195
        • Engelmann M.
        • Ebner K.
        • Wotjak C.T.
        • Landgraf R.
        Endogenous oxytocin is involved in short-term olfactory memory in female rats.
        Behav Brain Res. 1998; 90: 89-94
        • Goodson J.L.
        The vertebrate social behavior network: Evolutionary themes and variations.
        Horm Behav. 2005; 48: 11-22
        • Goodson J.L.
        • Kabelik D.
        Dynamic limbic networks and social diversity in vertebrates: From neural context to neuromodulatory patterning.
        Front Neuroendocrinol. 2009; 30: 429-441
        • Knobloch H.S.
        • Charlet A.
        • Hoffmann L.C.
        • Eliava M.
        • Khrulev S.
        • Cetin A.H.
        • et al.
        Evoked axonal oxytocin release in the central amygdala attenuates fear response.
        Neuron. 2012; 73: 553-566
        • Benelli A.
        • Bertolini A.
        • Poggioli R.
        • Menozzi B.
        • Basaglia R.
        • Arletti R.
        Polymodal dose-response curve for oxytocin in the social recognition test.
        Neuropeptides. 1995; 28: 251-255
        • Dantzer R.
        • Bluthe R.M.
        • Koob G.F.
        • Le Moal M.
        Modulation of social memory in male rats by neurohypophyseal peptides.
        Psychopharmacology (Berl). 1987; 91: 363-368
        • Popik P.
        • Vetulani J.
        • van Ree J.M.
        Low doses of oxytocin facilitate social recognition in rats.
        Psychopharmacology (Berl). 1992; 106: 71-74
        • Popik P.
        • Vetulani J.
        • Van Ree J.M.
        Facilitation and attenuation of social recognition in rats by different oxytocin-related peptides.
        Eur J Pharmacol. 1996; 308: 113-116
        • Ferguson J.N.
        • Young L.J.
        • Hearn E.F.
        • Matzuk M.M.
        • Insel T.R.
        • Winslow J.T.
        Social amnesia in mice lacking the oxytocin gene.
        Nat Genet. 2000; 25: 284-288
        • Lee H.J.
        • Caldwell H.K.
        • Macbeth A.H.
        • Tolu S.G.
        • Young 3rd, W.S.
        A conditional knockout mouse line of the oxytocin receptor.
        Endocrinology. 2008; 149: 3256-3263
        • Takayanagi Y.
        • Yoshida M.
        • Bielsky I.F.
        • Ross H.E.
        • Kawamata M.
        • Onaka T.
        • et al.
        Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice.
        Proc Natl Acad Sci U S A. 2005; 102: 16096-16101
        • Jin D.
        • Liu H.X.
        • Hirai H.
        • Torashima T.
        • Nagai T.
        • Lopatina O.
        • et al.
        CD38 is critical for social behaviour by regulating oxytocin secretion.
        Nature. 2007; 446: 41-45
        • Crawley J.N.
        • Chen T.
        • Puri A.
        • Washburn R.
        • Sullivan T.L.
        • Hill J.M.
        • et al.
        Social approach behaviors in oxytocin knockout mice: Comparison of two independent lines tested in different laboratory environments.
        Neuropeptides. 2007; 41: 145-163
        • Ferguson J.N.
        • Aldag J.M.
        • Insel T.R.
        • Young L.J.
        Oxytocin in the medial amygdala is essential for social recognition in the mouse.
        J Neurosci. 2001; 21: 8278-8285
        • Feldman R.
        • Gordon I.
        • Influs M.
        • Gutbir T.
        • Ebstein R.P.
        Parental oxytocin and early caregiving jointly shape childrenʼs oxytocin response and social reciprocity.
        Neuropsychopharmacology. 2013; 38: 1154-1162
        • Macbeth A.H.
        • Lee H.J.
        • Edds J.
        • Young 3rd, W.S.
        Oxytocin and the oxytocin receptor underlie intrastrain, but not interstrain, social recognition.
        Genes Brain Behav. 2009; 8: 558-567
        • Larrazolo-Lopez A.
        • Kendrick K.M.
        • Aburto-Arciniega M.
        • Arriaga-Avila V.
        • Morimoto S.
        • Frias M.
        • et al.
        Vaginocervical stimulation enhances social recognition memory in rats via oxytocin release in the olfactory bulb.
        Neuroscience. 2008; 152: 585-593
        • Popik P.
        • van Ree J.M.
        Oxytocin but not vasopressin facilitates social recognition following injection into the medial preoptic area of the rat brain.
        Eur Neuropsychopharmacol. 1991; 1: 555-560
        • Costa-Mattioli M.
        • Sossin W.S.
        • Klann E.
        • Sonenberg N.
        Translational control of long-lasting synaptic plasticity and memory.
        Neuron. 2009; 61: 10-26
        • Gal-Ben-Ari S.
        • Kenney J.W.
        • Ounalla-Saad H.
        • Taha E.
        • David O.
        • Levitan D.
        • et al.
        Consolidation and translation regulation.
        Learn Mem. 2012; 19: 410-422
        • Luscher C.
        • Malenka R.C.
        NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD).
        Cold Spring Harb Perspect Biol. 2012; : 4
        • Lin Y.T.
        • Huang C.C.
        • Hsu K.S.
        Oxytocin promotes long-term potentiation by enhancing epidermal growth factor receptor-mediated local translation of protein kinase Mzeta.
        J Neurosci. 2012; 32: 15476-15488
        • Tomizawa K.
        • Iga N.
        • Lu Y.F.
        • Moriwaki A.
        • Matsushita M.
        • Li S.T.
        • et al.
        Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade.
        Nat Neurosci. 2003; 6: 384-390
        • Ninan I.
        Oxytocin suppresses basal glutamatergic transmission but facilitates activity-dependent synaptic potentiation in the medial prefrontal cortex.
        J Neurochem. 2011; 119: 324-331
        • Fang L.Y.
        • Quan R.D.
        • Kaba H.
        Oxytocin facilitates the induction of long-term potentiation in the accessory olfactory bulb.
        Neurosci Lett. 2008; 438: 133-137
        • Dubrovsky B.
        • Harris J.
        • Gijsbers K.
        • Tatarinov A.
        Oxytocin induces long-term depression on the rat dentate gyrus: Possible ATPase and ectoprotein kinase mediation.
        Brain Res Bull. 2002; 58: 141-147
        • Gur R.
        • Tendler A.
        • Wagner S.
        Long-term social recognition memory is mediated by oxytocin-dependent synaptic plasticity in the medial amygdala.
        Biol Psychiatry. 2014; 76: 377-386
        • Love T.M.
        Oxytocin, motivation and the role of dopamine.
        Pharmacol Biochem Behav. 2014; 119: 49-60
        • Skuse D.H.
        • Gallagher L.
        Dopaminergic-neuropeptide interactions in the social brain.
        Trends Cogn Sci. 2009; 13: 27-35
        • Dolen G.
        • Darvishzadeh A.
        • Huang K.W.
        • Malenka R.C.
        Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin.
        Nature. 2013; 501: 179-184
        • Berman D.E.
        • Dudai Y.
        Memory extinction, learning anew, and learning the new: Dissociations in the molecular machinery of learning in cortex.
        Science. 2001; 291: 2417-2419
        • Bouton M.E.
        • Nelson J.B.
        Context-specificity of target versus feature inhibition in a feature-negative discrimination.
        J Exp Psychol Anim Behav Process. 1994; 20: 51-65
        • Milad M.R.
        • Quirk G.J.
        Fear extinction as a model for translational neuroscience: Ten years of progress.
        Annu Rev Psychol. 2012; 63: 129-151
        • Myers K.M.
        • Davis M.
        Mechanisms of fear extinction.
        Mol Psychiatry. 2007; 12: 120-150
        • Tovote P.
        • Fadok J.P.
        • Luthi A.
        Neuronal circuits for fear and anxiety.
        Nat Rev Neurosci. 2015; 16: 317-331
        • Nabavi S.
        • Fox R.
        • Proulx C.D.
        • Lin J.Y.
        • Tsien R.Y.
        • Malinow R.
        Engineering a memory with LTD and LTP.
        Nature. 2014; 511: 348-352
        • Akirav I.
        • Maroun M.
        The role of the medial prefrontal cortex-amygdala circuit in stress effects on the extinction of fear.
        Neural Plast. 2007; 2007: 30873
        • Gabbott P.L.
        • Warner T.A.
        • Jays P.R.
        • Salway P.
        • Busby S.J.
        Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers.
        J Comp Neurol. 2005; 492: 145-177
        • Kita H.
        • Kitai S.T.
        Amygdaloid projections to the frontal cortex and the striatum in the rat.
        J Comp Neurol. 1990; 298: 40-49
        • Krettek J.E.
        • Price J.L.
        Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat.
        J Comp Neurol. 1977; 172: 687-722
        • Maroun M.
        Medial prefrontal cortex: Multiple roles in fear and extinction.
        Neuroscientist. 2013; 19: 370-383
        • Martijena I.D.
        • Rodriguez Manzanares P.A.
        • Lacerra C.
        • Molina V.A.
        Gabaergic modulation of the stress response in frontal cortex and amygdala.
        Synapse. 2002; 45: 86-94
        • Ottersen O.P.
        Connections of the amygdala of the rat. IV: Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase.
        J Comp Neurol. 1982; 205: 30-48
        • Vouimba R.M.
        • Maroun M.
        Learning-induced changes in mPFC-BLA connections after fear conditioning, extinction, and reinstatement of fear.
        Neuropsychopharmacology. 2011; 36: 2276-2285
        • Vertes R.P.
        Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat.
        Neuroscience. 2006; 142: 1-20
        • Grace A.A.
        • Rosenkranz J.A.
        Regulation of conditioned responses of basolateral amygdala neurons.
        Physiol Behav. 2002; 77: 489-493
        • Likhtik E.
        • Pelletier J.G.
        • Paz R.
        • Pare D.
        Prefrontal control of the amygdala.
        J Neurosci. 2005; 25: 7429-7437
        • Quirk G.J.
        • Likhtik E.
        • Pelletier J.G.
        • Pare D.
        Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons.
        J Neurosci. 2003; 23: 8800-8807
        • Royer S.
        • Pare D.
        Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses.
        Neuroscience. 2002; 115: 455-462
        • Toth I.
        • Neumann I.D.
        • Slattery D.A.
        Central administration of oxytocin receptor ligands affects cued fear extinction in rats and mice in a timepoint-dependent manner.
        Psychopharmacology (Berl). 2012; 223: 149-158
        • Debiec J.
        Peptides of love and fear: Vasopressin and oxytocin modulate the integration of information in the amygdala.
        Bioessays. 2005; 27: 869-873
        • Meyer-Lindenberg A.
        Impact of prosocial neuropeptides on human brain function.
        Prog Brain Res. 2008; 170: 463-470
        • Viviani D.
        • Stoop R.
        Opposite effects of oxytocin and vasopressin on the emotional expression of the fear response.
        Prog Brain Res. 2008; 170: 207-218
        • Lahoud N.
        • Maroun M.
        Oxytocinergic manipulations in corticolimbic circuit differentially affect fear acquisition and extinction.
        Psychoneuroendocrinology. 2013; 38: 2184-2195
        • Huber D.
        • Veinante P.
        • Stoop R.
        Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala.
        Science. 2005; 308: 245-248
        • Viviani D.
        • Charlet A.
        • van den Burg E.
        • Robinet C.
        • Hurni N.
        • Abatis M.
        • et al.
        Oxytocin selectively gates fear responses through distinct outputs from the central amygdala.
        Science. 2011; 333: 104-107
        • Haubensak W.
        • Kunwar P.S.
        • Cai H.
        • Ciocchi S.
        • Wall N.R.
        • Ponnusamy R.
        • et al.
        Genetic dissection of an amygdala microcircuit that gates conditioned fear.
        Nature. 2010; 468: 270-276
        • Guzman Y.F.
        • Tronson N.C.
        • Jovasevic V.
        • Sato K.
        • Guedea A.L.
        • Mizukami H.
        • et al.
        Fear-enhancing effects of septal oxytocin receptors.
        Nat Neurosci. 2013; 16: 1185-1187
        • Guzman Y.F.
        • Tronson N.C.
        • Sato K.
        • Mesic I.
        • Guedea A.L.
        • Nishimori K.
        • Radulovic J.
        Role of oxytocin receptors in modulation of fear by social memory.
        Psychopharmacology (Berl). 2014; 231: 2097-2105
        • Zoicas I.
        • Slattery D.A.
        • Neumann I.D.
        Brain oxytocin in social fear conditioning and its extinction: Involvement of the lateral septum.
        Neuropsychopharmacology. 2014; 39: 3027-3035
        • Yoshida M.
        • Takayanagi Y.
        • Inoue K.
        • Kimura T.
        • Young L.J.
        • Onaka T.
        • Nishimori K.
        Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice.
        J Neurosci. 2009; 29: 2259-2271
        • Burgos-Robles A.
        • Vidal-Gonzalez I.
        • Santini E.
        • Quirk G.J.
        Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex.
        Neuron. 2007; 53: 871-880
        • Herry C.
        • Garcia R.
        Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice.
        J Neurosci. 2002; 22: 577-583
        • Maroun M.
        • Kavushansky A.
        • Holmes A.
        • Wellman C.
        • Motanis H.
        Enhanced extinction of aversive memories by high-frequency stimulation of the rat infralimbic cortex.
        PLoS One. 2012; 7: e35853
        • Vidal-Gonzalez I.
        • Vidal-Gonzalez B.
        • Rauch S.L.
        • Quirk G.J.
        Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear.
        Learn Mem. 2006; 13: 728-733
        • Adolphs R.
        Is the human amygdala specialized for processing social information?.
        Ann N Y Acad Sci. 2003; 985: 326-340
        • LeDoux J.E.
        Emotion circuits in the brain.
        Annu Rev Neurosci. 2000; 23: 155-184
        • Feifel D.
        Oxytocin as a potential therapeutic target for schizophrenia and other neuropsychiatric conditions.
        Neuropsychopharmacology. 2012; 37: 304-305