Advertisement

Abnormal Gamma Oscillations in N-Methyl-D-Aspartate Receptor Hypofunction Models of Schizophrenia

  • Monika P. Jadi
    Correspondence
    Address correspondence to Monika P. Jadi, The Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, San Diego, CA 92037.
    Affiliations
    Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California

    Division of Biological Sciences, University of California at San Diego, La Jolla, California
    Search for articles by this author
  • M. Margarita Behrens
    Affiliations
    Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California
    Search for articles by this author
  • Terrence J. Sejnowski
    Affiliations
    Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California

    Division of Biological Sciences, University of California at San Diego, La Jolla, California
    Search for articles by this author

      Abstract

      N-methyl-D-aspartate receptor (NMDAR) hypofunction in parvalbumin-expressing (PV+) inhibitory neurons (INs) may contribute to symptoms in patients with schizophrenia (SZ). This hypothesis was inspired by studies in humans involving NMDAR antagonists that trigger SZ symptoms. Animal models of SZ using neuropharmacology and genetic knockouts have successfully replicated some of the key observations in human subjects involving alteration of gamma band oscillations (GBO) observed in electroencephalography and magnetoencephalography signals. However, it remains to be seen if NMDAR hypofunction in PV+ neurons is fundamental to the phenotype observed in these models. In this review, we discuss some of the key computational models of GBO and their predictions in the context of NMDAR hypofunction in INs. While PV+ INs have been the main focus of SZ studies in animal models, we also discuss the implications of NMDAR hypofunction in other types of INs using computational models for GBO modulation in the visual cortex.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lewis D.A.
        • Hashimoto T.
        • Volk D.W.
        Cortical inhibitory neurons and schizophrenia.
        Nat Rev Neurosci. 2005; 6: 312-324
        • Uhlhaas P.J.
        • Singer W.
        Abnormal neural oscillations and synchrony in schizophrenia.
        Nat Rev Neurosci. 2010; 11: 100-113
        • Wenk G.L.
        Neuropathologic changes in Alzheimer’s disease.
        J Clin Psychiatry. 2003; 64: 7-10
        • Akbarian S.
        • Kim J.J.
        • Potkin S.G.
        • Hagman J.O.
        • Tafazzoli A.
        • Bunney Jr, W.E.
        • Jones E.G.
        Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics.
        Arch Gen Psychiatry. 1995; 52: 258-266
        • Volk D.W.
        • Austin M.C.
        • Pierri J.N.
        • Sampson A.R.
        • Lewis D.A.
        Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia.
        Arch Gen Psychiatry. 2000; 57: 237-245
        • Woo T.U.
        • Whitehead R.E.
        • Melchitzky D.S.
        • Lewis D.A.
        A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia.
        Proc Natl Acad Sci U S A. 1998; 95: 5341-5346
        • Beasley C.L.
        • Reynolds G.P.
        Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics.
        Schizophr Res. 1997; 24: 349-355
        • Singer W.
        • Gray C.M.
        Visual feature integration and the temporal correlation hypothesis.
        Annu Rev Neurosci. 1995; 18: 555-586
        • Salinas E.
        • Sejnowski T.J.
        Correlated neuronal activity and the flow of neural information.
        Nat Rev Neurosci. 2001; 2: 539-550
        • Gonzalez-Burgos G.
        • Lewis D.A.
        GABA neurons and the mechanisms of network oscillations: Implications for understanding cortical dysfunction in schizophrenia.
        Schizophr Bull. 2008; 34: 944-961
        • Uhlhaas P.J.
        • Singer W.
        Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology.
        Neuron. 2006; 52: 155-168
        • Cho R.Y.
        • Konecky R.O.
        • Carter C.S.
        Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia.
        Proc Natl Acad Sci U S A. 2006; 103: 19878-19883
        • Haenschel C.
        • Bittner R.A.
        • Waltz J.
        • Haertling F.
        • Wibral M.
        • Singer W.
        • et al.
        Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia.
        J Neurosci. 2009; 29: 9481-9489
        • Minzenberg M.J.
        • Firl A.J.
        • Yoon J.H.
        • Gomes G.C.
        • Reinking C.
        • Carter C.S.
        Gamma oscillatory power is impaired during cognitive control independent of medication status in first-episode schizophrenia.
        Neuropsychopharmacology. 2010; 5: 2590-2599
        • Spencer K.M.
        • Nestor P.G.
        • Perlmutter R.
        • Niznikiewicz M.A.
        • Klump M.C.
        • Frumin M.
        • et al.
        Neural synchrony indexes disordered perception and cognition in schizophrenia.
        Proc Natl Acad Sci U S A. 2004; 101: 17288-17293
        • Lee S.H.
        • Wynn J.K.
        • Green M.F.
        • Kim H.
        • Lee K.J.
        • Nam M.
        • et al.
        Quantitative EEG and low resolution electromagnetic tomography (LORETA) imaging of patients with persistent auditory hallucinations.
        Schizophr Res. 2006; 83: 111-119
        • Spencer K.M.
        • Niznikiewicz M.A.
        • Nestor P.G.
        • Shenton M.E.
        • McCarley R.W.
        Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia.
        BMC Neurosci. 2009; 10: 85
        • Spencer K.M.
        • Salisbury D.F.
        • Shenton M.E.
        • McCarley R.W.
        Gamma-band auditory steady-state responses are impaired in first episode psychosis.
        Biol Psychiatry. 2008; 64: 369-375
        • Winterer G.
        • Ziller M.
        • Dorn H.
        • Frick K.
        • Mulert C.
        • Wuebben Y.
        • et al.
        Schizophrenia: Reduced signal-to-noise ratio and impaired phase-locking during information processing.
        Clin Neurophysiol. 2000; 111: 837-849
        • Spencer K.M.
        Baseline gamma power during auditory steady-state stimulation in schizophrenia.
        Front Hum Neurosci. 2012; 5: 190
        • Rutter L.
        • Carver F.W.
        • Holroyd T.
        • Nadar S.R.
        • Mitchell-Francis J.
        • Apud J.
        • et al.
        Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition.
        Hum Brain Mapp. 2009; 30: 3254-3264
        • Uhlhaas P.J.
        • Singer W.
        Neuronal dynamics and neuropsychiatric disorders: Toward a translational paradigm for dysfunctional large-scale networks.
        Neuron. 2012; 75: 963-980
        • Carlsson A.
        • Lindqvist M.
        Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain.
        Acta Pharmacol Toxicol (Copeng). 1963; 20: 140-144
        • Seeman P.
        • Lee T.
        • Chau-Wong M.
        • Wong K.
        Antipsychotic drug doses and neuroleptic/dopamine receptors.
        Nature. 1976; 261: 717-719
        • Kellendonk C.
        • Simpson E.H.
        • Polan H.J.
        • Malleret G.
        • Vronskaya S.
        • Winiger V.
        • et al.
        Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning.
        Neuron. 2006; 49: 603-615
        • Coyle J.T.
        The glutamatergic dysfunction hypothesis for schizophrenia.
        Harv Rev Psychiatry. 1996; 3: 241-253
        • Deutsch S.I.
        • Mastropaolo J.
        • Schwartz B.L.
        • Rosse R.B.
        • Morihisa J.M.
        A “glutamatergic hypothesis” of schizophrenia. Rationale for pharmacotherapy with glycine.
        Clin Neuropharmacol. 1989; 12: 1-13
        • Javitt D.C.
        Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia.
        Hillside J Clin Psychiatry. 1987; 9: 12-35
        • Lahti A.C.
        • Holcomb H.H.
        • Medoff D.R.
        • Tamminga C.A.
        Ketamine activates psychosis and alters limbic blood flow in schizophrenia.
        Neuroreport. 1995; 6: 869-872
        • Olney J.W.
        • Farber N.B.
        Glutamate receptor dysfunction and schizophrenia.
        Arch Gen Psychiatry. 1995; 52: 998-1007
        • Tamminga C.A.
        Schizophrenia and glutamatergic transmission.
        Crit Rev Neurobiol. 1998; 12: 21-36
        • Lodge D.
        • Anis N.A.
        Effects of phencyclidine on excitatory amino acid activation of spinal interneurones in the cat.
        Eur J Pharmacol. 1982; 77: 203-204
        • Krystal J.H.
        • Karper L.P.
        • Seibyl J.P.
        • Freeman G.K.
        • Delaney R.
        • Bremner J.D.
        • et al.
        Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
        Arch Gen Psychiatry. 1994; 51: 199-214
        • Hong L.E.
        • Summerfelt A.
        • Buchanan R.W.
        • O’Donnell P.
        • Thaker G.K.
        • Weiler M.A.
        • Lahti A.C.
        Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine.
        Neuropsychopharmacology. 2010; 35: 632-640
        • Olney J.W.
        • Farber N.B.
        NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia.
        Neuropsychopharmacology. 1995; 13: 335-345
        • Moghaddam B.
        • Adams B.
        • Verma A.
        • Daly D.
        Activation of glutamatergic neurotransmission by ketamine: A novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex.
        J Neurosci. 1997; 17: 2921-2927
        • Poels E.M.
        • Kegeles L.S.
        • Kantrowitz J.T.
        • Slifstein M.
        • Javitt D.C.
        • Lieberman J.A.
        • et al.
        Imaging glutamate in schizophrenia: Review of findings and implications for drug discovery.
        Mol Psychiatry. 2014; 19: 20-29
        • Beneyto M.
        • Abbott A.
        • Hashimoto T.
        • Lewis D.A.
        Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia.
        Cereb Cortex. 2011; 21: 999-1011
        • Hashimoto T.
        • Arion D.
        • Unger T.
        • Maldonado-Aviles J.G.
        • Morris H.M.
        • Volk D.W.
        • et al.
        Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia.
        Mol Psychiatry. 2008; 13: 147-161
        • Lewis D.A.
        • Hashimoto T.
        • Morris H.M.
        Cell and receptor type-specific alterations in markers of GABA neurotransmission in the prefrontal cortex of subjects with schizophrenia.
        Neurotox Res. 2008; 14: 237-248
        • Morris H.M.
        • Hashimoto T.
        • Lewis D.A.
        Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder.
        Cereb Cortex. 2008; 18: 1575-1587
        • Volk D.W.
        • Matsubara T.
        • Li S.
        • Sengupta E.J.
        • Georgiev D.
        • Minabe Y.
        • et al.
        Deficits in transcriptional regulators of cortical parvalbumin neurons in schizophrenia.
        Am J Psychiatry. 2012; 169: 1082-1091
        • Woo T.U.
        • Walsh J.P.
        • Benes F.M.
        Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder.
        Arch Gen Psychiatry. 2004; 61: 649-657
        • Woo T.U.
        • Shrestha K.
        • Lamb D.
        • Minns M.M.
        • Benes F.M.
        N-methyl-D-aspartate receptor and calbindin-containing neurons in the anterior cingulate cortex in schizophrenia and bipolar disorder.
        Biol Psychiatry. 2008; 64: 803-809
        • Pratt J.
        • Winchester C.
        • Dawson N.
        • Morris B.
        Advancing schizophrenia drug discovery: Optimizing rodent models to bridge the translational gap.
        Nat Rev Drug Discov. 2012; 11: 560-579
        • Bubenikova-Valesova V.
        • Horacek J.
        • Vrajova M.
        • Hoschl C.
        Models of schizophrenia in humans and animals based on inhibition of NMDA receptors.
        Neurosci Biobehav Rev. 2008; 32: 1014-1023
        • Cunningham M.O.
        • Hunt J.
        • Middleton S.
        • LeBeau F.E.
        • Gillies M.J.
        • Davies C.H.
        • et al.
        Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness.
        J Neurosci. 2006; 26: 2767-2776
        • Roopun A.K.
        • Cunningham M.O.
        • Racca C.
        • Alter K.
        • Traub R.D.
        • Whittington M.A.
        Region-specific changes in gamma and beta2 rhythms in NMDA receptor dysfunction models of schizophrenia.
        Schizophr Bull. 2008; 34: 962-973
        • Kittelberger K.
        • Hur E.E.
        • Sazegar S.
        • Keshavan V.
        • Kocsis B.
        Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: Relevance for the NMDA receptor hypofunction model of schizophrenia.
        Brain Struct Funct. 2012; 217: 395-409
        • Hakami T.
        • Jones N.C.
        • Tolmacheva E.A.
        • Gaudias J.
        • Chaumont J.
        • Salzberg M.
        • et al.
        NMDA receptor hypofunction leads to generalized and persistent aberrant gamma oscillations independent of hyperlocomotion and the state of consciousness.
        PLoS One. 2009; 4: e6755
        • Pinault D.
        N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex.
        Biol Psychiatry. 2008; 63: 730-735
        • Lazarewicz M.T.
        • Ehrlichman R.S.
        • Maxwell C.R.
        • Gandal M.J.
        • Finkel L.H.
        • Siegel S.J.
        Ketamine modulates theta and gamma oscillations.
        J Cogn Neurosci. 2010; 22: 1452-1464
        • Leung L.W.
        Spectral analysis of hippocampal EEG in the freely moving rat: Effects of centrally active drugs and relations to evoked potentials.
        Electroencephalogr Clin Neurophysiol. 1985; 60: 65-77
        • Ma J.
        • Leung L.S.
        The supramammillo-septal-hippocampal pathway mediates sensorimotor gating impairment and hyperlocomotion induced by MK-801 and ketamine in rats.
        Psychopharmacology (Berl). 2007; 191: 961-974
        • Ehrlichman R.S.
        • Gandal M.J.
        • Maxwell C.R.
        • Lazarewicz M.T.
        • Finkel L.H.
        • Contreras D.
        • et al.
        N-methyl-d-aspartic acid receptor antagonist-induced frequency oscillations in mice recreate pattern of electrophysiological deficits in schizophrenia.
        Neuroscience. 2009; 158: 705-712
        • Palenicek T.
        • Fujakova M.
        • Brunovsky M.
        • Balikova M.
        • Horacek J.
        • Gorman I.
        • et al.
        Electroencephalographic spectral and coherence analysis of ketamine in rats: Correlation with behavioral effects and pharmacokinetics.
        Neuropsychobiology. 2011; 63: 202-218
        • Kulikova S.P.
        • Tolmacheva E.A.
        • Anderson P.
        • Gaudias J.
        • Adams B.E.
        • Zheng T.
        • Pinault D.
        Opposite effects of ketamine and deep brain stimulation on rat thalamocortical information processing.
        Eur J Neurosci. 2012; 36: 3407-3419
        • Wood J.
        • Kim Y.
        • Moghaddam B.
        Disruption of prefrontal cortex large scale neuronal activity by different classes of psychotomimetic drugs.
        J Neurosci. 2012; 32: 3022-3031
        • Caixeta F.V.
        • Cornelio A.M.
        • Scheffer-Teixeira R.
        • Ribeiro S.
        • Tort A.B.
        Ketamine alters oscillatory coupling in the hippocampus.
        Sci Rep. 2013; 3: 2348
        • Molina L.A.
        • Skelin I.
        • Gruber A.J.
        Acute NMDA receptor antagonism disrupts synchronization of action potential firing in rat prefrontal cortex.
        PLoS One. 2014; 9: e85842
        • Carlen M.
        • Meletis K.
        • Siegle J.H.
        • Cardin J.A.
        • Futai K.
        • Vierling-Claassen D.
        • et al.
        A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior.
        Mol Psychiatry. 2012; 17: 537-548
        • Korotkova T.
        • Fuchs E.C.
        • Ponomarenko A.
        • von Engelhardt J.
        • Monyer H.
        NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory.
        Neuron. 2010; 68: 557-569
        • Nakao K.
        • Nakazawa K.
        Brain state-dependent abnormal LFP activity in the auditory cortex of a schizophrenia mouse model.
        Front Neurosci. 2014; 8: 168
        • McNally J.M.
        • McCarley R.W.
        • Brown R.E.
        Chronic ketamine reduces the peak frequency of gamma oscillations in mouse prefrontal cortex ex vivo.
        Front Psychiatry. 2013; 4: 106
        • Buzsáki G.
        • Chrobak J.J.
        Temporal structure in spatially organized neuronal ensembles: A role for interneuronal networks.
        Curr Opin Neurobiol. 1995; 5: 504-510
        • Buzsaki G.
        • Wang X.J.
        Mechanisms of gamma oscillations.
        Annu Rev Neurosci. 2012; 35: 203-225
        • Cardin J.A.
        • Carlén M.
        • Meletis K.
        • Knoblich U.
        • Zhang F.
        • Deisseroth K.
        • et al.
        Driving fast-spiking cells induces gamma rhythm and controls sensory responses.
        Nature. 2009; 459: 663-667
        • Sohal V.S.
        • Zhang F.
        • Yizhar O.
        • Deisseroth K.
        Parvalbumin neurons and gamma rhythms enhance cortical circuit performance.
        Nature. 2009; 459: 698-702
        • Hansel D.
        • Mato G.
        • Meunier C.
        Clustering and slow switching in globally coupled phase oscillators.
        Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993; 48: 3470-3477
        • Borgers C.
        • Kopell N.
        Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity.
        Neural Comput. 2003; 15: 509-538
        • Börgers C.
        • Epstein S.
        • Kopell N.J.
        Background gamma rhythmicity and attention in cortical local circuits: A computational study.
        Proc Natl Acad Sci U S A. 2005; 102: 7002-7007
        • Ermentrout G.B.
        • Kopell N.
        Fine structure of neural spiking and synchronization in the presence of conduction delays.
        Proc Natl Acad Sci U S A. 1998; 95: 1259-1264
        • Vierling-Claassen D.
        • Siekmeier P.
        • Stufflebeam S.
        • Kopell N.
        Modeling GABA alterations in schizophrenia: A link between impaired inhibition and altered gamma and beta range auditory entrainment.
        J Neurophysiol. 2008; 99: 2656-2671
        • Volman V.
        • Behrens M.M.
        • Sejnowski T.J.
        Downregulation of parvalbumin at cortical GABA synapses reduces network gamma oscillatory activity.
        J Neurosci. 2011; 31: 18137-18148
        • Spencer K.M.
        The functional consequences of cortical circuit abnormalities on gamma oscillations in schizophrenia: Insights from computational modeling.
        Front Hum Neurosci. 2009; 3: 33
        • Belforte J.E.
        • Zsiros V.
        • Sklar E.R.
        • Jiang Z.
        • Yu G.
        • Li Y.
        • et al.
        Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes.
        Nat Neurosci. 2010; 13: 76-83
        • Homayoun H.
        • Moghaddam B.
        NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons.
        J Neurosci. 2007; 27: 11496-11500
        • Staley K.J.
        Neurons skip a beat during fast ripples.
        Neuron. 2007; 55: 828-830
        • Nikolic D.
        • Hausler S.
        • Singer W.
        • Maass W.
        Distributed fading memory for stimulus properties in the primary visual cortex.
        PLoS Biol. 2009; 7: e1000260
        • Ray S.
        • Maunsell J.H.R.
        Differences in gamma frequencies across visual cortex restrict their possible use in computation.
        Neuron. 2010; 67: 885-896
        • Wilson H.R.
        • Cowan J.D.
        Excitatory and inhibitory interactions in localized populations of model neurons.
        Biophys J. 1972; 12: 1-24
        • Jadi M.P.
        • Sejnowski T.J.
        Cortical oscillations arise from contextual interactions that regulate sparse coding.
        Proc Natl Acad Sci U S A. 2014; 111: 6780-6785
        • Jadi M.P.
        • Sejnowski T.J.
        Regulating cortical oscillations in an inhibition-stabilized network.
        Proc IEEE Inst Electr Electron Eng. 2014; : 102
        • Whittington M.A.
        • Traub R.D.
        • Jefferys J.G.
        Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation.
        Nature. 1995; 373: 612-615
        • Wang X.J.
        • Buzsáki G.
        Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model.
        J Neurosci. 1996; 16: 6402-6413
        • Traub R.D.
        • Whittington M.A.
        • Colling S.B.
        • Buzsaki G.
        • Jefferys J.G.
        Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo.
        J Physiol. 1996; 493: 471-484
        • Van Vreeswijk C.
        • Abbott L.F.
        • Ermentrout G.B.
        When inhibition not excitation synchronizes neural firing.
        J Comput Neurosci. 1994; 1: 313-321
        • Buia C.
        • Tiesinga P.
        Attentional modulation of firing rate and synchrony in a model cortical network.
        J Comput Neurosci. 2006; 20: 247-264
        • Tiesinga P.
        • Sejnowski T.J.
        Cortical enlightenment: Are attentional gamma oscillations driven by ING or PING?.
        Neuron. 2009; 63: 727-732
        • Traub R.D.
        • Kopell N.
        • Bibbig A.
        • Buhl E.H.
        • LeBeau F.E.
        • Whittington M.A.
        Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks.
        J Neurosci. 21. 2001: 9478-9486
        • Fukuda T.
        • Kosaka T.
        • Singer W.
        • Galuske R.A.
        Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network.
        J Neurosci. 26. 2006: 3434-3443
        • Buhl D.L.
        • Harris K.D.
        • Hormuzdi S.G.
        • Monyer H.
        • Buzsaki G.
        Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo.
        J Neurosci. 2003; 23: 1013-1018
        • Brunel N.
        • Wang X.-J.
        What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance.
        J Neurophysiol. 2003; 90: 415-430
        • Geisler C.
        • Brunel N.
        • Wang X.J.
        Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges.
        J Neurophysiol. 2005; 94: 4344-4361
        • Fuchs E.C.
        • Zivkovic A.R.
        • Cunningham M.O.
        • Middleton S.
        • Lebeau F.E.
        • Bannerman D.M.
        • et al.
        Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior.
        Neuron. 2007; 53: 591-604
        • Tatard-Leitman V.M.
        • Jutzeler C.R.
        • Suh J.
        • Saunders J.A.
        • Billingslea E.N.
        • Morita S.
        • et al.
        Pyramidal cell selective ablation of N-methyl-D-aspartate receptor 1 causes increase in cellular and network excitability.
        Biol Psychiatry. 2015; 77: 556-568
        • Pfeffer C.K.
        • Xue M.
        • He M.
        • Huang Z.J.
        • Scanziani M.
        Inhibition of inhibition in visual cortex: The logic of connections between molecularly distinct interneurons.
        Nat Neurosci. 2013; 16: 1068-1076
        • Pi H.J.
        • Hangya B.
        • Kvitsiani D.
        • Sanders J.I.
        • Huang Z.J.
        • Kepecs A.
        Cortical interneurons that specialize in disinhibitory control.
        Nature. 2013; 503: 521-524
        • Fu Y.
        • Tucciarone J.M.
        • Espinosa J.S.
        • Sheng N.
        • Darcy D.P.
        • Nicoll R.A.
        • et al.
        A cortical circuit for gain control by behavioral state.
        Cell. 2014; 156: 1139-1152
        • Adesnik H.
        • Bruns W.
        • Taniguchi H.
        • Huang Z.J.
        • Scanziani M.
        A neural circuit for spatial summation in visual cortex.
        Nature. 2012; 490: 226-231
        • Grunze H.C.
        • Rainnie D.G.
        • Hasselmo M.E.
        • Barkai E.
        • Hearn E.F.
        • McCarley R.W.
        • Greene R.W.
        NMDA-dependent modulation of CA1 local circuit inhibition.
        J Neurosci. 1996; 16: 2034-2043
        • Rotaru D.C.
        • Lewis D.A.
        • Gonzalez-Burgos G.
        The role of glutamatergic inputs onto parvalbumin-positive interneurons: Relevance for schizophrenia.
        Rev Neurosci. 2012; 23: 97-109
        • Behrens M.M.
        • Ali S.S.
        • Dao D.N.
        • Lucero J.
        • Shekhtman G.
        • Quick K.L.
        • Dugan L.L.
        Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase.
        Science. 2007; 318: 1645-1647
        • Hashimoto T.
        • Volk D.W.
        • Eggan S.M.
        • Mirnics K.
        • Pierri J.N.
        • Sun Z.
        • et al.
        Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia.
        J Neurosci. 2003; 23: 6315-6326
        • Konradi C.
        • Yang C.K.
        • Zimmerman E.I.
        • Lohmann K.M.
        • Gresch P.
        • Pantazopoulos H.
        • et al.
        Hippocampal interneurons are abnormal in schizophrenia.
        Schizophr Res. 2011; 131: 165-173
        • Sakai T.
        • Oshima A.
        • Nozaki Y.
        • Ida I.
        • Haga C.
        • Akiyama H.
        • et al.
        Changes in density of calcium-binding-protein-immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder.
        Neuropathology. 2008; 28: 143-150
        • Ali A.B.
        • Thomson A.M.
        Synaptic alpha 5 subunit-containing GABAA receptors mediate IPSPs elicited by dendrite-preferring cells in rat neocortex.
        Cereb Cortex. 2008; 18: 1260-1271
        • Hiyoshi T.
        • Kambe D.
        • Karasawa J.
        • Chaki S.
        Differential effects of NMDA receptor antagonists at lower and higher doses on basal gamma band oscillation power in rat cortical electroencephalograms.
        Neuropharmacology. 2014; 85: 384-396
        • Kirli K.K.
        • Ermentrout G.B.
        • Cho R.Y.
        Computational study of NMDA conductance and cortical oscillations in schizophrenia.
        Front Comput Neurosci. 2014; 8: 133
        • Buchanan K.A.
        • Blackman A.V.
        • Moreau A.W.
        • Elgar D.
        • Costa R.P.
        • Lalanne T.
        • et al.
        Target-specific expression of presynaptic NMDA receptors in neocortical microcircuits.
        Neuron. 2012; 75: 451-466
        • Xu H.
        • Jeong H.Y.
        • Tremblay R.
        • Rudy B.
        Neocortical somatostatin-expressing GABAergic interneurons disinhibit the thalamorecipient layer 4.
        Neuron. 2013; 77: 155-167
        • Brunel N.
        • Hakim V.
        Sparsely synchronized neuronal oscillations.
        Chaos. 2008; 18: 015113
        • Brunel N.
        Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons.
        J Comput Neurosci. 2000; 8: 183-208
        • Kang K.
        • Shelley M.
        • Henrie J.A.
        • Shapley R.
        LFP spectral peaks in V1 cortex: Network resonance and cortico-cortical feedback.
        J Comput Neurosci. 2010; 29: 495-507
        • Wallace E.
        • Benayoun M.
        • van Drongelen W.
        • Cowan J.D.
        Emergent oscillations in networks of stochastic spiking neurons.
        PLoS One. 2011; 6: e14804
        • Bressloff P.C.
        Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics.
        Phys Rev E Stat Nonlin Soft Matter Phys. 2010; 82: 051903