Advertisement

Cell-Specific Regulation of N-Methyl-D-Aspartate Receptor Maturation by Mecp2 in Cortical Circuits

      Abstract

      Background

      Early postnatal experience shapes N-methyl-D-aspartate receptor (NMDAR) subunit composition and kinetics at excitatory synapses onto pyramidal cells; however, little is known about NMDAR maturation onto inhibitory interneurons.

      Methods

      We combined whole-cell patch clamp recordings (n = 440) of NMDAR-mediated currents from layer-4-to-layer-2/3 synapses onto pyramidal and green fluorescent protein labeled parvalbumin-positive (PV) interneurons in visual cortex at three developmental ages (15, 30, and 45 postnatal days) with array tomography three-dimensional reconstructions of NMDAR subunits GluN2A- and GluN2B-positive synapses onto PV cells.

      Results

      We show that the trajectory of the NMDAR subunit switch is slower in PV interneurons than in excitatory pyramidal cells in visual cortex. Notably, this differential time course is reversed in the absence of methyl-CpG-binding protein, MECP2, the molecular basis for cognitive decline in Rett syndrome and some cases of autism. Additional genetic reduction of GluN2A subunits, which prevents regression of vision in Mecp2-knockout mice, specifically rescues the accelerated NMDAR maturation in PV cells.

      Conclusions

      We demonstrate 1) the time course of NMDAR maturation is cell-type specific, and 2) a new cell-type specific role for Mecp2 in the development of NMDAR subunit composition. Reducing GluN2A expression in Mecp2-knockout mice, which prevents the decline in visual cortical function, also prevents the premature NMDAR maturation in PV cells. Thus, circuit-based therapies targeting NMDAR subunit composition on PV cells may provide novel treatments for Rett syndrome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Biological Psychiatry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Paoletti P.
        • Bellone C.
        • Zhou Q.
        NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease.
        Nat Rev Neurosci. 2013; 14: 383-400
        • Carmignoto G.
        • Vicini S.
        Activity-dependent decrease in NMDA receptor responses during development of the visual cortex.
        Science. 1992; 258: 1007-1011
        • Sanz-Clemente A.
        • Nicoll R.A.
        • Roche K.W.
        Diversity in NMDA receptor composition: Many regulators, many consequences.
        Neuroscientist. 2013; 19: 62-75
        • Le Magueresse C.L.
        • Monyer H.
        GABAergic interneurons shape the functional maturation of the cortex.
        Neuron. 2013; 77: 388-405
        • Cobb S.R.
        • Buhl E.H.
        • Halasy K.
        • Paulsen O.
        • Somogyi P.
        Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons.
        Nature. 1995; 378: 75-78
        • Hensch T.K.
        Critical period plasticity in local cortical circuits.
        Nat Rev Neurosci. 2005; 6: 877-888
        • Durand S.
        • Patrizi A.
        • Quast K.B.
        • Hachigian L.
        • Pavlyuk R.
        • Saxena A.
        • et al.
        NMDA receptor regulation prevents regression of visual cortical function in the absence of Mecp2.
        Neuron. 2012; 76: 1078-1090
        • Tomassy G.S.
        • Morello N.
        • Calcagno E.
        • Giustetto M.
        Developmental abnormalities of cortical interneurons precede symptoms onset in a mouse model of Rett syndrome.
        J Neurochem. 2014; 131: 115-127
        • Chahrour M.
        • Zoghbi H.Y.
        The story of Rett syndrome: From clinic to neurobiology.
        Neuron. 2007; 56: 422-437
        • Blue M.E.
        • Naidu S.
        • Johnston M.V.
        Development of amino acid receptors in frontal cortex from girls with Rett syndrome.
        Ann Neurol. 1999; 45: 541-545
        • Lee S.
        • Kim W.
        • Ham B.
        • Chen W.
        • Bear M.F.
        • Yoon B.
        Activity-depending NR2B expression is mediated by MeCP2-dependent epigenetic regulation.
        Biochem Biophys Res Commun. 2008; 377: 930-934
        • Maliszewska-Cyna E.
        • Bawa D.
        • Eubanks J.H.
        Diminished prevalence but preserved synaptic distribution of N-methyl-d-aspartate receptor subunits in the methyl CpG binding protein 2(MeCP2)-null mouse brain.
        Neuroscience. 2010; 168: 624-632
        • Blue M.E.
        • Kaufmann W.E.
        • Bressler J.
        • Eyring C.
        • O’Driscoll C.
        • Naidu S.
        • Johnston M.V.
        Temporal and regional alterations in NMDA receptor expression in Mecp2-null mice.
        Anat Rec (Hoboken). 2011; 294: 1624-1634
        • Guy J.
        • Hendrich B.
        • Holmes M.
        • Martin J.E.
        • Bird A.
        A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome.
        Nat Genet. 2001; 27: 322-326
        • Meyer A.H.
        • Katona I.
        • Blatow M.
        • Rozov A.
        • Monyer H.
        In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons.
        J Neurosci. 2002; 22: 7055-7064
        • Sakimura K.
        • Kutsuwada T.
        • Ito I.
        • Manabe T.
        • Takayama C.
        • Kushiya E.
        • et al.
        Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit.
        Nature. 1995; 373: 151-155
        • Mierau S.B.
        • Meredith R.
        • Upton A.L.
        • Paulsen O.
        Dissociation of experience-dependent and -independent changes in excitatory synaptic transmission during development of barrel cortex.
        Proc Natl Acad Sci U S A. 2004; 101: 15518-15523
        • Philpot B.D.
        • Sekhar A.
        • Shouval H.Z.
        • Bear M.F.
        Visual experience and deprivation bidirectionally modify the composition and function of NMDA receptors in visual cortex.
        Neuron. 2001; 29: 157-169
        • Hestrin S.
        • Nicoll R.A.
        • Perkel D.J.
        • Sah P.
        Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices.
        J Physiol. 1990; 422: 203-225
        • Micheva K.D.
        • Smith S.J.
        Array tomography: A new tool for imaging the molecular architecture and ultrastructure of neural circuits.
        Neuron. 2007; 55: 25-36
        • Bliss T.V.
        • Collingridge G.L.
        A synaptic model of memory: Long-term potentiation in the hippocampus.
        Nature. 1993; 361: 31-39
        • Bellone C.
        • Nicoll R.
        Rapid bidirectional switching of synaptic NMDA receptors.
        Neuron. 2007; 55: 779-785
        • Matta J.A.
        • Pelkey K.A.
        • Craig M.T.
        • Chittajallu R.
        • Jeffries B.W.
        • McBain C.J.
        Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity.
        Nat Neurosci. 2013; 16: 1032-1041
        • Wang H.X.
        • Gao W.J.
        Cell-type specific development of NMDA receptors in the interneurons of rat prefrontal cortex.
        Neuropsychopharmacology. 2009; 34: 2028-2040
        • Zhang Z.
        • Sun Q.Q.
        Development of NMDA NR2 subunits and their roles in critical period maturation of neocortical GABAergic interneurons.
        Dev Neurobiol. 2011; 71: 221-245
        • Fagiolini M.
        • Katagiri H.
        • Miyamoto H.
        • Mori H.
        • Grant S.G.
        • Mishina M.
        • Hensch T.K.
        Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling.
        Proc Natl Acad Sci U S A. 2003; 100: 2854-2859
        • He L.
        • Liu N.
        • Cheng T.
        • Chen X.
        • Li Y.
        • Shu Y.
        • et al.
        Conditional deletion of Mecp2 in parvalbumin-expressing GABAergic cells results in the absence of critical period plasticity.
        Nat Commun. 2014; 5: 5036
        • Dani V.S.
        • Chang Q.
        • Maffei A.
        • Turrigiano G.G.
        • Jaenisch R.
        • Nelson S.B.
        Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome.
        Proc Natl Acad Sci U S A. 2005; 102: 12560-12565
        • Nelson E.D.
        • Kavalali E.T.
        • Monteggia L.M.
        MeCP2-dependent transcriptional repression regulates excitatory neurotransmission.
        Curr Biol. 2006; 16: 710-716
        • Chao H.
        • Chen H.
        • Samaco R.C.
        • Xue M.
        • Chahrour M.
        • Yoo J.
        • et al.
        Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes.
        Nature. 2010; 468: 263-269
        • Nan X.
        • Ng H.H.
        • Johnson C.A.
        • Laherty C.D.
        • Turner B.M.
        • Eisenman R.N.
        • Bird A.
        Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex.
        Nature. 1998; 393: 386-389
        • Cohen S.
        • Gabel H.W.
        • Hemberg M.
        • Hutchinson A.N.
        • Sadacca L.A.
        • Ebert D.H.
        • et al.
        Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function.
        Neuron. 2011; 72: 72-85
        • Chen B.S.
        • Roche K.W.
        Regulation of NMDA receptors by phosphorylation.
        Neuropharmacology. 2007; 53: 362-368
        • Kron M.
        • Howell C.J.
        • Adam I.T.
        • Ransbottom M.
        • Christian D.
        • Ogier M.
        • Katz D.M.
        Brain activity mapping in Mecp2 mutant mice reveals functional deficits in forebrain circuits, including key nodes in the default mode network, that are reversed with ketamine treatment.
        J Neurosci. 2012; 32: 13860-13872
        • Townsend M.
        • Liu Y.
        • Constantine-Paton M.
        Retina-driven dephosphorylation of the NR2A subunit correlates with faster NMDA receptor kinetics at developing retinocollicular synapses.
        J Neurosci. 2004; 24: 11098-11107
        • Grau C.
        • Arató K.
        • Fernández-Fernández J.M.
        • Valderrama A.
        • Sindreu C.
        • Fillat C.
        • et al.
        DYRK1A-mediated phosphorylation of GluN2A at Ser(1048) regulates the surface expression and channel activity of GluN1/GluN2A receptors.
        Front Cell Neurosci. 2014; 8: 331
        • Wood L.
        • Gray N.W.
        • Zhou Z.
        • Greenberg M.E.
        • Shepherd G.M.
        Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in an RNA interference model of methyl-CpG-binding protein 2 deficiency.
        J Neurosci. 2009; 29: 12440-12448
        • Blackman M.P.
        • Djukic B.
        • Nelson S.B.
        • Turrigiano G.G.
        A critical and cell-autonomous role for Mecp2 in synaptic scaling up.
        J Neurosci. 2012; 32: 13529-13536
        • Zhang W.
        • Peterson M.
        • Beyer B.
        • Frankel W.N.
        • Zhang Z.
        Loss of Mecp2 from forebrain excitatory neurons leads to cortical hyperexcitation and seizures.
        J Neurosci. 2014; 34: 2754-2763
        • Jiang Y.H.
        • Ehlers M.D.
        Modeling autism by SHANK gene mutations in mice.
        Neuron. 2012; 78: 8-27
        • Won H.
        • Lee H.R.
        • Gee H.Y.
        • Mah W.
        • Kim J.I.
        • Lee J.
        • et al.
        Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function.
        Nature. 2012; 486: 261-265
        • Schmeisser M.J.
        • Ey E.
        • Wegener S.
        • Bockmann J.
        • Stempel A.V.
        • Kuebler A.
        • et al.
        Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2.
        Nature. 2012; 486: 256-260
        • Kinney J.W.
        • Davis C.N.
        • Tabarean I.
        • Conti B.
        • Bartfai T.
        • Behrens M.M.
        A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons.
        J Neurosci. 2006; 26: 1604-1615

      Linked Article

      • N-Methyl-D-Aspartate Receptors, Ketamine, and Rett Syndrome: Something Special on the Road to Treatments?
        Biological PsychiatryVol. 79Issue 9
        • Preview
          In 2007, Adrian Bird and his colleagues at the University of Edinburgh published a groundbreaking study demonstrating that Rett syndrome (RTT), a severe genetic neurodevelopmental disorder, is reversible in mouse models of the disease (1). Using Cre-Lox technology, the Bird group engineered a mouse in which the disease-causing gene, Mecp2, could be reversibly inactivated. Animals born with the gene switched off—a condition that mimics the loss of MECP2 function that underlies the human disease—developed full-blown symptoms of murine RTT.
        • Full-Text
        • PDF